메뉴 건너뛰기




Volumn 11, Issue 4, 2014, Pages

Classification of autism spectrum disorder using supervised learning of brain connectivity measures extracted from synchrostates

Author keywords

Autism spectrum disorder (ASD); Brain connectivity; Classification; Complex network; Synchrostate

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; DISCRIMINANT ANALYSIS; SUPERVISED LEARNING;

EID: 84903589732     PISSN: 17412560     EISSN: 17412552     Source Type: Journal    
DOI: 10.1088/1741-2560/11/4/046019     Document Type: Article
Times cited : (91)

References (51)
  • 1
    • 77954385460 scopus 로고    scopus 로고
    • Complex network measures of brain connectivity: Uses and interpretations
    • Rubinov M and Sporns O 2010 Complex network measures of brain connectivity: uses and interpretations NeuroImage 52 1059-69
    • (2010) NeuroImage , vol.52 , pp. 1059-1069
    • Rubinov, M.1    Sporns, O.2
  • 2
    • 34447281251 scopus 로고    scopus 로고
    • The new neurobiology of autism: Cortex, connectivity, and neuronal organization
    • Minshew N J and Williams D L 2007 The new neurobiology of autism: cortex, connectivity, and neuronal organization Arch. Neurology 64 945
    • (2007) Arch. Neurology , vol.64 , pp. 945
    • Minshew, N.J.1    Williams, D.L.2
  • 3
    • 4043138783 scopus 로고    scopus 로고
    • Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivity
    • DOI 10.1093/brain/awh199
    • Just M A, Cherkassky V L, Keller T A and Minshew N J 2004 Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity Brain 127 1811-21 (Pubitemid 39061557)
    • (2004) Brain , vol.127 , Issue.8 , pp. 1811-1821
    • Just, M.A.1    Cherkassky, V.L.2    Keller, T.A.3    Minshew, N.J.4
  • 4
    • 33846218282 scopus 로고    scopus 로고
    • Disordered connectivity in the autistic brain: Challenges for the 'new psychophysiology'
    • DOI 10.1016/j.ijpsycho.2006.03.012, PII S0167876006001024, Cognitive Neuroscience: Contributions from Psychophysiology
    • Rippon G, Brock J, Brown C and Boucher J 2007 Disordered connectivity in the autistic brain: challenges for the 'new psychophysiology Int. J. Psychophysiol. 63 164-72 (Pubitemid 46096604)
    • (2007) International Journal of Psychophysiology , vol.63 , Issue.2 , pp. 164-172
    • Rippon, G.1    Brock, J.2    Brown, C.3    Boucher, J.4
  • 7
    • 28544442720 scopus 로고    scopus 로고
    • Magnetic resonance imaging and head circumference study of brain size in autism: Birth through age 2 years
    • Hazlett H C et al 2005 Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years Arch. Gen. Psychiat. 62 1366
    • (2005) Arch. Gen. Psychiat. , vol.62 , pp. 1366
    • Hazlett, H.C.1
  • 11
    • 43449083243 scopus 로고    scopus 로고
    • Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity
    • Tommerdahl M, Tannan V, Holden J K and Baranek G T 2008 Absence of stimulus-driven synchronization effects on sensory perception in autism: evidence for local underconnectivity Behav. Brain Funct. 4 1-9
    • (2008) Behav. Brain Funct. , vol.4 , pp. 1-9
    • Tommerdahl, M.1    Tannan, V.2    Holden, J.K.3    Baranek, G.T.4
  • 13
    • 79951778987 scopus 로고    scopus 로고
    • EEG complexity as a biomarker for autism spectrum disorder risk
    • Bosl W, Tierney A, Tager-Flusberg H and Nelson C 2011 EEG complexity as a biomarker for autism spectrum disorder risk BMC Med. 9 18
    • (2011) BMC Med. , vol.9 , pp. 18
    • Bosl, W.1    Tierney, A.2    Tager-Flusberg, H.3    Nelson, C.4
  • 14
    • 68049128346 scopus 로고    scopus 로고
    • Development of large-scale functional brain networks in children
    • Supekar K, Musen M and Menon V 2009 Development of large-scale functional brain networks in children PLoS Biol. 7 e1000157
    • (2009) PLoS Biol. , vol.7
    • Supekar, K.1    Musen, M.2    Menon, V.3
  • 15
    • 46249131887 scopus 로고    scopus 로고
    • Network analysis of intrinsic functional brain connectivity in Alzheimer's disease
    • Supekar K, Menon V, Rubin D, Musen M and Greicius M D 2008 Network analysis of intrinsic functional brain connectivity in Alzheimer's disease PLoS Comput. Biol. 4 e1000100
    • (2008) PLoS Comput. Biol. , vol.4
    • Supekar, K.1    Menon, V.2    Rubin, D.3    Musen, M.4    Greicius, M.D.5
  • 18
    • 41349096036 scopus 로고    scopus 로고
    • Analysis of weighted networks
    • Newman M E 2004 Analysis of weighted networks Phys. Rev. E 70 056131
    • (2004) Phys. Rev. E , vol.70 , pp. 056131
    • Newman, M.E.1
  • 20
    • 84866150130 scopus 로고    scopus 로고
    • A signal-processing- based approach to time-varying graph analysis for dynamic brain network identification
    • Mutlu A Y, Bernat E and Aviyente S 2012 A signal-processing- based approach to time-varying graph analysis for dynamic brain network identification Comput. Math. Methods Med. 2012 451516
    • (2012) Comput. Math. Methods Med. , vol.2012 , pp. 451516
    • Mutlu, A.Y.1    Bernat, E.2    Aviyente, S.3
  • 21
    • 84899623638 scopus 로고    scopus 로고
    • Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
    • Betzel R F et al 2013 Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity Netw. Sci. 1 353-73
    • (2013) Netw. Sci. , vol.1 , pp. 353-373
    • Betzel, R.F.1
  • 22
    • 84880964410 scopus 로고    scopus 로고
    • Altered temporal correlations in restingstate connectivity fluctuations in children with reading difficulties detected via MEG
    • Dimitriadis S et al 2013 Altered temporal correlations in restingstate connectivity fluctuations in children with reading difficulties detected via MEG NeuroImage 83 307-17
    • (2013) NeuroImage , vol.83 , pp. 307-317
    • Dimitriadis, S.1
  • 24
    • 84897697438 scopus 로고    scopus 로고
    • Using brain connectivity measure of EEG synchrostates for discriminating typical and autism spectrum disorder
    • Jamal W et al 2013 Using brain connectivity measure of EEG synchrostates for discriminating typical and autism spectrum disorder 6th Int. IEEE/EMBS Conf. on Neural Engineering (NER) pp 1402-5
    • (2013) 6th Int. IEEE/EMBS Conf. On Neural Engineering (NER) , pp. 1402-1405
    • Jamal, W.1
  • 25
    • 84880329091 scopus 로고    scopus 로고
    • Fusiform Gyrus responses to neutral and emotional faces in children with autism spectrum disorders: A high density ERP study
    • Apicella F, Sicca F, Federico R R, Campatelli G and Muratori F 2013 Fusiform Gyrus responses to neutral and emotional faces in children with autism spectrum disorders: a high density ERP study Behav. Brain Res. 251 115-62
    • (2013) Behav. Brain Res. , vol.251 , pp. 115-162
    • Apicella, F.1    Sicca, F.2    Federico, R.R.3    Campatelli, G.4    Muratori, F.5
  • 26
    • 0036342479 scopus 로고    scopus 로고
    • Development and neural bases of face recognition in autism
    • Carver L and Dawson G 2002 Development and neural bases of face recognition in autism Mol. Psychiat. 7 S18
    • (2002) Mol. Psychiat. , vol.7
    • Carver, L.1    Dawson, G.2
  • 27
    • 34247179140 scopus 로고    scopus 로고
    • A review of classification algorithms for EEG-based brain-computer interfaces
    • Lotte F et al 2007 A review of classification algorithms for EEG-based brain-computer interfaces J. Neural Eng. 4 R1
    • (2007) J. Neural Eng. , vol.4
    • Lotte, F.1
  • 28
    • 79955024787 scopus 로고    scopus 로고
    • Single-trial analysis and classification of ERP components - A tutorial
    • Blankertz B, Lemm S, Treder M, Haufe S and Müller K-R 2011 Single-trial analysis and classification of ERP components - a tutorial NeuroImage 56 814-25
    • (2011) NeuroImage , vol.56 , pp. 814-825
    • Blankertz, B.1    Lemm, S.2    Treder, M.3    Haufe, S.4    Müller, K.-R.5
  • 31
    • 84878298500 scopus 로고    scopus 로고
    • Dynamically weighted ensemble classification for nonstationary EEG processing
    • Liyanage S R, Guan C, Zhang H, Ang K K, Xu J and Lee T H 2013 Dynamically weighted ensemble classification for nonstationary EEG processing J. Neural Eng. 10 036007
    • (2013) J. Neural Eng. , vol.10 , pp. 036007
    • Liyanage, S.R.1    Guan, C.2    Zhang, H.3    Ang, K.K.4    Xu, J.5    Lee, T.H.6
  • 32
    • 49849091363 scopus 로고    scopus 로고
    • Transductive SVM for reducing the training effort in BCI
    • Liao X, Yao D and Li C 2007 Transductive SVM for reducing the training effort in BCI J. Neural Eng. 4 246
    • (2007) J. Neural Eng. , vol.4 , pp. 246
    • Liao, X.1    Yao, D.2    Li, C.3
  • 33
    • 80053193174 scopus 로고    scopus 로고
    • sw-SVM: Sensor weighting support vector machines for EEG-based brain-computer interfaces
    • Jrad N et al 2011 sw-SVM: sensor weighting support vector machines for EEG-based brain-computer interfaces J. Neural Eng. 8 056004
    • (2011) J. Neural Eng. , vol.8 , pp. 056004
    • Jrad, N.1
  • 34
    • 85035246836 scopus 로고    scopus 로고
    • Performance of different synchronization measures in real data: A case study on electroencephalographic signals
    • Quiroga R Q, Kraskov A, Kreuz T and Grassberger P 2002 Performance of different synchronization measures in real data: a case study on electroencephalographic signals Phys. Rev. E 65 041903
    • (2002) Phys. Rev. E , vol.65 , pp. 041903
    • Quiroga, R.Q.1    Kraskov, A.2    Kreuz, T.3    Grassberger, P.4
  • 35
    • 0035490101 scopus 로고    scopus 로고
    • Dynamic predictions: Oscillations and synchrony in top-down processing
    • DOI 10.1038/35094565
    • Engel A K, Fries P and Singer W 2001 Dynamic predictions: oscillations and synchrony in top-down processing Nat. Rev. Neurosci. 2 704-16 (Pubitemid 33674816)
    • (2001) Nature Reviews Neuroscience , vol.2 , Issue.10 , pp. 704-716
    • Engel, A.K.1    Fries, P.2    Singer, W.3
  • 36
    • 0024514737 scopus 로고
    • Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties
    • DOI 10.1038/338334a0
    • Gray C M, König P, Engel A K and Singer W 1989 Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties Nature 338 334-7 (Pubitemid 19082973)
    • (1989) Nature , vol.338 , Issue.6213 , pp. 334-337
    • Gray, C.M.1    Konig, P.2    Engel, A.K.3    Singer, W.4
  • 37
    • 67650264268 scopus 로고    scopus 로고
    • Neuronal gamma-band synchronization as a fundamental process in cortical computation
    • Fries P 2009 Neuronal gamma-band synchronization as a fundamental process in cortical computation Annu. Rev. Neurosci. 32 209-24
    • (2009) Annu. Rev. Neurosci. , vol.32 , pp. 209-224
    • Fries, P.1
  • 39
    • 0035826155 scopus 로고    scopus 로고
    • Exploring complex networks
    • DOI 10.1038/35065725
    • Strogatz S H 2001 Exploring complex networks Nature 410 268-76 (Pubitemid 32216604)
    • (2001) Nature , vol.410 , Issue.6825 , pp. 268-276
    • Strogatz, S.H.1
  • 40
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world'networks
    • Watts D J and Strogatz S H 1998 Collective dynamics of 'small-world'networks Nature 393 440-2
    • (1998) Nature , vol.393 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 43
    • 25144494760 scopus 로고    scopus 로고
    • Prediction error estimation: A comparison of resampling methods
    • DOI 10.1093/bioinformatics/bti499
    • Molinaro A M, Simon R and Pfeiffer R M 2005 Prediction error estimation: a comparison of resampling methods Bioinformatics 21 3301-7 (Pubitemid 41418445)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3301-3307
    • Molinaro, A.M.1    Simon, R.2    Pfeiffer, R.M.3
  • 47
    • 84862058665 scopus 로고    scopus 로고
    • Novel machine learning methods for ERP analysis: A validation from research on infants at risk for autism
    • Stahl D et al 2012 Novel machine learning methods for ERP analysis: a validation from research on infants at risk for autism Dev. Neuropsychol. 37 274-98
    • (2012) Dev. Neuropsychol. , vol.37 , pp. 274-298
    • Stahl, D.1
  • 48
    • 84857138766 scopus 로고    scopus 로고
    • Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders
    • Kana R K, Libero L E and Moore M S 2011 Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders Phys. Life Rev. 8 410-37
    • (2011) Phys. Life Rev. , vol.8 , pp. 410-437
    • Kana, R.K.1    Libero, L.E.2    Moore, M.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.