메뉴 건너뛰기




Volumn 635, Issue , 2016, Pages 1-44

Combining complex networks and data mining: Why and how

Author keywords

Big Data; Complex networks; Data mining

Indexed keywords


EID: 84969529082     PISSN: 03701573     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.physrep.2016.04.005     Document Type: Review
Times cited : (162)

References (320)
  • 1
    • 0036240796 scopus 로고    scopus 로고
    • Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex
    • Huettel S.A., Mack P.B., McCarthy G. Perceiving patterns in random series: dynamic processing of sequence in prefrontal cortex. Nature Neurosci. 2002, 5(5):485-490.
    • (2002) Nature Neurosci. , vol.5 , Issue.5 , pp. 485-490
    • Huettel, S.A.1    Mack, P.B.2    McCarthy, G.3
  • 2
    • 48249112994 scopus 로고    scopus 로고
    • The encoding of temporally irregular and regular visual patterns in the human brain
    • Zeki S., Hulme O.J., Roulston B., Atiyah M. The encoding of temporally irregular and regular visual patterns in the human brain. PLoS One 2008, 3(5):e2180.
    • (2008) PLoS One , vol.3 , Issue.5 , pp. e2180
    • Zeki, S.1    Hulme, O.J.2    Roulston, B.3    Atiyah, M.4
  • 6
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert R., Barabási A.-L. Statistical mechanics of complex networks. Rev. Modern Phys. 2002, 74(1):47.
    • (2002) Rev. Modern Phys. , vol.74 , Issue.1 , pp. 47
    • Albert, R.1    Barabási, A.-L.2
  • 7
    • 0038718854 scopus 로고    scopus 로고
    • The structure and function of complex networks
    • Newman M.E. The structure and function of complex networks. SIAM Rev. 2003, 45(2):167-256.
    • (2003) SIAM Rev. , vol.45 , Issue.2 , pp. 167-256
    • Newman, M.E.1
  • 11
    • 33947724499 scopus 로고    scopus 로고
    • Characterization of complex networks: A survey of measurements
    • Costa L.d.F., Rodrigues F.A., Travieso G., Villas Boas P.R. Characterization of complex networks: A survey of measurements. Adv. Phys. 2007, 56(1):167-242.
    • (2007) Adv. Phys. , vol.56 , Issue.1 , pp. 167-242
    • Costa, L.1    Rodrigues, F.A.2    Travieso, G.3    Villas Boas, P.R.4
  • 12
    • 0034113014 scopus 로고    scopus 로고
    • Direct effects of statins on cells primarily involved in atherosclerosis
    • Chen H., Ikeda U., Shimpo M., Shimada K. Direct effects of statins on cells primarily involved in atherosclerosis. Hypertens. Res. 2000, 23(2):187-192.
    • (2000) Hypertens. Res. , vol.23 , Issue.2 , pp. 187-192
    • Chen, H.1    Ikeda, U.2    Shimpo, M.3    Shimada, K.4
  • 13
    • 0042635247 scopus 로고    scopus 로고
    • Scientific collaboration networks. ii. Shortest paths, weighted networks, and centrality
    • Newman M.E. Scientific collaboration networks. ii. Shortest paths, weighted networks, and centrality. Phys. Rev. E 2001, 64(1).
    • (2001) Phys. Rev. E , vol.64 , Issue.1
    • Newman, M.E.1
  • 15
    • 33745012299 scopus 로고    scopus 로고
    • Modularity and community structure in networks
    • Newman M.E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 2006, 103(23):8577-8582.
    • (2006) Proc. Natl. Acad. Sci. , vol.103 , Issue.23 , pp. 8577-8582
    • Newman, M.E.1
  • 16
    • 74049087026 scopus 로고    scopus 로고
    • Community detection in graphs
    • Fortunato S. Community detection in graphs. Phys. Rep. 2010, 486(3):75-174.
    • (2010) Phys. Rep. , vol.486 , Issue.3 , pp. 75-174
    • Fortunato, S.1
  • 18
    • 35348957264 scopus 로고    scopus 로고
    • Efficient behavior of small-world networks
    • Latora V., Marchiori M. Efficient behavior of small-world networks. Phys. Rev. Lett. 2001, 87(19).
    • (2001) Phys. Rev. Lett. , vol.87 , Issue.19
    • Latora, V.1    Marchiori, M.2
  • 19
    • 0037445385 scopus 로고    scopus 로고
    • Efficiency of scale-free networks: error and attack tolerance
    • Crucitti P., Latora V., Marchiori M., Rapisarda A. Efficiency of scale-free networks: error and attack tolerance. Physica A 2003, 320:622-642.
    • (2003) Physica A , vol.320 , pp. 622-642
    • Crucitti, P.1    Latora, V.2    Marchiori, M.3    Rapisarda, A.4
  • 20
    • 84966416628 scopus 로고
    • On random graphs
    • Rényi A., Erdös P. On random graphs. Publ. Mat. 1959, 6(290-297):5.
    • (1959) Publ. Mat. , vol.6 , Issue.290-297 , pp. 5
    • Rényi, A.1    Erdös, P.2
  • 22
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • Watts D.J., Strogatz S.H. Collective dynamics of 'small-world' networks. Nature 1998, 393(6684):440-442.
    • (1998) Nature , vol.393 , Issue.6684 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 23
    • 44349168786 scopus 로고    scopus 로고
    • Network 'small-world-ness': a quantitative method for determining canonical network equivalence
    • Humphries M.D., Gurney K. Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PLoS One 2008, 3(4):e0002051.
    • (2008) PLoS One , vol.3 , Issue.4 , pp. e0002051
    • Humphries, M.D.1    Gurney, K.2
  • 24
    • 84955467809 scopus 로고    scopus 로고
    • On alternative formulations of the small-world metric in complex networks
    • arXiv preprint .
    • M. Zanin, On alternative formulations of the small-world metric in complex networks, arXiv preprint . arxiv:1505.03689.
    • Zanin, M.1
  • 26
    • 84873274314 scopus 로고    scopus 로고
    • Modelling the air transport with complex networks: A short review
    • Zanin M., Lillo F. Modelling the air transport with complex networks: A short review. Eur. Phys. J. Spec. Top. 2013, 215(1):5-21.
    • (2013) Eur. Phys. J. Spec. Top. , vol.215 , Issue.1 , pp. 5-21
    • Zanin, M.1    Lillo, F.2
  • 27
    • 67749140118 scopus 로고    scopus 로고
    • Scale-free networks: a decade and beyond
    • Barabási A.-L. Scale-free networks: a decade and beyond. Science 2009, 325(5939):412.
    • (2009) Science , vol.325 , Issue.5939 , pp. 412
    • Barabási, A.-L.1
  • 28
    • 0035887972 scopus 로고    scopus 로고
    • Deterministic scale-free networks
    • Barabási A.-L., Ravasz E., Vicsek T. Deterministic scale-free networks. Physica A 2001, 299(3):559-564.
    • (2001) Physica A , vol.299 , Issue.3 , pp. 559-564
    • Barabási, A.-L.1    Ravasz, E.2    Vicsek, T.3
  • 29
    • 0035365355 scopus 로고    scopus 로고
    • Size-dependent degree distribution of a scale-free growing network
    • Dorogovtsev S., Mendes J., Samukhin A. Size-dependent degree distribution of a scale-free growing network. Phys. Rev. E 2001, 63(6).
    • (2001) Phys. Rev. E , vol.63 , Issue.6
    • Dorogovtsev, S.1    Mendes, J.2    Samukhin, A.3
  • 30
    • 41349104828 scopus 로고    scopus 로고
    • Growing scale-free networks with tunable clustering
    • Holme P., Kim B.J. Growing scale-free networks with tunable clustering. Phys. Rev. E 2002, 65(2).
    • (2002) Phys. Rev. E , vol.65 , Issue.2
    • Holme, P.1    Kim, B.J.2
  • 32
    • 41349116090 scopus 로고    scopus 로고
    • Highly clustered scale-free networks
    • Klemm K., Eguiluz V.M. Highly clustered scale-free networks. Phys. Rev. E 2002, 65(3).
    • (2002) Phys. Rev. E , vol.65 , Issue.3
    • Klemm, K.1    Eguiluz, V.M.2
  • 33
    • 41349086001 scopus 로고    scopus 로고
    • Growing scale-free networks with small-world behavior
    • Klemm K., Eguiluz V.M. Growing scale-free networks with small-world behavior. Phys. Rev. E 2002, 65(5).
    • (2002) Phys. Rev. E , vol.65 , Issue.5
    • Klemm, K.1    Eguiluz, V.M.2
  • 34
    • 0036853235 scopus 로고    scopus 로고
    • Scale-free networks from optimal design
    • Valverde S., Cancho R.F., Sole R.V. Scale-free networks from optimal design. Europhys. Lett. 2002, 60(4):512.
    • (2002) Europhys. Lett. , vol.60 , Issue.4 , pp. 512
    • Valverde, S.1    Cancho, R.F.2    Sole, R.V.3
  • 35
    • 41349097240 scopus 로고    scopus 로고
    • Geometric fractal growth model for scale-free networks
    • Jung S., Kim S., Kahng B. Geometric fractal growth model for scale-free networks. Phys. Rev. E 2002, 65(5).
    • (2002) Phys. Rev. E , vol.65 , Issue.5
    • Jung, S.1    Kim, S.2    Kahng, B.3
  • 36
    • 3342883707 scopus 로고    scopus 로고
    • Scale-free networks generated by random walkers
    • Saramäki J., Kaski K. Scale-free networks generated by random walkers. Physica A 2004, 341:80-86.
    • (2004) Physica A , vol.341 , pp. 80-86
    • Saramäki, J.1    Kaski, K.2
  • 38
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • Barabási A.-L., Albert R. Emergence of scaling in random networks. Science 1999, 286(5439):509-512.
    • (1999) Science , vol.286 , Issue.5439 , pp. 509-512
    • Barabási, A.-L.1    Albert, R.2
  • 39
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: a structural description of the human brain
    • Sporns O., Tononi G., Kötter R. The human connectome: a structural description of the human brain. PLoS Comput. Biol. 2005, 1(4):e42.
    • (2005) PLoS Comput. Biol. , vol.1 , Issue.4 , pp. e42
    • Sporns, O.1    Tononi, G.2    Kötter, R.3
  • 40
    • 79954516559 scopus 로고    scopus 로고
    • The human connectome: a complex network
    • Sporns O. The human connectome: a complex network. Ann. New York Acad. Sci. 2011, 1224(1):109-125.
    • (2011) Ann. New York Acad. Sci. , vol.1224 , Issue.1 , pp. 109-125
    • Sporns, O.1
  • 41
    • 60549103853 scopus 로고    scopus 로고
    • Complex brain networks: graph theoretical analysis of structural and functional systems
    • Bullmore E., Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10(3):186-198.
    • (2009) Nat. Rev. Neurosci. , vol.10 , Issue.3 , pp. 186-198
    • Bullmore, E.1    Sporns, O.2
  • 42
    • 84906887580 scopus 로고    scopus 로고
    • Reconstructing functional brain networks: have we got the basics right?
    • Papo D., Zanin M., Buldú J.M. Reconstructing functional brain networks: have we got the basics right?. Front. Hum. Neurosci. 2014, 8:107.
    • (2014) Front. Hum. Neurosci. , vol.8 , pp. 107
    • Papo, D.1    Zanin, M.2    Buldú, J.M.3
  • 43
    • 84866939709 scopus 로고    scopus 로고
    • Temporal networks
    • Holme P., Saramäki J. Temporal networks. Phys. Rep. 2012, 519(3):97-125.
    • (2012) Phys. Rep. , vol.519 , Issue.3 , pp. 97-125
    • Holme, P.1    Saramäki, J.2
  • 48
    • 84873176031 scopus 로고    scopus 로고
    • Modeling the multi-layer nature of the European air transport network: Resilience and passengers re-scheduling under random failures
    • Cardillo A., Zanin M., Gómez-Gardeñes J., Romance M., del Amo A.J.G., Boccaletti S. Modeling the multi-layer nature of the European air transport network: Resilience and passengers re-scheduling under random failures. Eur. Phys. J. Spec. Top. 2013, 215(1):23-33.
    • (2013) Eur. Phys. J. Spec. Top. , vol.215 , Issue.1 , pp. 23-33
    • Cardillo, A.1    Zanin, M.2    Gómez-Gardeñes, J.3    Romance, M.4    del Amo, A.J.G.5    Boccaletti, S.6
  • 49
    • 0002221492 scopus 로고
    • The structure of the nervous system of the nematode caenorhabditis elegans: the mind of a worm
    • White J., Southgate E., Thomson J., Brenner S. The structure of the nervous system of the nematode caenorhabditis elegans: the mind of a worm. Phil. Trans. R. Soc. Lond. 1986, 314:1-340.
    • (1986) Phil. Trans. R. Soc. Lond. , vol.314 , pp. 1-340
    • White, J.1    Southgate, E.2    Thomson, J.3    Brenner, S.4
  • 54
    • 85166916238 scopus 로고    scopus 로고
    • Gephi: an open source software for exploring and manipulating networks
    • Bastian M., Heymann S., Jacomy M. Gephi: an open source software for exploring and manipulating networks. ICWSM 2009, 8:361-362.
    • (2009) ICWSM , vol.8 , pp. 361-362
    • Bastian, M.1    Heymann, S.2    Jacomy, M.3
  • 55
    • 0002226683 scopus 로고    scopus 로고
    • Pajek-program for large network analysis
    • Batagelj V., Mrvar A. Pajek-program for large network analysis. Connections 1998, 21(2):47-57.
    • (1998) Connections , vol.21 , Issue.2 , pp. 47-57
    • Batagelj, V.1    Mrvar, A.2
  • 56
    • 2942609149 scopus 로고    scopus 로고
    • Visant: an online visualization and analysis tool for biological interaction data
    • Hu Z., Mellor J., Wu J., DeLisi C. Visant: an online visualization and analysis tool for biological interaction data. BMC Bioinform. 2004, 5(1):17.
    • (2004) BMC Bioinform. , vol.5 , Issue.1 , pp. 17
    • Hu, Z.1    Mellor, J.2    Wu, J.3    DeLisi, C.4
  • 58
    • 77956553801 scopus 로고    scopus 로고
    • What's pmml and what's new in pmml 4.0?
    • Pechter R. What's pmml and what's new in pmml 4.0?. ACM SIGKDD Explor. Newsl. 2009, 11(1):19-25.
    • (2009) ACM SIGKDD Explor. Newsl. , vol.11 , Issue.1 , pp. 19-25
    • Pechter, R.1
  • 60
    • 77952329662 scopus 로고    scopus 로고
    • Data preparation for mining world wide web browsing patterns
    • Cooley R., Mobasher B., Srivastava J. Data preparation for mining world wide web browsing patterns. Knowl. Inf. Syst. 1999, 1(1):5-32.
    • (1999) Knowl. Inf. Syst. , vol.1 , Issue.1 , pp. 5-32
    • Cooley, R.1    Mobasher, B.2    Srivastava, J.3
  • 64
    • 84892062680 scopus 로고    scopus 로고
    • A survey of clustering data mining techniques
    • Springery
    • Berkhin P. A survey of clustering data mining techniques. Grouping Multidimensional Data 2006, 25-71. Springery.
    • (2006) Grouping Multidimensional Data , pp. 25-71
    • Berkhin, P.1
  • 65
    • 84966600544 scopus 로고
    • Algorithm as 136: A k-means clustering algorithm
    • Hartigan J.A., Wong M.A. Algorithm as 136: A k-means clustering algorithm. Appl. Stat. 1979, 100-108.
    • (1979) Appl. Stat. , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 66
    • 85170282443 scopus 로고    scopus 로고
    • A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise
    • Ester M., Kriegel H.-P., Sander J., Xu X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. Kdd 1996, vol. 96:226-231.
    • (1996) Kdd , vol.96 , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 67
    • 0027621699 scopus 로고
    • Mining Association Rules Between Sets of Items in Large Databases
    • ACM
    • Agrawal R., Imieliński T., Swami A. Mining Association Rules Between Sets of Items in Large Databases. ACM SIGMOD Record 1993, vol. 22:207-216. ACM.
    • (1993) ACM SIGMOD Record , vol.22 , pp. 207-216
    • Agrawal, R.1    Imieliński, T.2    Swami, A.3
  • 68
    • 85138646379 scopus 로고    scopus 로고
    • New Algorithms for Fast Discovery of Association Rules
    • Zaki M.J., Parthasarathy S., Ogihara M., Li W. New Algorithms for Fast Discovery of Association Rules. KDD 1997, vol. 97:283-286.
    • (1997) KDD , vol.97 , pp. 283-286
    • Zaki, M.J.1    Parthasarathy, S.2    Ogihara, M.3    Li, W.4
  • 72
    • 84936143654 scopus 로고
    • Statistical models and shoe leather
    • Freedman D.A. Statistical models and shoe leather. Sociol. Methodol. 1991, 21(2):291-313.
    • (1991) Sociol. Methodol. , vol.21 , Issue.2 , pp. 291-313
    • Freedman, D.A.1
  • 76
    • 0002139432 scopus 로고    scopus 로고
    • Sprint: A scalable parallel classifier for data mining
    • Very Large Data Bases, Citeseer
    • J. Shafer, R. Agrawal, M. Mehta, Sprint: A scalable parallel classifier for data mining, in: Proc. 1996 Int. Conf. Very Large Data Bases, Citeseer, 1996, pp. 544-555.
    • (1996) Proc. 1996 Int. Conf. , pp. 544-555
    • Shafer, J.1    Agrawal, R.2    Mehta, M.3
  • 77
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J.R. Induction of decision trees. Mach. Learn. 1986, 1(1):81-106.
    • (1986) Mach. Learn. , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 79
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach. Learn. 2001, 45(1):5-32.
    • (2001) Mach. Learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 82
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65(6):386.
    • (1958) Psychol. Rev. , vol.65 , Issue.6 , pp. 386
    • Rosenblatt, F.1
  • 87
    • 0000581356 scopus 로고
    • An introduction to kernel and nearest-neighbor nonparametric regression
    • Altman N.S. An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 1992, 46(3):175-185.
    • (1992) Am. Stat. , vol.46 , Issue.3 , pp. 175-185
    • Altman, N.S.1
  • 88
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 90
    • 80052213499 scopus 로고    scopus 로고
    • Multiple kernel learning algorithms
    • Gönen M., Alpaydin E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12:2211-2268.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2211-2268
    • Gönen, M.1    Alpaydin, E.2
  • 91
    • 0031189666 scopus 로고    scopus 로고
    • A new version of the rule induction system lers
    • Grzymala-Busse J.W. A new version of the rule induction system lers. Fund. Inform. 1997, 31(1):27-39.
    • (1997) Fund. Inform. , vol.31 , Issue.1 , pp. 27-39
    • Grzymala-Busse, J.W.1
  • 94
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artif. Intell. 1997, 97(1):245-271.
    • (1997) Artif. Intell. , vol.97 , Issue.1 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 95
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I., Elisseeff A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3:1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 96
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artif. Intell. 1997, 97(1):273-324.
    • (1997) Artif. Intell. , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 97
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. J. Mach. Learn. Res. 2003, 3:1371-1382.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 98
    • 0032273328 scopus 로고    scopus 로고
    • An intrinsic limiting procedure for model selection and hypotheses testing
    • Moreno E., Bertolino F., Racugno W. An intrinsic limiting procedure for model selection and hypotheses testing. J. Amer. Statist. Assoc. 1998, 93(444):1451-1460.
    • (1998) J. Amer. Statist. Assoc. , vol.93 , Issue.444 , pp. 1451-1460
    • Moreno, E.1    Bertolino, F.2    Racugno, W.3
  • 99
    • 8744253858 scopus 로고    scopus 로고
    • Institute of Mathematical Statistics
    • Lahiri P. Model Selection 2001, Institute of Mathematical Statistics.
    • (2001) Model Selection
    • Lahiri, P.1
  • 102
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub G., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21:215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.1    Heath, M.2    Wahba, G.3
  • 109
    • 0030305457 scopus 로고    scopus 로고
    • R: a language for data analysis and graphics
    • Ihaka R., Gentleman R. R: a language for data analysis and graphics. J. Comput. Graph. Statist. 1996, 5(3):299-314.
    • (1996) J. Comput. Graph. Statist. , vol.5 , Issue.3 , pp. 299-314
    • Ihaka, R.1    Gentleman, R.2
  • 111
    • 84926128091 scopus 로고    scopus 로고
    • Big data'dynamic factor models for macroeconomic measurement and forecasting
    • Eighth World Congress of the Econometric Society, M. Dewatripont, L.P. Hansen, S. Turnovsky (Eds.)
    • Diebold F.X. big data'dynamic factor models for macroeconomic measurement and forecasting. Advances in Economics and Econometrics: Theory and Applications 2003, 115-122. Eighth World Congress of the Econometric Society. M. Dewatripont, L.P. Hansen, S. Turnovsky (Eds.).
    • (2003) Advances in Economics and Econometrics: Theory and Applications , pp. 115-122
    • Diebold, F.X.1
  • 113
    • 84864133585 scopus 로고    scopus 로고
    • Extracting value from chaos
    • Gantz J., Reinsel D. Extracting value from chaos. IDC iview 2011, (1142):9-10.
    • (2011) IDC iview , Issue.1142 , pp. 9-10
    • Gantz, J.1    Reinsel, D.2
  • 114
    • 84861113715 scopus 로고    scopus 로고
    • 3d data management: Controlling data volume, velocity and variety
    • Laney D. 3d data management: Controlling data volume, velocity and variety. META Group Res. Note 2001, 6:70.
    • (2001) META Group Res. Note , vol.6 , pp. 70
    • Laney, D.1
  • 120
    • 84930064585 scopus 로고    scopus 로고
    • Hierarchical organization in complex networks
    • Ravasz E., Barabási A.-L. Hierarchical organization in complex networks. Phys. Rev. E 2003, 67(2).
    • (2003) Phys. Rev. E , vol.67 , Issue.2
    • Ravasz, E.1    Barabási, A.-L.2
  • 121
    • 0345851235 scopus 로고    scopus 로고
    • Wireless integrated network sensors
    • Pottie G.J., Kaiser W.J. Wireless integrated network sensors. Commun. ACM 2000, 43(5):51-58.
    • (2000) Commun. ACM , vol.43 , Issue.5 , pp. 51-58
    • Pottie, G.J.1    Kaiser, W.J.2
  • 124
    • 0012986432 scopus 로고
    • Automated Theory Formation in Mathematics
    • Lenat D.B. Automated Theory Formation in Mathematics. IJCAI 1977, vol. 77:833-842.
    • (1977) IJCAI , vol.77 , pp. 833-842
    • Lenat, D.B.1
  • 125
    • 0005293342 scopus 로고
    • Data-driven discovery of physical laws
    • Langley P. Data-driven discovery of physical laws. Cogn. Sci. 1981, 5(1):31-54.
    • (1981) Cogn. Sci. , vol.5 , Issue.1 , pp. 31-54
    • Langley, P.1
  • 128
    • 0025897340 scopus 로고
    • American electroencephalographic society guidelines for standard electrode position nomenclature
    • Sharbrough F., Chatrian G., Lesser R., Lüders H., Nuwer M., Picton T. American electroencephalographic society guidelines for standard electrode position nomenclature. J. clin. Neurophysiol. 1991, 8(2):200-202.
    • (1991) J. clin. Neurophysiol. , vol.8 , Issue.2 , pp. 200-202
    • Sharbrough, F.1    Chatrian, G.2    Lesser, R.3    Lüders, H.4    Nuwer, M.5    Picton, T.6
  • 129
    • 0018991099 scopus 로고
    • A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity
    • Snodgrass J.G., Vanderwart M. A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. J. Exp. Psychol.: Hum. Learn. Mem. 1980, 6(2):174.
    • (1980) J. Exp. Psychol.: Hum. Learn. Mem. , vol.6 , Issue.2 , pp. 174
    • Snodgrass, J.G.1    Vanderwart, M.2
  • 130
    • 28144459550 scopus 로고
    • Some recent development in a concept of causality
    • Granger C.W. Some recent development in a concept of causality. J. Econometrics 1988, 39(1):199-211.
    • (1988) J. Econometrics , vol.39 , Issue.1 , pp. 199-211
    • Granger, C.W.1
  • 131
    • 0003297017 scopus 로고
    • Causality, cointegration, and control
    • Granger C.W. Causality, cointegration, and control. J. Econom. Dynam. Control 1988, 12(2):551-559.
    • (1988) J. Econom. Dynam. Control , vol.12 , Issue.2 , pp. 551-559
    • Granger, C.W.1
  • 132
    • 84883367290 scopus 로고    scopus 로고
    • Exploring the functional brain network of alzheimer's disease: based on the computational experiment
    • Li Y., Qin Y., Chen X., Li W. Exploring the functional brain network of alzheimer's disease: based on the computational experiment. PLoS One 2013, e73186.
    • (2013) PLoS One , pp. e73186
    • Li, Y.1    Qin, Y.2    Chen, X.3    Li, W.4
  • 133
    • 84988273583 scopus 로고    scopus 로고
    • Automatic classification of alzheimer's disease with resting-state FMRI and graph theory
    • in: Biomedical Engineering (ICBME), 2014 21th Iranian Conference on, IEEE,
    • A. Khazaee, A. Ebrahimzadeh, A. Babajani-Feremi, Automatic classification of alzheimer's disease with resting-state FMRI and graph theory, in: Biomedical Engineering (ICBME), 2014 21th Iranian Conference on, IEEE, 2014, pp. 252-257.
    • (2014) , pp. 252-257
    • Khazaee, A.1    Ebrahimzadeh, A.2    Babajani-Feremi, A.3
  • 134
    • 84952636562 scopus 로고    scopus 로고
    • Identifying patients with alzheimer's disease using resting-state FMRI and graph theory
    • Khazaee A., Ebrahimzadeh A., Babajani-Feremi A. Identifying patients with alzheimer's disease using resting-state FMRI and graph theory. Clin. Neurophysiol. 2015, 126(11):2132-2141.
    • (2015) Clin. Neurophysiol. , vol.126 , Issue.11 , pp. 2132-2141
    • Khazaee, A.1    Ebrahimzadeh, A.2    Babajani-Feremi, A.3
  • 137
    • 80052008803 scopus 로고    scopus 로고
    • Classifying connectivity graphs using graph and vertex attributes
    • PRNI, 2011 International Workshop on, IEEE
    • J. Richiardi, S. Achard, E. Bullmore, D. Van De Ville, Classifying connectivity graphs using graph and vertex attributes, in: Pattern Recognition in NeuroImaging, PRNI, 2011 International Workshop on, IEEE, 2011, pp. 45-48.
    • (2011) Pattern Recognition in NeuroImaging , pp. 45-48
    • Richiardi, J.1    Achard, S.2    Bullmore, E.3    Van De Ville, D.4
  • 141
    • 84927925167 scopus 로고    scopus 로고
    • Elucidating brain connectivity networks in major depressive disorder using classification-based scoring
    • ISBI, 2014 IEEE 11th International Symposium on, IEEE
    • M.D. Sacchet, G. Prasad, L.C. Foland-Ross, P.M. Thompson, I.H. Gotlib, Elucidating brain connectivity networks in major depressive disorder using classification-based scoring, in: Biomedical Imaging, ISBI, 2014 IEEE 11th International Symposium on, IEEE, 2014, pp. 246-249.
    • (2014) Biomedical Imaging , pp. 246-249
    • Sacchet, M.D.1    Prasad, G.2    Foland-Ross, L.C.3    Thompson, P.M.4    Gotlib, I.H.5
  • 144
    • 84974533654 scopus 로고    scopus 로고
    • Whole-brain connectivity analysis and classification of spinocerebellar ataxia type 7 by functional MRI
    • Hernandez-Castillo C.R., Galvez V., Morgado-Valle C., Fernandez-Ruiz J. Whole-brain connectivity analysis and classification of spinocerebellar ataxia type 7 by functional MRI. Cerebellum & Ataxias 2014, 1(1):2.
    • (2014) Cerebellum & Ataxias , vol.1 , Issue.1 , pp. 2
    • Hernandez-Castillo, C.R.1    Galvez, V.2    Morgado-Valle, C.3    Fernandez-Ruiz, J.4
  • 146
    • 84877092317 scopus 로고    scopus 로고
    • Combining classification with FMRI-derived complex network measures for potential neurodiagnostics
    • Fekete T., Wilf M., Rubin D., Edelman S., Malach R., Mujica-Parodi L.R. Combining classification with FMRI-derived complex network measures for potential neurodiagnostics. PLoS One 2013, e62867.
    • (2013) PLoS One , pp. e62867
    • Fekete, T.1    Wilf, M.2    Rubin, D.3    Edelman, S.4    Malach, R.5    Mujica-Parodi, L.R.6
  • 147
    • 84894028989 scopus 로고    scopus 로고
    • Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis
    • Fekete T., Zach N., Mujica-Parodi L.R., Turner M.R. Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PLoS One 2013, e85190.
    • (2013) PLoS One , pp. e85190
    • Fekete, T.1    Zach, N.2    Mujica-Parodi, L.R.3    Turner, M.R.4
  • 148
    • 84886240845 scopus 로고    scopus 로고
    • Prediction of alzheimer's disease and mild cognitive impairment using cortical morphological patterns
    • Wee C.-Y., Yap P.-T., Shen D. Prediction of alzheimer's disease and mild cognitive impairment using cortical morphological patterns. Hum. Brain Mapp. 2013, 34(12):3411-3425.
    • (2013) Hum. Brain Mapp. , vol.34 , Issue.12 , pp. 3411-3425
    • Wee, C.-Y.1    Yap, P.-T.2    Shen, D.3
  • 149
    • 84928769522 scopus 로고    scopus 로고
    • Multimodal analysis of functional and structural disconnection in alzheimer's disease using multiple kernel svm
    • Dyrba M., Grothe M., Kirste T., Teipel S.J. Multimodal analysis of functional and structural disconnection in alzheimer's disease using multiple kernel svm. Hum. Brain Mapp. 2015, 36(6):2118-2131.
    • (2015) Hum. Brain Mapp. , vol.36 , Issue.6 , pp. 2118-2131
    • Dyrba, M.1    Grothe, M.2    Kirste, T.3    Teipel, S.J.4
  • 150
    • 84893330870 scopus 로고    scopus 로고
    • Integration of network topological and connectivity properties for neuroimaging classification, biomedical engineering
    • Jie B., Zhang D., Gao W., Wang Q., Wee C.-Y., Shen D. Integration of network topological and connectivity properties for neuroimaging classification, biomedical engineering. IEEE Transactions on 2014, 61(2):576-589.
    • (2014) IEEE Transactions on , vol.61 , Issue.2 , pp. 576-589
    • Jie, B.1    Zhang, D.2    Gao, W.3    Wang, Q.4    Wee, C.-Y.5    Shen, D.6
  • 151
  • 152
    • 78049345059 scopus 로고    scopus 로고
    • Decomposing the tensor kernel support vector machine for neuroscience data with structured labels
    • Hardoon D.R., Shawe-Taylor J. Decomposing the tensor kernel support vector machine for neuroscience data with structured labels. Mach. Learn. 2010, 79(1-2):29-46.
    • (2010) Mach. Learn. , vol.79 , Issue.1-2 , pp. 29-46
    • Hardoon, D.R.1    Shawe-Taylor, J.2
  • 153
    • 0034274591 scopus 로고    scopus 로고
    • A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms
    • Lim T.-S., Loh W.-Y., Shih Y.-S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach. Learn. 2000, 40(3):203-228.
    • (2000) Mach. Learn. , vol.40 , Issue.3 , pp. 203-228
    • Lim, T.-S.1    Loh, W.-Y.2    Shih, Y.-S.3
  • 154
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: pitfalls to avoid and a recommended approach
    • Salzberg S.L. On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl. Discov. 1997, 1(3):317-328.
    • (1997) Data Min. Knowl. Discov. , vol.1 , Issue.3 , pp. 317-328
    • Salzberg, S.L.1
  • 155
    • 84875655140 scopus 로고    scopus 로고
    • Improved diagnosis in children with partial epilepsy using a multivariable prediction model based on EEG network characteristics
    • Van Diessen E., Otte W.M., Braun K., Stam C.J., Jansen F.E. Improved diagnosis in children with partial epilepsy using a multivariable prediction model based on EEG network characteristics. PLoS One 2013, 8(4):e59764.
    • (2013) PLoS One , vol.8 , Issue.4 , pp. e59764
    • Van Diessen, E.1    Otte, W.M.2    Braun, K.3    Stam, C.J.4    Jansen, F.E.5
  • 156
    • 84857527567 scopus 로고    scopus 로고
    • Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection, Biomedical Engineering
    • Temko A., Lightbody G., Thomas E.M., Boylan G.B., Marnane W. Instantaneous measure of EEG channel importance for improved patient-adaptive neonatal seizure detection, Biomedical Engineering. IEEE Trans. Biomed. Eng. 2012, 59(3):717-727.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , Issue.3 , pp. 717-727
    • Temko, A.1    Lightbody, G.2    Thomas, E.M.3    Boylan, G.B.4    Marnane, W.5
  • 157
  • 158
    • 84903589732 scopus 로고    scopus 로고
    • Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates
    • Jamal W., Das S., Oprescu I.-A., Maharatna K., Apicella F., Sicca F. Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates. J. Neural Eng. 2014, 11(4).
    • (2014) J. Neural Eng. , vol.11 , Issue.4
    • Jamal, W.1    Das, S.2    Oprescu, I.-A.3    Maharatna, K.4    Apicella, F.5    Sicca, F.6
  • 162
    • 77956056339 scopus 로고    scopus 로고
    • Estimating complex cortical networks via surface recordings-a critical note
    • Antiqueira L., Rodrigues F.A., van Wijk B.C., Costa L.d.F., Daffertshofer A. Estimating complex cortical networks via surface recordings-a critical note. Neuroimage 2010, 53(2):439-449.
    • (2010) Neuroimage , vol.53 , Issue.2 , pp. 439-449
    • Antiqueira, L.1    Rodrigues, F.A.2    van Wijk, B.C.3    Costa, L.4    Daffertshofer, A.5
  • 163
    • 84938693817 scopus 로고    scopus 로고
    • Disconnection of network hubs and cognitive impairment after traumatic brain injury
    • Fagerholm E.D., Hellyer P.J., Scott G., Leech R., Sharp D.J. Disconnection of network hubs and cognitive impairment after traumatic brain injury. Brain 2015, 138(6):1696-1709.
    • (2015) Brain , vol.138 , Issue.6 , pp. 1696-1709
    • Fagerholm, E.D.1    Hellyer, P.J.2    Scott, G.3    Leech, R.4    Sharp, D.J.5
  • 165
    • 63649127271 scopus 로고    scopus 로고
    • Classification of the imagination of the left and right hand movements using EEG
    • Cairo International, IEEE, Biomedical Engineering Conference, 2008
    • Hassan M., Ali A., Eladawy M. Classification of the imagination of the left and right hand movements using EEG. CIBEC 2008, vol. 2008:1-5. Cairo International, IEEE.
    • (2008) CIBEC , vol.2008 , pp. 1-5
    • Hassan, M.1    Ali, A.2    Eladawy, M.3
  • 166
    • 84859143920 scopus 로고    scopus 로고
    • A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data
    • Saa J.F.D., Çetin M. A latent discriminative model-based approach for classification of imaginary motor tasks from EEG data. J. Neural Eng. 2012, 9(2).
    • (2012) J. Neural Eng. , vol.9 , Issue.2
    • Saa, J.F.D.1    Çetin, M.2
  • 167
    • 84891622924 scopus 로고    scopus 로고
    • Brain network analysis of EEG functional connectivity during imagery hand movements
    • Demuru M., Fara F., Fraschini M. Brain network analysis of EEG functional connectivity during imagery hand movements. J. Integr. Neurosci. 2013, 12(04):441-447.
    • (2013) J. Integr. Neurosci. , vol.12 , Issue.4 , pp. 441-447
    • Demuru, M.1    Fara, F.2    Fraschini, M.3
  • 168
    • 23044526646 scopus 로고    scopus 로고
    • The scientist:'ome sweet 'omics-a genealogical treasury of words
    • Lederberg J., Mccray A. The scientist:'ome sweet 'omics-a genealogical treasury of words. Scientist 2001, 17(7).
    • (2001) Scientist , vol.17 , Issue.7
    • Lederberg, J.1    Mccray, A.2
  • 169
    • 77955077532 scopus 로고    scopus 로고
    • Identifying essential genes in bacterial metabolic networks with machine learning methods
    • Plaimas K., Eils R., König R. Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC Syst. Biol. 2010, 4(1):56.
    • (2010) BMC Syst. Biol. , vol.4 , Issue.1 , pp. 56
    • Plaimas, K.1    Eils, R.2    König, R.3
  • 170
    • 78049415626 scopus 로고    scopus 로고
    • An integrative multi-network and multi-classifier approach to predict genetic interactions
    • Pandey G., Zhang B., Chang A.N., Myers C.L., Zhu J., Kumar V., Schadt E.E. An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Comput. Biol. 2010, 6(9):e1000928.
    • (2010) PLoS Comput. Biol. , vol.6 , Issue.9 , pp. e1000928
    • Pandey, G.1    Zhang, B.2    Chang, A.N.3    Myers, C.L.4    Zhu, J.5    Kumar, V.6    Schadt, E.E.7
  • 171
    • 62549110860 scopus 로고    scopus 로고
    • Predicting genetic interactions with random walks on biological networks
    • Chipman K.C., Singh A.K. Predicting genetic interactions with random walks on biological networks. BMC Bioinform. 2009, 10(1):17.
    • (2009) BMC Bioinform. , vol.10 , Issue.1 , pp. 17
    • Chipman, K.C.1    Singh, A.K.2
  • 172
    • 57149103917 scopus 로고    scopus 로고
    • Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions
    • Qi Y., Suhail Y., Lin Y.-y., Boeke J.D., Bader J.S. Finding friends and enemies in an enemies-only network: a graph diffusion kernel for predicting novel genetic interactions and co-complex membership from yeast genetic interactions. Genome Res. 2008, 18(12):1991-2004.
    • (2008) Genome Res. , vol.18 , Issue.12 , pp. 1991-2004
    • Qi, Y.1    Suhail, Y.2    Lin, Y.-Y.3    Boeke, J.D.4    Bader, J.S.5
  • 173
    • 15844364199 scopus 로고    scopus 로고
    • Understanding protein dispensability through machine-learning analysis of high-throughput data
    • Chen Y., Xu D. Understanding protein dispensability through machine-learning analysis of high-throughput data. Bioinformatics 2005, 21(5):575-581.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 575-581
    • Chen, Y.1    Xu, D.2
  • 174
    • 55349094009 scopus 로고    scopus 로고
    • Mining protein networks for synthetic genetic interactions
    • Paladugu S.R., Zhao S., Ray A., Raval A. Mining protein networks for synthetic genetic interactions. BMC Bioinform. 2008, 9(1):426.
    • (2008) BMC Bioinform. , vol.9 , Issue.1 , pp. 426
    • Paladugu, S.R.1    Zhao, S.2    Ray, A.3    Raval, A.4
  • 175
    • 58549112996 scopus 로고    scopus 로고
    • Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists
    • Huang D.W., Sherman B.T., Lempicki R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009, 37(1):1-13.
    • (2009) Nucleic Acids Res. , vol.37 , Issue.1 , pp. 1-13
    • Huang, D.W.1    Sherman, B.T.2    Lempicki, R.A.3
  • 176
    • 77956534324 scopus 로고    scopus 로고
    • Annovar: functional annotation of genetic variants from high-throughput sequencing data
    • e164-e164
    • Wang K., Li M., Hakonarson H. Annovar: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38(16). e164-e164.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.16
    • Wang, K.1    Li, M.2    Hakonarson, H.3
  • 177
    • 34548407017 scopus 로고    scopus 로고
    • Discovering functions and revealing mechanisms at molecular level from biological networks
    • Zhang S., Jin G., Zhang X.-S., Chen L. Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics 2007, 7(16):2856-2869.
    • (2007) Proteomics , vol.7 , Issue.16 , pp. 2856-2869
    • Zhang, S.1    Jin, G.2    Zhang, X.-S.3    Chen, L.4
  • 178
    • 84888103756 scopus 로고    scopus 로고
    • Computational prediction of protein-protein interaction networks: algo-rithms and resources
    • Zahiri J., Bozorgmehr J.H., Masoudi-Nejad A. Computational prediction of protein-protein interaction networks: algo-rithms and resources. Curr. Genomics 2013, 14(6):397.
    • (2013) Curr. Genomics , vol.14 , Issue.6 , pp. 397
    • Zahiri, J.1    Bozorgmehr, J.H.2    Masoudi-Nejad, A.3
  • 179
    • 77951948203 scopus 로고    scopus 로고
    • Gene function prediction from synthetic lethality networks via ranking on demand
    • Lippert C., Ghahramani Z., Borgwardt K.M. Gene function prediction from synthetic lethality networks via ranking on demand. Bioinformatics 2010, 26(7):912-918.
    • (2010) Bioinformatics , vol.26 , Issue.7 , pp. 912-918
    • Lippert, C.1    Ghahramani, Z.2    Borgwardt, K.M.3
  • 181
    • 0742304254 scopus 로고    scopus 로고
    • Prediction of protein function using protein-protein interaction data
    • Deng M., Zhang K., Mehta S., Chen T., Sun F. Prediction of protein function using protein-protein interaction data. J. Comput. Biol. 2003, 10(6):947-960.
    • (2003) J. Comput. Biol. , vol.10 , Issue.6 , pp. 947-960
    • Deng, M.1    Zhang, K.2    Mehta, S.3    Chen, T.4    Sun, F.5
  • 183
    • 84875959983 scopus 로고    scopus 로고
    • Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction
    • Lee J., Lee J., Moreno Y. Hidden information revealed by optimal community structure from a protein-complex bipartite network improves protein function prediction. PLoS One 2013, 8(4):60372.
    • (2013) PLoS One , vol.8 , Issue.4 , pp. 60372
    • Lee, J.1    Lee, J.2    Moreno, Y.3
  • 184
    • 46149108150 scopus 로고    scopus 로고
    • Using indirect protein-protein interactions for protein complex prediction
    • Chua H.N., Ning K., Sung W.-K., Leong H.W., Wong L. Using indirect protein-protein interactions for protein complex prediction. J. Bioinform. Comput. Biol. 2008, 6(03):435-466.
    • (2008) J. Bioinform. Comput. Biol. , vol.6 , Issue.3 , pp. 435-466
    • Chua, H.N.1    Ning, K.2    Sung, W.-K.3    Leong, H.W.4    Wong, L.5
  • 185
    • 43249113326 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs from heterogeneous data
    • Qiu J., Noble W.S. Predicting co-complexed protein pairs from heterogeneous data. PLoS Comput. Biol. 2008, 4(4):e1000054.
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.4 , pp. e1000054
    • Qiu, J.1    Noble, W.S.2
  • 187
    • 84916605753 scopus 로고    scopus 로고
    • Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network
    • Pan J., Cong Z., Zhong M., Sun Y. Analysis of hepatocellular carcinoma and metastatic hepatic carcinoma via functional modules in a protein-protein interaction network. J. Cancer Res. Ther. 2014, 10(7):186.
    • (2014) J. Cancer Res. Ther. , vol.10 , Issue.7 , pp. 186
    • Pan, J.1    Cong, Z.2    Zhong, M.3    Sun, Y.4
  • 188
    • 46249127253 scopus 로고    scopus 로고
    • Identifying gene-disease associations using centrality on a literature mined gene-interaction network
    • Özgür A., Vu T., Erkan G., Radev D.R. Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics 2008, 24(13):i277-i285.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. i277-i285
    • Özgür, A.1    Vu, T.2    Erkan, G.3    Radev, D.R.4
  • 189
    • 78049366409 scopus 로고    scopus 로고
    • Semi-supervised Classification for Extracting Protein Interaction Sentences using Dependency Parsing
    • Erkan G., Özgür A., Radev D.R. Semi-supervised Classification for Extracting Protein Interaction Sentences using Dependency Parsing. EMNLP-CoNLL 2007, vol. 7:228-237.
    • (2007) EMNLP-CoNLL , vol.7 , pp. 228-237
    • Erkan, G.1    Özgür, A.2    Radev, D.R.3
  • 191
    • 80053416170 scopus 로고    scopus 로고
    • Complex networks analysis of obstructive nephropathy data
    • Zanin M., Boccaletti S. Complex networks analysis of obstructive nephropathy data. Chaos 2011, 21(3).
    • (2011) Chaos , vol.21 , Issue.3
    • Zanin, M.1    Boccaletti, S.2
  • 192
    • 84870985575 scopus 로고    scopus 로고
    • Preprocessing and analyzing genetic data with complex networks: An application to obstructive nephropathy
    • Zanin M., Menasalvas Ruiz E., Sousa P., Boccaletti S. Preprocessing and analyzing genetic data with complex networks: An application to obstructive nephropathy. Netw. Heterog. Media 2012, 7(3):473-481.
    • (2012) Netw. Heterog. Media , vol.7 , Issue.3 , pp. 473-481
    • Zanin, M.1    Menasalvas Ruiz, E.2    Sousa, P.3    Boccaletti, S.4
  • 193
    • 84883198338 scopus 로고    scopus 로고
    • Feature selection in the reconstruction of complex network representations of spectral data
    • Zanin M., Menasalvas E., Boccaletti S., Sousa P. Feature selection in the reconstruction of complex network representations of spectral data. PLoS One 2013, 8(8).
    • (2013) PLoS One , vol.8 , Issue.8
    • Zanin, M.1    Menasalvas, E.2    Boccaletti, S.3    Sousa, P.4
  • 195
    • 85010369546 scopus 로고    scopus 로고
    • Parenclitic network analysis of methylation data for cancer identification
    • arXiv preprint .
    • A. Karsakov, T. Bartlett, I. Meyerov, A. Zaikin, M. Ivanchenko, Parenclitic network analysis of methylation data for cancer identification, arXiv preprint . arxiv:1506.04421.
    • Karsakov, A.1    Bartlett, T.2    Meyerov, I.3    Zaikin, A.4    Ivanchenko, M.5
  • 198
    • 79959520303 scopus 로고    scopus 로고
    • Constructing brain functional networks from EEG: partial and unpartial correlations
    • Jalili M., Knyazeva M.G. Constructing brain functional networks from EEG: partial and unpartial correlations. J. Integr. Neurosci. 2011, 10(02):213-232.
    • (2011) J. Integr. Neurosci. , vol.10 , Issue.2 , pp. 213-232
    • Jalili, M.1    Knyazeva, M.G.2
  • 200
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: a case study on electroencephalographic signals
    • Quiroga R.Q., Kraskov A., Kreuz T., Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 2002, 65(4).
    • (2002) Phys. Rev. E , vol.65 , Issue.4
    • Quiroga, R.Q.1    Kraskov, A.2    Kreuz, T.3    Grassberger, P.4
  • 202
    • 0037087387 scopus 로고    scopus 로고
    • Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets
    • Stam C., Van Dijk B. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D 2002, 163(3):236-251.
    • (2002) Physica D , vol.163 , Issue.3 , pp. 236-251
    • Stam, C.1    Van Dijk, B.2
  • 203
    • 33947156744 scopus 로고    scopus 로고
    • Comparing clusterings-an information based distance
    • Meilă M. Comparing clusterings-an information based distance. J. Multivariate Anal. 2007, 98(5):873-895.
    • (2007) J. Multivariate Anal. , vol.98 , Issue.5 , pp. 873-895
    • Meilă, M.1
  • 205
    • 84893642479 scopus 로고    scopus 로고
    • Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures
    • Bonita J., Ambolode II L., Rosenberg B., Cellucci C., Watanabe T., Rapp P., Albano A. Time domain measures of inter-channel EEG correlations: a comparison of linear, nonparametric and nonlinear measures. Cogn. Neurodyn. 2014, 8(1):1-15.
    • (2014) Cogn. Neurodyn. , vol.8 , Issue.1 , pp. 1-15
    • Bonita, J.1    Ambolode, L.2    Rosenberg, B.3    Cellucci, C.4    Watanabe, T.5    Rapp, P.6    Albano, A.7
  • 206
    • 65849107548 scopus 로고    scopus 로고
    • Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with alzheimer's disease
    • Hornero R., Abásolo D., Escudero J., Gómez C. Nonlinear analysis of electroencephalogram and magnetoencephalogram recordings in patients with alzheimer's disease. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2009, 367(1887):317-336.
    • (2009) Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.367 , Issue.1887 , pp. 317-336
    • Hornero, R.1    Abásolo, D.2    Escudero, J.3    Gómez, C.4
  • 208
    • 78149435102 scopus 로고    scopus 로고
    • Comparing brain networks of different size and connectivity density using graph theory
    • Van Wijk B.C., Stam C.J., Daffertshofer A. Comparing brain networks of different size and connectivity density using graph theory. PLoS One 2010, 5(10):e13701.
    • (2010) PLoS One , vol.5 , Issue.10 , pp. e13701
    • Van Wijk, B.C.1    Stam, C.J.2    Daffertshofer, A.3
  • 209
    • 84902169859 scopus 로고    scopus 로고
    • Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification
    • Jie B., Zhang D., Wee C.-Y., Shen D. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum. Brain Mapp. 2014, 35(7):2876-2897.
    • (2014) Hum. Brain Mapp. , vol.35 , Issue.7 , pp. 2876-2897
    • Jie, B.1    Zhang, D.2    Wee, C.-Y.3    Shen, D.4
  • 213
    • 77955518815 scopus 로고    scopus 로고
    • Link communities reveal multiscale complexity in networks
    • Ahn Y.-Y., Bagrow J.P., Lehmann S. Link communities reveal multiscale complexity in networks. Nature 2010, 466(7307):761-764.
    • (2010) Nature , vol.466 , Issue.7307 , pp. 761-764
    • Ahn, Y.-Y.1    Bagrow, J.P.2    Lehmann, S.3
  • 215
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain A., Zongker D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19(2):153-158.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 216
    • 85032751983 scopus 로고    scopus 로고
    • Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience
    • Richiardi J., Achard S., Bunke H., Van De Ville D. Machine learning with brain graphs: predictive modeling approaches for functional imaging in systems neuroscience. IEEE Signal Process. Mag. 2013, 30(3):58-70.
    • (2013) IEEE Signal Process. Mag. , vol.30 , Issue.3 , pp. 58-70
    • Richiardi, J.1    Achard, S.2    Bunke, H.3    Van De Ville, D.4
  • 217
    • 18144431880 scopus 로고    scopus 로고
    • Neurophysiological architecture of functional magnetic resonance images of human brain
    • Salvador R., Suckling J., Coleman M.R., Pickard J.D., Menon D., Bullmore E. Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex 2005, 15(9):1332-1342.
    • (2005) Cerebral Cortex , vol.15 , Issue.9 , pp. 1332-1342
    • Salvador, R.1    Suckling, J.2    Coleman, M.R.3    Pickard, J.D.4    Menon, D.5    Bullmore, E.6
  • 219
    • 84864016802 scopus 로고    scopus 로고
    • The impact of sampling density upon cortical network analysis: regions or points
    • Tohka J., He Y., Evans A.C. The impact of sampling density upon cortical network analysis: regions or points. Magn. Reson. Imaging 2012, 30(7):978-992.
    • (2012) Magn. Reson. Imaging , vol.30 , Issue.7 , pp. 978-992
    • Tohka, J.1    He, Y.2    Evans, A.C.3
  • 220
    • 0034753663 scopus 로고    scopus 로고
    • A method for making group inferences from functional mri data using independent component analysis
    • Calhoun V., Adali T., Pearlson G., Pekar J. A method for making group inferences from functional mri data using independent component analysis. Hum. Brain. Mapp. 2001, 14(3):140-151.
    • (2001) Hum. Brain. Mapp. , vol.14 , Issue.3 , pp. 140-151
    • Calhoun, V.1    Adali, T.2    Pearlson, G.3    Pekar, J.4
  • 222
    • 84896549791 scopus 로고    scopus 로고
    • Cluster-extent based thresholding in FMRI analyses: pitfalls and recommendations
    • Woo C.-W., Krishnan A., Wager T.D. Cluster-extent based thresholding in FMRI analyses: pitfalls and recommendations. Neuroimage 2014, 91:412-419.
    • (2014) Neuroimage , vol.91 , pp. 412-419
    • Woo, C.-W.1    Krishnan, A.2    Wager, T.D.3
  • 223
    • 52049116700 scopus 로고    scopus 로고
    • Combining multivariate voxel selection and support vector machines for mapping and classification of FMRI spatial patterns
    • De Martino F., Valente G., Staeren N., Ashburner J., Goebel R., Formisano E. Combining multivariate voxel selection and support vector machines for mapping and classification of FMRI spatial patterns. Neuroimage 2008, 43(1):44-58.
    • (2008) Neuroimage , vol.43 , Issue.1 , pp. 44-58
    • De Martino, F.1    Valente, G.2    Staeren, N.3    Ashburner, J.4    Goebel, R.5    Formisano, E.6
  • 225
    • 33847674996 scopus 로고    scopus 로고
    • Resampling methods for parameter-free and robust feature selection with mutual information
    • François D., Rossi F., Wertz V., Verleysen M. Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 2007, 70(7):1276-1288.
    • (2007) Neurocomputing , vol.70 , Issue.7 , pp. 1276-1288
    • François, D.1    Rossi, F.2    Wertz, V.3    Verleysen, M.4
  • 228
    • 84862776712 scopus 로고    scopus 로고
    • Alzheimer's Disease Neuroimaging Initiative, Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images
    • Chu C., Hsu A.-L., Chou K.-H., Bandettini P., Lin C. Alzheimer's Disease Neuroimaging Initiative, Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. Neuroimage 2012, 60(1):59-70.
    • (2012) Neuroimage , vol.60 , Issue.1 , pp. 59-70
    • Chu, C.1    Hsu, A.-L.2    Chou, K.-H.3    Bandettini, P.4    Lin, C.5
  • 231
    • 84866542387 scopus 로고    scopus 로고
    • Regularized logistic regression and multiobjective variable selection for classifying MEG data
    • Santana R., Bielza C., Larrañaga P. Regularized logistic regression and multiobjective variable selection for classifying MEG data. Biol. Cybern. 2012, 106(6-7):389-405.
    • (2012) Biol. Cybern. , vol.106 , Issue.6-7 , pp. 389-405
    • Santana, R.1    Bielza, C.2    Larrañaga, P.3
  • 232
    • 84866164327 scopus 로고    scopus 로고
    • EEG-based functional brain networks: does the network size matter
    • Joudaki A., Salehi N., Jalili M., Knyazeva M.G. EEG-based functional brain networks: does the network size matter. PLoS One 2012, 7(4):e35673.
    • (2012) PLoS One , vol.7 , Issue.4 , pp. e35673
    • Joudaki, A.1    Salehi, N.2    Jalili, M.3    Knyazeva, M.G.4
  • 233
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: implications for exploring gene and protein expression data
    • Clarke R., Ressom H.W., Wang A., Xuan J., Liu M.C., Gehan E.A., Wang Y. The properties of high-dimensional data spaces: implications for exploring gene and protein expression data. Nat. Rev. Cancer 2008, 8(1):37-49.
    • (2008) Nat. Rev. Cancer , vol.8 , Issue.1 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7
  • 234
    • 84899479205 scopus 로고    scopus 로고
    • A feature selection technique for inference of graphs from their known topological properties: Revealing scale-free gene regulatory networks
    • Lopes F.M., Martins D.C., Barrera J., Cesar R.M. A feature selection technique for inference of graphs from their known topological properties: Revealing scale-free gene regulatory networks. Inform. Sci. 2014, 272:1-15.
    • (2014) Inform. Sci. , vol.272 , pp. 1-15
    • Lopes, F.M.1    Martins, D.C.2    Barrera, J.3    Cesar, R.M.4
  • 236
    • 0035369191 scopus 로고    scopus 로고
    • Metabolic profiling of genetic disorders: a multitissue 1 h nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue
    • Griffin J., Williams H., Sang E., Clarke K., Rae C., Nicholson J. Metabolic profiling of genetic disorders: a multitissue 1 h nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal. Biochem. 2001, 293(1):16-21.
    • (2001) Anal. Biochem. , vol.293 , Issue.1 , pp. 16-21
    • Griffin, J.1    Williams, H.2    Sang, E.3    Clarke, K.4    Rae, C.5    Nicholson, J.6
  • 237
    • 0001904220 scopus 로고    scopus 로고
    • Tumor classification by gene expression profiling: comparison and validation of five clustering methods
    • Granzow M., Berrar D., Dubitzky W., Schuster A., Azuaje F., Eils R. Tumor classification by gene expression profiling: comparison and validation of five clustering methods. ACM SIGBIO Newsl. 2001, 21(1):16-22.
    • (2001) ACM SIGBIO Newsl. , vol.21 , Issue.1 , pp. 16-22
    • Granzow, M.1    Berrar, D.2    Dubitzky, W.3    Schuster, A.4    Azuaje, F.5    Eils, R.6
  • 239
    • 35048877671 scopus 로고    scopus 로고
    • Quantitative evaluation of established clustering methods for gene expression data
    • Springer
    • Radke D., Möller U. Quantitative evaluation of established clustering methods for gene expression data. Biological and Medical Data Analysis 2004, 399-408. Springer.
    • (2004) Biological and Medical Data Analysis , pp. 399-408
    • Radke, D.1    Möller, U.2
  • 241
    • 0027705107 scopus 로고
    • Climate zones of the conterminous united states defined using cluster analysis
    • Fovell R.G., Fovell M.-Y.C. Climate zones of the conterminous united states defined using cluster analysis. J. Clim. 1993, 6(11):2103-2135.
    • (1993) J. Clim. , vol.6 , Issue.11 , pp. 2103-2135
    • Fovell, R.G.1    Fovell, M.-Y.C.2
  • 243
    • 79961177418 scopus 로고    scopus 로고
    • Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science
    • Steinhaeuser K., Chawla N.V., Ganguly A.R. Complex networks as a unified framework for descriptive analysis and predictive modeling in climate science. Stat. Anal. Data Min.: ASA Data Sci. J. 2011, 4(5):497-511.
    • (2011) Stat. Anal. Data Min.: ASA Data Sci. J. , vol.4 , Issue.5 , pp. 497-511
    • Steinhaeuser, K.1    Chawla, N.V.2    Ganguly, A.R.3
  • 246
    • 84893633613 scopus 로고    scopus 로고
    • Network analysis reveals patterns behind air safety events
    • Zanin M. Network analysis reveals patterns behind air safety events. Physica A 2014, 401:201-206.
    • (2014) Physica A , vol.401 , pp. 201-206
    • Zanin, M.1
  • 247
    • 0002726668 scopus 로고
    • On the history of the minimum spanning tree problem
    • Graham R.L., Hell P. On the history of the minimum spanning tree problem. Ann. Hist. Comput. 1985, 7(1):43-57.
    • (1985) Ann. Hist. Comput. , vol.7 , Issue.1 , pp. 43-57
    • Graham, R.L.1    Hell, P.2
  • 248
    • 51249176707 scopus 로고
    • Efficient algorithms for finding minimum spanning trees in undirected and directed graphs
    • Gabow H.N., Galil Z., Spencer T., Tarjan R.E. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 1986, 6(2):109-122.
    • (1986) Combinatorica , vol.6 , Issue.2 , pp. 109-122
    • Gabow, H.N.1    Galil, Z.2    Spencer, T.3    Tarjan, R.E.4
  • 249
    • 84896694559 scopus 로고    scopus 로고
    • Functional brain network analysis using minimum spanning trees in multiple sclerosis: an MEG source-space study
    • Tewarie P., Hillebrand A., Schoonheim M., Van Dijk B., Geurts J., Barkhof F., Polman C., Stam C. Functional brain network analysis using minimum spanning trees in multiple sclerosis: an MEG source-space study. Neuroimage 2014, 88:308-318.
    • (2014) Neuroimage , vol.88 , pp. 308-318
    • Tewarie, P.1    Hillebrand, A.2    Schoonheim, M.3    Van Dijk, B.4    Geurts, J.5    Barkhof, F.6    Polman, C.7    Stam, C.8
  • 251
    • 0037562872 scopus 로고    scopus 로고
    • Degree stability of a minimum spanning tree of price return and volatility
    • Miccichè S., Bonanno G., Lillo F., Mantegna R.N. Degree stability of a minimum spanning tree of price return and volatility. Physica A 2003, 324(1):66-73.
    • (2003) Physica A , vol.324 , Issue.1 , pp. 66-73
    • Miccichè, S.1    Bonanno, G.2    Lillo, F.3    Mantegna, R.N.4
  • 255
    • 9944237726 scopus 로고    scopus 로고
    • Complex networks on hyperbolic surfaces
    • Aste T., Di Matteo T., Hyde S. Complex networks on hyperbolic surfaces. Physica A 2005, 346(1):20-26.
    • (2005) Physica A , vol.346 , Issue.1 , pp. 20-26
    • Aste, T.1    Di Matteo, T.2    Hyde, S.3
  • 257
    • 66449123352 scopus 로고    scopus 로고
    • Extracting the multiscale backbone of complex weighted networks
    • Serrano M. Á, Boguná M., Vespignani A. Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. 2009, 106(16):6483-6488.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , Issue.16 , pp. 6483-6488
    • Serrano, M.Á1    Boguná, M.2    Vespignani, A.3
  • 258
    • 84883812062 scopus 로고    scopus 로고
    • Network link prediction by global silencing of indirect correlations
    • Barzel B., Barabási A.-L. Network link prediction by global silencing of indirect correlations. Nature Biotechnol. 2013, 31(8):720-725.
    • (2013) Nature Biotechnol. , vol.31 , Issue.8 , pp. 720-725
    • Barzel, B.1    Barabási, A.-L.2
  • 261
    • 59949086432 scopus 로고    scopus 로고
    • Minet: Ar/bioconductor package for inferring large transcriptional networks using mutual information
    • Meyer P.E., Lafitte F., Bontempi G. Minet: Ar/bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinform. 2008, 9(1):461.
    • (2008) BMC Bioinform. , vol.9 , Issue.1 , pp. 461
    • Meyer, P.E.1    Lafitte, F.2    Bontempi, G.3
  • 262
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27(8):1226-1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 263
    • 60849092543 scopus 로고    scopus 로고
    • Feature selection environment for genomic applications
    • Lopes F.M., Martins D.C., Cesar R.M. Feature selection environment for genomic applications. BMC Bioinform. 2008, 9(1):451.
    • (2008) BMC Bioinform. , vol.9 , Issue.1 , pp. 451
    • Lopes, F.M.1    Martins, D.C.2    Cesar, R.M.3
  • 264
    • 84900566215 scopus 로고    scopus 로고
    • Mider: network inference with mutual information distance and entropy reduction
    • Villaverde A.F., Ross J., Morán F., Banga J.R. Mider: network inference with mutual information distance and entropy reduction. PLoS One 2014, e96732.
    • (2014) PLoS One , pp. e96732
    • Villaverde, A.F.1    Ross, J.2    Morán, F.3    Banga, J.R.4
  • 266
    • 84893286042 scopus 로고    scopus 로고
    • Increasing reliability of protein interactome by fast manifold embedding
    • Lei Y.-K., You Z.-H., Dong T., Jiang Y.-X., Yang J.-A. Increasing reliability of protein interactome by fast manifold embedding. Pattern Recognit. Lett. 2013, 34(4):372-379.
    • (2013) Pattern Recognit. Lett. , vol.34 , Issue.4 , pp. 372-379
    • Lei, Y.-K.1    You, Z.-H.2    Dong, T.3    Jiang, Y.-X.4    Yang, J.-A.5
  • 267
    • 35548985891 scopus 로고    scopus 로고
    • Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns
    • Lezon T.R., Banavar J.R., Cieplak M., Maritan A., Fedoroff N.V. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc. Natl. Acad. Sci. 2006, 103(50):19033-19038.
    • (2006) Proc. Natl. Acad. Sci. , vol.103 , Issue.50 , pp. 19033-19038
    • Lezon, T.R.1    Banavar, J.R.2    Cieplak, M.3    Maritan, A.4    Fedoroff, N.V.5
  • 268
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
    • Aliferis C.F., Statnikov A., Tsamardinos I., Mani S., Koutsoukos X.D. Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. J. Mach. Learn. Res. 2010, 11:171-234.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 269
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part ii: Analysis and extensions
    • Aliferis C.F., Statnikov A., Tsamardinos I., Mani S., Koutsoukos X.D. Local causal and markov blanket induction for causal discovery and feature selection for classification part ii: Analysis and extensions. J. Mach. Learn. Res. 2010, 11:235-284.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 272
    • 57749178216 scopus 로고    scopus 로고
    • Using svm weight-based methods to identify causally relevant and non-causally relevant variables
    • Statnikov A., Hardin D., Aliferis C. Using svm weight-based methods to identify causally relevant and non-causally relevant variables. Sign 2006, 1:4.
    • (2006) Sign , vol.1 , pp. 4
    • Statnikov, A.1    Hardin, D.2    Aliferis, C.3
  • 275
    • 79955879494 scopus 로고    scopus 로고
    • Controllability of complex networks
    • Liu Y.-Y., Slotine J.-J., Barabási A.-L. Controllability of complex networks. Nature 2011, 473(7346):167-173.
    • (2011) Nature , vol.473 , Issue.7346 , pp. 167-173
    • Liu, Y.-Y.1    Slotine, J.-J.2    Barabási, A.-L.3
  • 276
    • 84862665090 scopus 로고    scopus 로고
    • Nodal dynamics, not degree distributions, determine the structural controllability of complex networks
    • Cowan N.J., Chastain E.J., Vilhena D.A., Freudenberg J.S., Bergstrom C.T. Nodal dynamics, not degree distributions, determine the structural controllability of complex networks. PLoS One 2012, 7(6):e38398.
    • (2012) PLoS One , vol.7 , Issue.6 , pp. e38398
    • Cowan, N.J.1    Chastain, E.J.2    Vilhena, D.A.3    Freudenberg, J.S.4    Bergstrom, C.T.5
  • 278
    • 0037062448 scopus 로고    scopus 로고
    • Community structure in social and biological networks
    • Girvan M., Newman M.E. Community structure in social and biological networks. Proc. Nat. Acad. Sci. 2002, 99(12):7821-7826.
    • (2002) Proc. Nat. Acad. Sci. , vol.99 , Issue.12 , pp. 7821-7826
    • Girvan, M.1    Newman, M.E.2
  • 279
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms: a position paper
    • Estivill-Castro V. Why so many clustering algorithms: a position paper. ACM SIGKDD Explor. Newsl. 2002, 4(1):65-75.
    • (2002) ACM SIGKDD Explor. Newsl. , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 281
    • 77952328459 scopus 로고    scopus 로고
    • Community structure in time-dependent, multiscale, and multiplex networks
    • Mucha P.J., Richardson T., Macon K., Porter M.A., Onnela J.-P. Community structure in time-dependent, multiscale, and multiplex networks. Science 2010, 328(5980):876-878.
    • (2010) Science , vol.328 , Issue.5980 , pp. 876-878
    • Mucha, P.J.1    Richardson, T.2    Macon, K.3    Porter, M.A.4    Onnela, J.-P.5
  • 282
    • 1842688009 scopus 로고    scopus 로고
    • Tracking evolving communities in large linked networks
    • Hopcroft J., Khan O., Kulis B., Selman B. Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. 2004, 101(1):5249-5253.
    • (2004) Proc. Natl. Acad. Sci. , vol.101 , Issue.1 , pp. 5249-5253
    • Hopcroft, J.1    Khan, O.2    Kulis, B.3    Selman, B.4
  • 283
    • 42749108928 scopus 로고    scopus 로고
    • The effect of size heterogeneity on community identification in complex networks
    • Danon L., Díaz-Guilera A., Arenas A. The effect of size heterogeneity on community identification in complex networks. J. Stat. Mech. Theory Exp. 2006, 2006(11):P11010.
    • (2006) J. Stat. Mech. Theory Exp. , vol.2006 , Issue.11 , pp. P11010
    • Danon, L.1    Díaz-Guilera, A.2    Arenas, A.3
  • 284
    • 84859348328 scopus 로고    scopus 로고
    • Characterization and exploitation of community structure in cover song networks
    • Serrà J., Zanin M., Herrera P., Serra X. Characterization and exploitation of community structure in cover song networks. Pattern Recognition Letters 2012, 33(9):1032-1041.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.9 , pp. 1032-1041
    • Serrà, J.1    Zanin, M.2    Herrera, P.3    Serra, X.4
  • 285
    • 84856487419 scopus 로고    scopus 로고
    • Identification of clusters of investors from their real trading activity in a financial market
    • Tumminello M., Lillo F., Piilo J., Mantegna R.N. Identification of clusters of investors from their real trading activity in a financial market. New J. Phys. 2012, 14(1).
    • (2012) New J. Phys. , vol.14 , Issue.1
    • Tumminello, M.1    Lillo, F.2    Piilo, J.3    Mantegna, R.N.4
  • 287
    • 0000119298 scopus 로고    scopus 로고
    • Hierarchical structure in financial markets
    • Mantegna R.N. Hierarchical structure in financial markets. Eur. Phys. J. B 1999, 11(1):193-197.
    • (1999) Eur. Phys. J. B , vol.11 , Issue.1 , pp. 193-197
    • Mantegna, R.N.1
  • 288
    • 33751166180 scopus 로고    scopus 로고
    • Identification of overlapping community structure in complex networks using fuzzy c-means clustering
    • Zhang S., Wang R.-S., Zhang X.-S. Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A 2007, 374(1):483-490.
    • (2007) Physica A , vol.374 , Issue.1 , pp. 483-490
    • Zhang, S.1    Wang, R.-S.2    Zhang, X.-S.3
  • 289
    • 79251593373 scopus 로고    scopus 로고
    • Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks
    • Sun P.G., Gao L., Han S.S. Identification of overlapping and non-overlapping community structure by fuzzy clustering in complex networks. Inform. Sci. 2011, 181(6):1060-1071.
    • (2011) Inform. Sci. , vol.181 , Issue.6 , pp. 1060-1071
    • Sun, P.G.1    Gao, L.2    Han, S.S.3
  • 290
    • 56149108393 scopus 로고    scopus 로고
    • Adaptive clustering algorithm for community detection in complex networks
    • Ye Z., Hu S., Yu J. Adaptive clustering algorithm for community detection in complex networks. Phys. Rev. E 2008, 78(4).
    • (2008) Phys. Rev. E , vol.78 , Issue.4
    • Ye, Z.1    Hu, S.2    Yu, J.3
  • 291
    • 38049098681 scopus 로고    scopus 로고
    • Effective algorithm for detecting community structure in complex networks based on ga and clustering
    • Springer
    • Liu X., Li D., Wang S., Tao Z. Effective algorithm for detecting community structure in complex networks based on ga and clustering. Computational Science-ICCS 2007 2007, 657-664. Springer.
    • (2007) Computational Science-ICCS 2007 , pp. 657-664
    • Liu, X.1    Li, D.2    Wang, S.3    Tao, Z.4
  • 293
    • 44349170777 scopus 로고    scopus 로고
    • A truer measure of our ignorance
    • Amaral L.A.N. A truer measure of our ignorance. Proc. Natl. Acad. Sci. 2008, 105(19):6795-6796.
    • (2008) Proc. Natl. Acad. Sci. , vol.105 , Issue.19 , pp. 6795-6796
    • Amaral, L.A.N.1
  • 294
    • 78751613300 scopus 로고    scopus 로고
    • Link prediction in complex networks: A survey
    • Lü L., Zhou T. Link prediction in complex networks: A survey. Physica A 2011, 390(6):1150-1170.
    • (2011) Physica A , vol.390 , Issue.6 , pp. 1150-1170
    • Lü, L.1    Zhou, T.2
  • 295
    • 20844435854 scopus 로고    scopus 로고
    • Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions
    • Adomavicius G., Tuzhilin A. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 2005, 17(6):734-749.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.6 , pp. 734-749
    • Adomavicius, G.1    Tuzhilin, A.2
  • 299
    • 43049151837 scopus 로고    scopus 로고
    • Hierarchical structure and the prediction of missing links in networks
    • Clauset A., Moore C., Newman M.E. Hierarchical structure and the prediction of missing links in networks. Nature 2008, 453(7191):98-101.
    • (2008) Nature , vol.453 , Issue.7191 , pp. 98-101
    • Clauset, A.1    Moore, C.2    Newman, M.E.3
  • 300
    • 84894431828 scopus 로고    scopus 로고
    • Percolation of spatially constrained erdos-rényi networks with degree correlations
    • Schmeltzer C., Soriano J., Sokolov I.M., Rüdiger S. Percolation of spatially constrained erdos-rényi networks with degree correlations. Phys. Rev. E 2014, 89(1).
    • (2014) Phys. Rev. E , vol.89 , Issue.1
    • Schmeltzer, C.1    Soriano, J.2    Sokolov, I.M.3    Rüdiger, S.4
  • 301
  • 302
    • 2542463243 scopus 로고    scopus 로고
    • Modelling the development of cortical systems networks
    • Kaiser M., Hilgetag C.C. Modelling the development of cortical systems networks. Neurocomputing 2004, 58:297-302.
    • (2004) Neurocomputing , vol.58 , pp. 297-302
    • Kaiser, M.1    Hilgetag, C.C.2
  • 303
    • 84875998286 scopus 로고    scopus 로고
    • Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems
    • Chen Y., Wang S., Hilgetag C.C., Zhou C. Trade-off between multiple constraints enables simultaneous formation of modules and hubs in neural systems. PLoS One 2013, e1002937.
    • (2013) PLoS One , pp. e1002937
    • Chen, Y.1    Wang, S.2    Hilgetag, C.C.3    Zhou, C.4
  • 304
    • 84877330801 scopus 로고    scopus 로고
    • Phase transition in the economically modeled growth of a cellular nervous system
    • Nicosia V., Vértes P.E., Schafer W.R., Latora V., Bullmore E.T. Phase transition in the economically modeled growth of a cellular nervous system. Proc. Natl. Acad. Sci. 2013, 110(19):7880-7885.
    • (2013) Proc. Natl. Acad. Sci. , vol.110 , Issue.19 , pp. 7880-7885
    • Nicosia, V.1    Vértes, P.E.2    Schafer, W.R.3    Latora, V.4    Bullmore, E.T.5
  • 305
    • 84897444623 scopus 로고    scopus 로고
    • Resolving structural variability in network models and the brain
    • Klimm F., Bassett D.S., Carlson J.M., Mucha P.J. Resolving structural variability in network models and the brain. PLOS Comput. Biol. 2014, 10(3):e1003491.
    • (2014) PLOS Comput. Biol. , vol.10 , Issue.3 , pp. e1003491
    • Klimm, F.1    Bassett, D.S.2    Carlson, J.M.3    Mucha, P.J.4
  • 306
    • 33847226291 scopus 로고    scopus 로고
    • Robust emergence of small-world structure in networks of spiking neurons
    • Kwok H.F., Jurica P., Raffone A., van Leeuwen C. Robust emergence of small-world structure in networks of spiking neurons. Cogn. Neurodyn. 2007, 1(1):39-51.
    • (2007) Cogn. Neurodyn. , vol.1 , Issue.1 , pp. 39-51
    • Kwok, H.F.1    Jurica, P.2    Raffone, A.3    van Leeuwen, C.4
  • 307
    • 84870446320 scopus 로고    scopus 로고
    • Emergence of modular structure in a large-scale brain network with interactions between dynamics and connectivity
    • C.J. Stam, A. Hillebrand, H. Wang, P. Van Mieghem, Emergence of modular structure in a large-scale brain network with interactions between dynamics and connectivity, Front. Comput. Neurosci. 4.
    • Front. Comput. Neurosci , pp. 4
    • Stam, C.J.1    Hillebrand, A.2    Wang, H.3    Van Mieghem, P.4
  • 308
    • 67650159431 scopus 로고    scopus 로고
    • Ising-like dynamics in large-scale functional brain networks
    • Fraiman D., Balenzuela P., Foss J., Chialvo D.R. Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 2009, 79(6).
    • (2009) Phys. Rev. E , vol.79 , Issue.6
    • Fraiman, D.1    Balenzuela, P.2    Foss, J.3    Chialvo, D.R.4
  • 309
    • 79957476684 scopus 로고    scopus 로고
    • Exponential random graph modeling for complex brain networks
    • Simpson S.L., Hayasaka S., Laurienti P.J. Exponential random graph modeling for complex brain networks. PLoS One 2011, 6(5):e20039.
    • (2011) PLoS One , vol.6 , Issue.5 , pp. e20039
    • Simpson, S.L.1    Hayasaka, S.2    Laurienti, P.J.3
  • 311
    • 84964312439 scopus 로고    scopus 로고
    • Generative models of rich clubs in hebbian neuronal networks and large-scale human brain networks
    • Vértes P.E., Alexander-Bloch A., Bullmore E.T. Generative models of rich clubs in hebbian neuronal networks and large-scale human brain networks. Philos. Trans. R. Soc. B 2014, 369(1653):20130531.
    • (2014) Philos. Trans. R. Soc. B , vol.369 , Issue.1653 , pp. 20130531
    • Vértes, P.E.1    Alexander-Bloch, A.2    Bullmore, E.T.3
  • 313
    • 84945922028 scopus 로고    scopus 로고
    • Probabilistic constraint programming for parameters optimisation of generative models
    • Springer
    • Zanin M., Correia M., Sousa P.A., Cruz J. Probabilistic constraint programming for parameters optimisation of generative models. : Progress in Artificial Intelligence 2015, 376-387. Springer.
    • (2015) : Progress in Artificial Intelligence , pp. 376-387
    • Zanin, M.1    Correia, M.2    Sousa, P.A.3    Cruz, J.4
  • 314
    • 84955517123 scopus 로고    scopus 로고
    • From phenotype to genotype in complex brain networks
    • Zanin M., Correia M., Sousa P.A., Cruz J. From phenotype to genotype in complex brain networks. Sci. Rep. 2016, 6:19790.
    • (2016) Sci. Rep. , vol.6 , pp. 19790
    • Zanin, M.1    Correia, M.2    Sousa, P.A.3    Cruz, J.4
  • 315
    • 84919627759 scopus 로고    scopus 로고
    • Graphical analysis and visualization of big data in business domains
    • Springer
    • Gupta D., Sharma A., Unny N., Manjunath G. Graphical analysis and visualization of big data in business domains. Big Data Analytics 2014, 53-56. Springer.
    • (2014) Big Data Analytics , pp. 53-56
    • Gupta, D.1    Sharma, A.2    Unny, N.3    Manjunath, G.4
  • 316
    • 80053165309 scopus 로고    scopus 로고
    • Resource description framework
    • Springer
    • Pan J.Z. Resource description framework. Handbook on Ontologies 2009, 71-90. Springer.
    • (2009) Handbook on Ontologies , pp. 71-90
    • Pan, J.Z.1
  • 317
    • 84969527388 scopus 로고    scopus 로고
    • 01.org, intel open source technology center,(accessed 30.09.15).
    • 01.org, intel open source technology center, 2015 (accessed 30.09.15). https://01.org/graphbuilder/.
    • (2015)
  • 318
    • 84969545290 scopus 로고    scopus 로고
    • Centre for disease control and prevention, (accessed 30.09.15).
    • Centre for disease control and prevention, 2015 (accessed 30.09.15). http://www.cdc.gov/healthyweight/assessing/bmi/adult_bmi/index.html.
    • (2015)
  • 319
    • 84969510372 scopus 로고    scopus 로고
    • (accessed 30.09.15).
    • Nodexl, 2015 (accessed 30.09.15). http://nodexl.codeplex.com/.
    • (2015)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.