메뉴 건너뛰기




Volumn 67, Issue 5, 2016, Pages 367-372

Conventional and unconventional mechanisms for soluble guanylyl cyclase signaling

Author keywords

cGMP; cIMP; hypoxic vasoconstriction; nitric oxide; soluble guanylyl cyclase

Indexed keywords

15 HYDROXY 11ALPHA,9ALPHA EPOXYMETHANOPROSTA 5,13 DIENOIC ACID; CYCLIC CMP; CYCLIC GMP; CYCLIC GMP DEPENDENT PROTEIN KINASE; CYCLIC IMP; CYCLIC UMP; GUANYLATE CYCLASE; SOLUBLE GUANYLYL CYCLASE; THYMOQUINONE; UNCLASSIFIED DRUG; VASODILATOR AGENT; CYCLIC AMP; NITRIC OXIDE; NUCLEOSIDE;

EID: 84969704580     PISSN: 01602446     EISSN: 15334023     Source Type: Journal    
DOI: 10.1097/FJC.0000000000000330     Document Type: Review
Times cited : (12)

References (71)
  • 1
    • 0000941242 scopus 로고
    • Isolation of adenosine 30, 50-mono-phosphate and guanosine 30, 50-monophosphate from rat urine
    • Ashman DF, Lipton R, Melicow MM, et al. Isolation of adenosine 30, 50-mono-phosphate and guanosine 30, 50-monophosphate from rat urine. Biochem Biophys Res Commun. 1963;11:330-334.
    • (1963) Biochem Biophys Res Commun. , vol.11 , pp. 330-334
    • Ashman, D.F.1    Lipton, R.2    Melicow, M.M.3
  • 2
    • 0014670941 scopus 로고
    • Guanyl cyclase, an enzyme catalyzing the formation of guanosine 30, 50-monophosphate from guanosine triphosphate
    • Hardman JG, Sutherland EW. Guanyl cyclase, an enzyme catalyzing the formation of guanosine 30, 50-monophosphate from guanosine triphosphate. J Biol Chem. 1969;244:6363-6370.
    • (1969) J Biol Chem. , vol.244 , pp. 6363-6370
    • Hardman, J.G.1    Sutherland, E.W.2
  • 3
    • 0014680514 scopus 로고
    • Guanyl cyclase. Determination of enzyme activity
    • Schultz G, Bohme E, Munske K. Guanyl cyclase. Determination of enzyme activity. Life Sci. 1969;8:1323-1332.
    • (1969) Life Sci. , vol.8 , pp. 1323-1332
    • Schultz, G.1    Bohme, E.2    Munske, K.3
  • 4
    • 0014641807 scopus 로고
    • Detection of guanyl cyclase in mammalian tissues
    • White AA, Aurbach GD. Detection of guanyl cyclase in mammalian tissues. Biochim Biophys Acta. 1969;191:686-697.
    • (1969) Biochim Biophys Acta. , vol.191 , pp. 686-697
    • White, A.A.1    Aurbach, G.D.2
  • 5
    • 0015889134 scopus 로고
    • Guanyl cyclase in rat brain subcellular fractions
    • Goridis C, Morgan IG. Guanyl cyclase in rat brain subcellular fractions. FEBS Lett. 1973;34:71-73.
    • (1973) FEBS Lett. , vol.34 , pp. 71-73
    • Goridis, C.1    Morgan, I.G.2
  • 6
    • 61749086558 scopus 로고    scopus 로고
    • A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases
    • Kots AY, Martin E, Sharina IG, et al. A short history of cGMP, guanylyl cyclases, and cGMP-dependent protein kinases. Handb Exp Pharmacol. 2009;191:1-14.
    • (2009) Handb Exp Pharmacol. , vol.191 , pp. 1-14
    • Kots, A.Y.1    Martin, E.2    Sharina, I.G.3
  • 7
    • 0018311634 scopus 로고
    • Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine
    • Gruetter CA, Barry BK, McNamara DB, et al. Relaxation of bovine coronary artery and activation of coronary arterial guanylate cyclase by nitric oxide, nitroprusside and a carcinogenic nitrosoamine. J Cyclic Nucleotide Res. 1979;5:211-224.
    • (1979) J Cyclic Nucleotide Res. , vol.5 , pp. 211-224
    • Gruetter, C.A.1    Barry, B.K.2    McNamara, D.B.3
  • 8
    • 0023198721 scopus 로고
    • Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor
    • Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524-526.
    • (1987) Nature. , vol.327 , pp. 524-526
    • Palmer, R.M.1    Ferrige, A.G.2    Moncada, S.3
  • 9
    • 71849103998 scopus 로고    scopus 로고
    • The function of NO-sensitive guanylyl cyclase: What we can learn from genetic mouse models
    • Friebe A, Koesling D. The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide. 2009;21: 149-156.
    • (2009) Nitric Oxide. , vol.21 , pp. 149-156
    • Friebe, A.1    Koesling, D.2
  • 10
    • 77952889195 scopus 로고    scopus 로고
    • The multiple actions of NO
    • Gao Y. The multiple actions of NO. Pflugers Arch. 2010;459:829-839.
    • (2010) Pflugers Arch. , vol.459 , pp. 829-839
    • Gao, Y.1
  • 11
    • 84883188866 scopus 로고    scopus 로고
    • CGMP-dependent protein kinases (cGK)
    • Hofmann F, Wegener JW. cGMP-dependent protein kinases (cGK). Methods Mol Biol. 2013;1020:17-50.
    • (2013) Methods Mol Biol. , vol.1020 , pp. 17-50
    • Hofmann, F.1    Wegener, J.W.2
  • 12
    • 84897443197 scopus 로고    scopus 로고
    • Advances in targeting cyclic nucleotide phosphodiesterases
    • Maurice DH, Ke H, Ahmad F, et al. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290-314.
    • (2014) Nat Rev Drug Discov. , vol.13 , pp. 290-314
    • Maurice, D.H.1    Ke, H.2    Ahmad, F.3
  • 13
    • 84904665840 scopus 로고    scopus 로고
    • New perspectives in cyclic nucleotide-mediated functions in the CNS: The emerging role of cyclic nucleotide-gated (CNG) channels
    • Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch. 2014;466:1241-1257.
    • (2014) Pflugers Arch. , vol.466 , pp. 1241-1257
    • Podda, M.V.1    Grassi, C.2
  • 14
    • 0036301043 scopus 로고    scopus 로고
    • Cyclic nucleotide-gated ion channels
    • Kaupp UB, Seifert R. Cyclic nucleotide-gated ion channels. Physiol Rev. 2002;82:769-824.
    • (2002) Physiol Rev. , vol.82 , pp. 769-824
    • Kaupp, U.B.1    Seifert, R.2
  • 15
    • 84902475140 scopus 로고    scopus 로고
    • Postsynaptic NO/cGMP increases NMDA receptor currents via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus
    • Neitz A, Mergia E, Imbrosci B, et al. Postsynaptic NO/cGMP increases NMDA receptor currents via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus. Cereb Cortex. 2014;24: 1923-1936.
    • (2014) Cereb Cortex. , vol.24 , pp. 1923-1936
    • Neitz, A.1    Mergia, E.2    Imbrosci, B.3
  • 16
    • 84856847677 scopus 로고    scopus 로고
    • Nucleotidyl cyclase activity of soluble guanylyl cyclase a1b1
    • Beste KY, Burhenne H, Kaever V, et al. Nucleotidyl cyclase activity of soluble guanylyl cyclase a1b1. Biochemistry. 2012;51:194-204.
    • (2012) Biochemistry. , vol.51 , pp. 194-204
    • Beste, K.Y.1    Burhenne, H.2    Kaever, V.3
  • 17
    • 84893728687 scopus 로고    scopus 로고
    • Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells
    • Bähre H, Danker KY, Stasch JP, et al. Nucleotidyl cyclase activity of soluble guanylyl cyclase in intact cells. Biochem Biophys Res Commun. 2014;443:1195-1199.
    • (2014) Biochem Biophys Res Commun. , vol.443 , pp. 1195-1199
    • Bähre, H.1    Danker, K.Y.2    Stasch, J.P.3
  • 18
    • 77956908953 scopus 로고    scopus 로고
    • Cyclic cytidine 30, 50-monophosphate (cCMP) signals via cGMP kinase i
    • Desch M, Schinner E, Kees F, et al. Cyclic cytidine 30, 50-monophosphate (cCMP) signals via cGMP kinase I. FEBS Lett. 2010;584: 3979-3984.
    • (2010) FEBS Lett. , vol.584 , pp. 3979-3984
    • Desch, M.1    Schinner, E.2    Kees, F.3
  • 19
    • 84905267902 scopus 로고    scopus 로고
    • Cyclic IMP-synthesized by sGC as a mediator of hypoxic contraction of coronary arteries
    • Chen Z, Zhang X, Ying L, et al. Cyclic IMP-synthesized by sGC as a mediator of hypoxic contraction of coronary arteries. Am J Physiol Heart Circ Physiol. 2014;307:H328-H336.
    • (2014) Am J Physiol Heart Circ Physiol. , vol.307 , pp. H328-H336
    • Chen, Z.1    Zhang, X.2    Ying, L.3
  • 21
    • 33745217855 scopus 로고    scopus 로고
    • Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system
    • Mergia E, Friebe A, Dangel O, et al. Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest. 2006;116:1731-1737.
    • (2006) J Clin Invest. , vol.116 , pp. 1731-1737
    • Mergia, E.1    Friebe, A.2    Dangel, O.3
  • 22
    • 84861857184 scopus 로고    scopus 로고
    • Structure and regulation of soluble guanylate cyclase
    • Derbyshire ER, Marletta MA. Structure and regulation of soluble guanylate cyclase. Annu Rev Biochem. 2012;81:533-559.
    • (2012) Annu Rev Biochem. , vol.81 , pp. 533-559
    • Derbyshire, E.R.1    Marletta, M.A.2
  • 23
    • 84898041316 scopus 로고    scopus 로고
    • Nitric oxide-induced conformational changes in soluble guanylate cyclase
    • Underbakke ES, Iavarone AT, Chalmers MJ, et al. Nitric oxide-induced conformational changes in soluble guanylate cyclase. Structure. 2014;22: 602-611.
    • (2014) Structure. , vol.22 , pp. 602-611
    • Underbakke, E.S.1    Iavarone, A.T.2    Chalmers, M.J.3
  • 24
    • 0025001895 scopus 로고
    • Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits
    • Harteneck C, Koesling D, Söling A, et al. Expression of soluble guanylyl cyclase. Catalytic activity requires two enzyme subunits. FEBS Lett. 1990;272:221-223.
    • (1990) FEBS Lett. , vol.272 , pp. 221-223
    • Harteneck, C.1    Koesling, D.2    Söling, A.3
  • 25
    • 84655167703 scopus 로고    scopus 로고
    • A novel insight into the heme and NO/CO binding mechanism of the alpha subunit of human soluble guanylate cyclase
    • Zhong F, Pan J, Liu X, et al. A novel insight into the heme and NO/CO binding mechanism of the alpha subunit of human soluble guanylate cyclase. J Biol Inorg Chem. 2011;16:1227-1239.
    • (2011) J Biol Inorg Chem. , vol.16 , pp. 1227-1239
    • Zhong, F.1    Pan, J.2    Liu, X.3
  • 26
    • 84874740630 scopus 로고    scopus 로고
    • Crystal structures of the catalytic domain of human soluble guanylate cyclase
    • Allerston CK, von Delft F, Gileadi O. Crystal structures of the catalytic domain of human soluble guanylate cyclase. PLoS One. 2013; 8:e57644.
    • (2013) PLoS One. , vol.8
    • Allerston, C.K.1    Von Delft, F.2    Gileadi, O.3
  • 27
    • 0345827613 scopus 로고    scopus 로고
    • Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism
    • Ruiz-Stewart I, Tiyyagura SR, Lin JE, et al. Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc Natl Acad Sci U S A. 2004;101:37-42.
    • (2004) Proc Natl Acad Sci U S A. , vol.101 , pp. 37-42
    • Ruiz-Stewart, I.1    Tiyyagura, S.R.2    Lin, J.E.3
  • 28
    • 84940211839 scopus 로고    scopus 로고
    • The influence of nitric oxide on soluble guanylate cyclase regulation by nucleotides: The role of pseudosymmetric site
    • Surmeli NB, Muskens FM, Marletta MA. The influence of nitric oxide on soluble guanylate cyclase regulation by nucleotides: the role of pseudosymmetric site. J Biol Chem. 2015;290:15570-15580.
    • (2015) J Biol Chem. , vol.290 , pp. 15570-15580
    • Surmeli, N.B.1    Muskens, F.M.2    Marletta, M.A.3
  • 29
    • 76049119067 scopus 로고    scopus 로고
    • A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase
    • Fernhoff NB, Derbyshire ER, Marletta MA. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci U S A. 2009;106:21602-21607.
    • (2009) Proc Natl Acad Sci U S A. , vol.106 , pp. 21602-21607
    • Fernhoff, N.B.1    Derbyshire, E.R.2    Marletta, M.A.3
  • 30
    • 84859404668 scopus 로고    scopus 로고
    • Mechanism of binding of NO to soluble guanylyl cyclase: Implication for the second NO binding to the heme proximal site
    • Martin E, Berka V, Sharina I, et al. Mechanism of binding of NO to soluble guanylyl cyclase: implication for the second NO binding to the heme proximal site. Biochemistry. 2012;51:2737-2746.
    • (2012) Biochemistry. , vol.51 , pp. 2737-2746
    • Martin, E.1    Berka, V.2    Sharina, I.3
  • 31
    • 53449094062 scopus 로고    scopus 로고
    • Protein kinase G phosphorylates soluble guanylyl cyclase on serine 64 and inhibits its activity
    • Zhou Z, Sayed N, Pyriochou A, et al. Protein kinase G phosphorylates soluble guanylyl cyclase on serine 64 and inhibits its activity. Arterioscler Thromb Vasc Biol. 2008;28:1803-1810.
    • (2008) Arterioscler Thromb Vasc Biol. , vol.28 , pp. 1803-1810
    • Zhou, Z.1    Sayed, N.2    Pyriochou, A.3
  • 32
    • 0017747006 scopus 로고
    • On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins
    • Fahey RC, Hunt JS, Windham GC. On the cysteine and cystine content of proteins. Differences between intracellular and extracellular proteins. J Mol Evol. 1977;10:155-160.
    • (1977) J Mol Evol. , vol.10 , pp. 155-160
    • Fahey, R.C.1    Hunt, J.S.2    Windham, G.C.3
  • 33
    • 34547633523 scopus 로고    scopus 로고
    • Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation
    • Sayed N, Baskaran P, Ma X, et al. Desensitization of soluble guanylyl cyclase, the NO receptor, by S-nitrosylation. Proc Natl Acad Sci U S A. 2007;104:12312-12317.
    • (2007) Proc Natl Acad Sci U S A. , vol.104 , pp. 12312-12317
    • Sayed, N.1    Baskaran, P.2    Ma, X.3
  • 34
    • 65549123191 scopus 로고    scopus 로고
    • Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells
    • Maron BA, Zhang YY, Handy DE, et al. Aldosterone increases oxidant stress to impair guanylyl cyclase activity by cysteinyl thiol oxidation in vascular smooth muscle cells. J Biol Chem. 2009;284:7665-7672.
    • (2009) J Biol Chem. , vol.284 , pp. 7665-7672
    • Maron, B.A.1    Zhang, Y.Y.2    Handy, D.E.3
  • 35
    • 84865704834 scopus 로고    scopus 로고
    • Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model
    • Crassous PA, Couloubaly S, Huang C, et al. Soluble guanylyl cyclase is a target of angiotensin II-induced nitrosative stress in a hypertensive rat model. Am J Physiol Heart Circ Physiol. 2012;303:H597-H604.
    • (2012) Am J Physiol Heart Circ Physiol. , vol.303 , pp. H597-H604
    • Crassous, P.A.1    Couloubaly, S.2    Huang, C.3
  • 36
    • 84880570423 scopus 로고    scopus 로고
    • Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation
    • Dou D, Zheng X, Ying L, et al. Sulfhydryl-dependent dimerization and cGMP-mediated vasodilatation. J Cardiovasc Pharmacol. 2013;62:1-5.
    • (2013) J Cardiovasc Pharmacol. , vol.62 , pp. 1-5
    • Dou, D.1    Zheng, X.2    Ying, L.3
  • 37
    • 79957449176 scopus 로고    scopus 로고
    • Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide
    • Zheng X, Ying L, Liu J, et al. Role of sulfhydryl-dependent dimerization of soluble guanylyl cyclase in relaxation of porcine coronary artery to nitric oxide. Cardiovasc Res. 2011;90:565-572.
    • (2011) Cardiovasc Res. , vol.90 , pp. 565-572
    • Zheng, X.1    Ying, L.2    Liu, J.3
  • 38
    • 84873480381 scopus 로고    scopus 로고
    • Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide
    • Ye L, Liu J, Liu H, et al. Sulfhydryl-dependent dimerization of soluble guanylyl cyclase modulates the relaxation of porcine pulmonary arteries to nitric oxide. Pflugers Arch. 2013;465:333-341.
    • (2013) Pflugers Arch. , vol.465 , pp. 333-341
    • Ye, L.1    Liu, J.2    Liu, H.3
  • 39
    • 68149169007 scopus 로고    scopus 로고
    • What is the real physiological NO concentration in vivo?
    • Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide. 2009;21:92-103.
    • (2009) Nitric Oxide , vol.21 , pp. 92-103
    • Hall, C.N.1    Garthwaite, J.2
  • 40
    • 84901717696 scopus 로고    scopus 로고
    • Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content
    • Ghosh A, Stasch JP, Papapetropoulos A, et al. Nitric oxide and heat shock protein 90 activate soluble guanylate cyclase by driving rapid change in its subunit interactions and heme content. J Biol Chem. 2014;289:15259-15271.
    • (2014) J Biol Chem. , vol.289 , pp. 15259-15271
    • Ghosh, A.1    Stasch, J.P.2    Papapetropoulos, A.3
  • 41
    • 34247249901 scopus 로고    scopus 로고
    • Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species
    • Gerassimou C, Kotanidou A, Zhou Z, et al. Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species. Br J Pharmacol. 2007;150:1084-1091.
    • (2007) Br J Pharmacol. , vol.150 , pp. 1084-1091
    • Gerassimou, C.1    Kotanidou, A.2    Zhou, Z.3
  • 43
    • 84875630156 scopus 로고    scopus 로고
    • Hypoxia induces downregulation of soluble guanylyl cyclase b1 by MIR-34c-5p
    • Xu X, Wang S, Liu J, et al. Hypoxia induces downregulation of soluble guanylyl cyclase b1 by miR-34c-5p. J Cell Sci. 2012;125:6117-6126.
    • (2012) J Cell Sci. , vol.125 , pp. 6117-6126
    • Xu, X.1    Wang, S.2    Liu, J.3
  • 44
    • 0017158049 scopus 로고
    • Effects of anoxia and glucose depletion on isolated veins of the dog
    • Vanhoutte PM. Effects of anoxia and glucose depletion on isolated veins of the dog. Am J Physiol. 1976;230:1261-1268.
    • (1976) Am J Physiol. , vol.230 , pp. 1261-1268
    • Vanhoutte, P.M.1
  • 45
    • 0020647593 scopus 로고
    • Anoxia and endothelium-dependent reactivity of the canine femoral artery
    • De Mey JG, Vanhoutte PM. Anoxia and endothelium-dependent reactivity of the canine femoral artery. J Physiol. 1983;335:65-74.
    • (1983) J Physiol. , vol.335 , pp. 65-74
    • De Mey, J.G.1    Vanhoutte, P.M.2
  • 46
    • 0021891159 scopus 로고
    • Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium
    • Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol. 1985;364: 45-56.
    • (1985) J Physiol. , vol.364 , pp. 45-56
    • Rubanyi, G.M.1    Vanhoutte, P.M.2
  • 47
    • 0026322398 scopus 로고
    • Hypoxic contraction of canine coronary arteries: Role of endothelium and cGMP
    • Graeser T, Vanhoutte PM. Hypoxic contraction of canine coronary arteries: role of endothelium and cGMP. Am J Physiol Heart Circ Physiol. 1991;261:H1769-H1777.
    • (1991) Am J Physiol Heart Circ Physiol. , vol.261 , pp. H1769-H1777
    • Graeser, T.1    Vanhoutte, P.M.2
  • 48
    • 0029846085 scopus 로고    scopus 로고
    • Augmented endothelium-dependent constriction to hypoxia early and late following reperfusion of the canine coronary artery
    • Pearson PJ, Lin PJ, Schaff HV, et al. Augmented endothelium-dependent constriction to hypoxia early and late following reperfusion of the canine coronary artery. Clin Exp Pharmacol Physiol. 1996;23:634-641.
    • (1996) Clin Exp Pharmacol Physiol. , vol.23 , pp. 634-641
    • Pearson, P.J.1    Lin, P.J.2    Schaff, H.V.3
  • 49
    • 82855169297 scopus 로고    scopus 로고
    • Endothelium-derived NO, but not cyclic GMP, is required for hypoxic augmentation in isolated porcine coronary arteries
    • Chan CK, Mak J, Gao Y, et al. Endothelium-derived NO, but not cyclic GMP, is required for hypoxic augmentation in isolated porcine coronary arteries. Am J Physiol Heart Circ Physiol. 2011;301:H2313-H2321.
    • (2011) Am J Physiol Heart Circ Physiol. , vol.301 , pp. H2313-H2321
    • Chan, C.K.1    Mak, J.2    Gao, Y.3
  • 50
    • 0016431380 scopus 로고
    • Enzymatic formation of inosine 30, 50-monophosphate and of 20-deoxyguanosine 30, 50-monophosphate. Inosinate and deoxyguanylate cyclase activity
    • Garbers DL, Suddath JL, Hardman JG. Enzymatic formation of inosine 30, 50-monophosphate and of 20-deoxyguanosine 30, 50-monophosphate. Inosinate and deoxyguanylate cyclase activity. Biochim Biophys Acta. 1975;377:174-185.
    • (1975) Biochim Biophys Acta. , vol.377 , pp. 174-185
    • Garbers, D.L.1    Suddath, J.L.2    Hardman, J.G.3
  • 51
    • 84969631580 scopus 로고    scopus 로고
    • The endothelium-dependent, soluble guanylyl cyclase-dependent augmentation caused by thymoquinone in isolated porcine arteries is mediated by cIMP
    • 6
    • Detremmerie CM, Leung S, Xu A, et al. The endothelium-dependent, soluble guanylyl cyclase-dependent augmentation caused by thymoquinone in isolated porcine arteries is mediated by cIMP. FASEB J. 2014;28 (1 suppl):1146.6.
    • (2014) FASEB J. , vol.28 , Issue.1 , pp. 1146
    • Detremmerie, C.M.1    Leung, S.2    Xu, A.3
  • 52
    • 84969659756 scopus 로고    scopus 로고
    • Thymoquinone causes endothelium-dependent augmentation of contraction depending on activation of soluble guanylyl cyclase
    • Leung S, Detremmerie CM, Li Z, et al. Thymoquinone causes endothelium-dependent augmentation of contraction depending on activation of soluble guanylyl cyclase. J Vasc Res. 2013;50(suppl 1):56.
    • (2013) J Vasc Res. , vol.50 , pp. 56
    • Leung, S.1    Detremmerie, C.M.2    Li, Z.3
  • 53
    • 29144502301 scopus 로고    scopus 로고
    • Development of a spectrophotometric assay for cyclase activity
    • Sousa EH, Garay PA, Tinianow JN, et al. Development of a spectrophotometric assay for cyclase activity. Anal Biochem. 2006;348:57-63.
    • (2006) Anal Biochem. , vol.348 , pp. 57-63
    • Sousa, E.H.1    Garay, P.A.2    Tinianow, J.N.3
  • 54
    • 0033016797 scopus 로고    scopus 로고
    • Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: Stimulation by YC-1, nitric oxide, and carbon monoxide
    • Hoenicka M, Becker EM, Apeler H, et al. Purified soluble guanylyl cyclase expressed in a baculovirus/Sf9 system: stimulation by YC-1, nitric oxide, and carbon monoxide. J Mol Med (Berl). 1999;77:14-23.
    • (1999) J Mol Med (Berl). , vol.77 , pp. 14-23
    • Hoenicka, M.1    Becker, E.M.2    Apeler, H.3
  • 55
    • 80054064690 scopus 로고    scopus 로고
    • Human cyclic nucleotide phosphodiesterases possess a much broader substrate-specificity than previously appreciated
    • Reinecke D, Burhenne H, Sandner P, et al. Human cyclic nucleotide phosphodiesterases possess a much broader substrate-specificity than previously appreciated. FEBS Lett. 2011;585:3259-3262.
    • (2011) FEBS Lett. , vol.585 , pp. 3259-3262
    • Reinecke, D.1    Burhenne, H.2    Sandner, P.3
  • 56
    • 84969729008 scopus 로고    scopus 로고
    • 30, 50-cIMP as potential second messenger in the vascular wall
    • In press
    • Leung S, Gao Y, Vanhoutte PM. 30, 50-cIMP as potential second messenger in the vascular wall. Handb Exp Pharmacol. In press.
    • Handb Exp Pharmacol
    • Leung, S.1    Gao, Y.2    Vanhoutte, P.M.3
  • 57
    • 78549234306 scopus 로고    scopus 로고
    • ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells
    • Sakumi K, Abolhassani N, Behmanesh M, et al. ITPA protein, an enzyme that eliminates deaminated purine nucleoside triphosphates in cells. Mutat Res. 2010;703:43-50.
    • (2010) Mutat Res. , vol.703 , pp. 43-50
    • Sakumi, K.1    Abolhassani, N.2    Behmanesh, M.3
  • 58
    • 84880904769 scopus 로고    scopus 로고
    • Rho-associated coiled-coil kinase (ROCK) signaling and disease
    • Schofield AV, Bernard O. Rho-associated coiled-coil kinase (ROCK) signaling and disease. Crit Rev Biochem Mol Biol. 2013; 48:301-316.
    • (2013) Crit Rev Biochem Mol Biol. , vol.48 , pp. 301-316
    • Schofield, A.V.1    Bernard, O.2
  • 59
    • 33847713292 scopus 로고    scopus 로고
    • Role of Rho kinases in PKGmediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia
    • Gao Y, Portugal AD, Negash S, et al. Role of Rho kinases in PKGmediated relaxation of pulmonary arteries of fetal lambs exposed to chronic high altitude hypoxia. Am J Physiol Lung Cell Mol Physiol. 2007;292:L678-L684.
    • (2007) Am J Physiol Lung Cell Mol Physiol. , vol.292 , pp. L678-L684
    • Gao, Y.1    Portugal, A.D.2    Negash, S.3
  • 60
    • 84912550563 scopus 로고    scopus 로고
    • N4-monobutyryl-cCMP activates PKA RIa and PKA RIIa more potently and with higher efficacy than PKG Ia in vitro but not in vivo
    • Wolter S, Dove S, Golombek M, et al. N4-monobutyryl-cCMP activates PKA RIa and PKA RIIa more potently and with higher efficacy than PKG Ia in vitro but not in vivo. Naunyn Schmiedebergs Arch Pharmacol. 2014;387:1163-1175.
    • (2014) Naunyn Schmiedebergs Arch Pharmacol. , vol.387 , pp. 1163-1175
    • Wolter, S.1    Dove, S.2    Golombek, M.3
  • 61
    • 84907336003 scopus 로고    scopus 로고
    • CAMP, cGMP, cCMP and cUMP concentrations across the tree of life: High cCMP and cUMP levels in astrocytes
    • Hartwig C, Bähre H, Wolter S, et al. cAMP, cGMP, cCMP and cUMP concentrations across the tree of life: high cCMP and cUMP levels in astrocytes. Neurosci Lett. 2014;579:183-187.
    • (2014) Neurosci Lett. , vol.579 , pp. 183-187
    • Hartwig, C.1    Bähre, H.2    Wolter, S.3
  • 63
    • 84923284726 scopus 로고    scopus 로고
    • From canonical to non-canonical cyclic nucleotides as second messengers: Pharmacological implications
    • Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther. 2015;148:154-184.
    • (2015) Pharmacol Ther. , vol.148 , pp. 154-184
    • Seifert, R.1    Schneider, E.H.2    Bähre, H.3
  • 64
    • 84864531090 scopus 로고    scopus 로고
    • Regulation of hyperpolarizationactivated cyclic nucleotide-gated (HCN) channel activity by cCMP
    • Zong X, Krause S, Chen CC, et al. Regulation of hyperpolarizationactivated cyclic nucleotide-gated (HCN) channel activity by cCMP. J Biol Chem. 2012;287:26506-26512.
    • (2012) J Biol Chem. , vol.287 , pp. 26506-26512
    • Zong, X.1    Krause, S.2    Chen, C.C.3
  • 65
    • 84905836722 scopus 로고    scopus 로고
    • A mechanism for the autoinhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP
    • Akimoto M, Zhang Z, Boulton S, et al. A mechanism for the autoinhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channel opening and its relief by cAMP. J Biol Chem. 2014;289: 22205-22220.
    • (2014) J Biol Chem. , vol.289 , pp. 22205-22220
    • Akimoto, M.1    Zhang, Z.2    Boulton, S.3
  • 66
    • 84855880193 scopus 로고    scopus 로고
    • Differential activation of cAMP-and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides
    • Wolter S, Golombek M, Seifert R. Differential activation of cAMP-and cGMP-dependent protein kinases by cyclic purine and pyrimidine nucleotides. Biochem Biophys Res Commun. 2011;415:563-566.
    • (2011) Biochem Biophys Res Commun. , vol.415 , pp. 563-566
    • Wolter, S.1    Golombek, M.2    Seifert, R.3
  • 67
    • 84929377714 scopus 로고    scopus 로고
    • Interaction of cCMP with the cGK, cAK and MAPK kinases in murine tissues
    • Wolfertstetter S, Reinders J, Schwede F, et al. Interaction of cCMP with the cGK, cAK and MAPK kinases in murine tissues. PLoS One. 2015; 10:e0126057.
    • (2015) PLoS One. , vol.10
    • Wolfertstetter, S.1    Reinders, J.2    Schwede, F.3
  • 68
    • 84876587090 scopus 로고    scopus 로고
    • CCMP, cUMP, cTMP, cIMP and cXMP as possible second messengers: Development of a hypothesis based on studies with soluble guanylyl cyclase a(1)b(1)
    • Beste KY, Seifert R. cCMP, cUMP, cTMP, cIMP and cXMP as possible second messengers: development of a hypothesis based on studies with soluble guanylyl cyclase a(1)b(1). Biol Chem. 2013;394: 261-270.
    • (2013) Biol Chem. , vol.394 , pp. 261-270
    • Beste, K.Y.1    Seifert, R.2
  • 69
    • 84931577908 scopus 로고    scopus 로고
    • Hypoxic vasospasm mediated by cIMP: When soluble guanylyl cyclase turns bad
    • Gao Y, Chen Z, Leung SWS, et al. Hypoxic vasospasm mediated by cIMP: when soluble guanylyl cyclase turns bad. J Cardiovasc Pharmacol. 2015;65:545-548.
    • (2015) J Cardiovasc Pharmacol. , vol.65 , pp. 545-548
    • Gao, Y.1    Chen, Z.2    Leung, S.W.S.3
  • 70
    • 84876546108 scopus 로고    scopus 로고
    • Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger in muscarinic receptorinduced contraction of Guinea pig trachea
    • Aley PK, Singh N, Brailoiu GC, et al. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a second messenger in muscarinic receptorinduced contraction of guinea pig trachea. J Bio Chem. 2013;288: 10986-10993.
    • (2013) J Bio Chem. , vol.288 , pp. 10986-10993
    • Aley, P.K.1    Singh, N.2    Brailoiu, G.C.3
  • 71
    • 0001421246 scopus 로고
    • Some aspects of the biological role of adenosine 30, 50-monophosphate (Cyclic AMP)
    • Sutherland EW, Robison GA, Butcher RW. Some aspects of the biological role of adenosine 30, 50-monophosphate (Cyclic AMP). Circulation. 1968;37:279-306.
    • (1968) Circulation. , vol.37 , pp. 279-306
    • Sutherland, E.W.1    Robison, G.A.2    Butcher, R.W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.