-
1
-
-
85008095806
-
Studies on the amino acid fermentation. Part 1. Production of l-glutamic acid by various microorganisms
-
Kinoshita S., Udaka S., Shimono M. Studies on the amino acid fermentation. Part 1. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 1957, 50:193-205.
-
(1957)
J Gen Appl Microbiol
, vol.50
, pp. 193-205
-
-
Kinoshita, S.1
Udaka, S.2
Shimono, M.3
-
2
-
-
72849181002
-
Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus
-
Udaka S. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 1960, 79:754-755.
-
(1960)
J Bacteriol
, vol.79
, pp. 754-755
-
-
Udaka, S.1
-
3
-
-
53049087092
-
Towards systems metabolic engineering of microorganisms for amino acid production
-
Park J.H., Lee S.Y. Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 2008, 19:454-460.
-
(2008)
Curr Opin Biotechnol
, vol.19
, pp. 454-460
-
-
Park, J.H.1
Lee, S.Y.2
-
4
-
-
0002640894
-
Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids
-
Shiio I., Otsuka S.I., Takahashi M. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 1962, 51:56-62.
-
(1962)
J Biochem
, vol.51
, pp. 56-62
-
-
Shiio, I.1
Otsuka, S.I.2
Takahashi, M.3
-
5
-
-
0001021102
-
Biochemical effects of fatty acid and its derivatives on l-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of l-glutamic acid and the growth of Brevibacterium lactofermentum
-
Takinami K., Yoshii H., Tsuri H., Okada H. Biochemical effects of fatty acid and its derivatives on l-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of l-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem 1965, 29:351-359.
-
(1965)
Agric Biol Chem
, vol.29
, pp. 351-359
-
-
Takinami, K.1
Yoshii, H.2
Tsuri, H.3
Okada, H.4
-
6
-
-
0002972244
-
Effect of penicillin on amino acid fermentation
-
Nara T., Samejima H., Kinoshita S. Effect of penicillin on amino acid fermentation. Agric Biol Chem 1964, 28:120-124.
-
(1964)
Agric Biol Chem
, vol.28
, pp. 120-124
-
-
Nara, T.1
Samejima, H.2
Kinoshita, S.3
-
7
-
-
0031178552
-
Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum
-
Kawahara Y., Takahashi-Fuke K., Shimizu E., Nakamatsu T., Nakamori S. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 1997, 61:1109-1112.
-
(1997)
Biosci Biotechnol Biochem
, vol.61
, pp. 1109-1112
-
-
Kawahara, Y.1
Takahashi-Fuke, K.2
Shimizu, E.3
Nakamatsu, T.4
Nakamori, S.5
-
8
-
-
34547211797
-
Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production
-
Nakamura J., Hirano S., Ito H., Wachi M. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production. Appl Environ Microbiol 2007, 73:4491-4498.
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 4491-4498
-
-
Nakamura, J.1
Hirano, S.2
Ito, H.3
Wachi, M.4
-
9
-
-
78650660341
-
The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel
-
Hashimoto K., Nakamura K., Kuroda T., Yabe I., Nakamatsu T., Kawasaki H. The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Biosci Biotechnol Biochem 2010, 74:2546-2549.
-
(2010)
Biosci Biotechnol Biochem
, vol.74
, pp. 2546-2549
-
-
Hashimoto, K.1
Nakamura, K.2
Kuroda, T.3
Yabe, I.4
Nakamatsu, T.5
Kawasaki, H.6
-
10
-
-
84874394877
-
Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives
-
Becker M., Börngen K., Nomura T., Battle A.R., Marin K., Martinac B., Krämer R. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 2013, 1828:1230-1240.
-
(2013)
Biochim Biophys Acta
, vol.1828
, pp. 1230-1240
-
-
Becker, M.1
Börngen, K.2
Nomura, T.3
Battle, A.R.4
Marin, K.5
Martinac, B.6
Krämer, R.7
-
11
-
-
84878742726
-
L-Glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel
-
Yamashita C., Hashimoto K., Kumagai K., Maeda T., Takada A., Yabe I., Kawasaki H., Wachi M. l-Glutamate secretion by the N-terminal domain of the Corynebacterium glutamicum NCgl1221 mechanosensitive channel. Biosci Biotechnol Biochem 2013, 77:1008-1013.
-
(2013)
Biosci Biotechnol Biochem
, vol.77
, pp. 1008-1013
-
-
Yamashita, C.1
Hashimoto, K.2
Kumagai, K.3
Maeda, T.4
Takada, A.5
Yabe, I.6
Kawasaki, H.7
Wachi, M.8
-
12
-
-
84856265086
-
The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential
-
Hara Y., Kadotani N., Izui H., Katashkina J.I., Kuvaeva T.M., Andreeva I.G., Golubeva L.I., Malko D.B., Makeev V.J., Mashko S.V., et al. The complete genome sequence of Pantoea ananatis AJ13355, an organism with great biotechnological potential. Appl Microbiol Biotechnol 2012, 93:331-341.
-
(2012)
Appl Microbiol Biotechnol
, vol.93
, pp. 331-341
-
-
Hara, Y.1
Kadotani, N.2
Izui, H.3
Katashkina, J.I.4
Kuvaeva, T.M.5
Andreeva, I.G.6
Golubeva, L.I.7
Malko, D.B.8
Makeev, V.J.9
Mashko, S.V.10
-
13
-
-
65849386647
-
Use of the λ Red-recombineering method for genetic engineering of Pantoea ananatis
-
Katashkina J.I., Hara Y., Golubeva L.I., Andreeva I.G., Kuvaeva T.M., Mashko S.V. Use of the λ Red-recombineering method for genetic engineering of Pantoea ananatis. BMC Mol Biol 2009, 10:34.
-
(2009)
BMC Mol Biol
, vol.10
, pp. 34
-
-
Katashkina, J.I.1
Hara, Y.2
Golubeva, L.I.3
Andreeva, I.G.4
Kuvaeva, T.M.5
Mashko, S.V.6
-
14
-
-
85007881932
-
Studies on lysine fermentation I. The control mechanism on lysine accumulation by homoserine and threonine
-
Nakayama K., Kitada S., Kinoshita S. Studies on lysine fermentation I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 1961, 7:145-154.
-
(1961)
J Gen Appl Microbiol
, vol.7
, pp. 145-154
-
-
Nakayama, K.1
Kitada, S.2
Kinoshita, S.3
-
15
-
-
85007985083
-
Microbial production of l-lysine III. Production by mutants resistant to S-(2-aminoethyl)-l-cysteine
-
Sano K., Shiio I. Microbial production of l-lysine III. Production by mutants resistant to S-(2-aminoethyl)-l-cysteine. J Gen Appl Microbiol 1970, 16:373-391.
-
(1970)
J Gen Appl Microbiol
, vol.16
, pp. 373-391
-
-
Sano, K.1
Shiio, I.2
-
16
-
-
78149443330
-
Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production
-
Takeno S., Murata R., Kobayashi R., Mitsuhashi S., Ikeda M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production. Appl Environ Microbiol 2010, 76:7154-7160.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 7154-7160
-
-
Takeno, S.1
Murata, R.2
Kobayashi, R.3
Mitsuhashi, S.4
Ikeda, M.5
-
17
-
-
84903743153
-
A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
-
Bommareddy R.R., Chen Z., Rappert S., Zeng A.P. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 2014, 25:30-37.
-
(2014)
Metab Eng
, vol.25
, pp. 30-37
-
-
Bommareddy, R.R.1
Chen, Z.2
Rappert, S.3
Zeng, A.P.4
-
18
-
-
73249151004
-
Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum
-
Becker J., Klopprogge C., Schroder H., Wittmann C. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 2009, 75:7866-7869.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 7866-7869
-
-
Becker, J.1
Klopprogge, C.2
Schroder, H.3
Wittmann, C.4
-
19
-
-
84862689750
-
Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity
-
van Ooyen J., Noack S., Bott M., Reth A., Eggeling L. Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 2012, 109:2070-2081.
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 2070-2081
-
-
van Ooyen, J.1
Noack, S.2
Bott, M.3
Reth, A.4
Eggeling, L.5
-
20
-
-
84884224413
-
Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate
-
Buchholz J., Schwentner A., Brunnenkan B., Gabris C., Grimm S., Gerstmeir R., Takors R., Eikmanns B.J., Blombach B. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate. Appl Environ Microbiol 2013, 79:5566-5575.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 5566-5575
-
-
Buchholz, J.1
Schwentner, A.2
Brunnenkan, B.3
Gabris, C.4
Grimm, S.5
Gerstmeir, R.6
Takors, R.7
Eikmanns, B.J.8
Blombach, B.9
-
21
-
-
84872409095
-
Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum
-
Kind S., Becker J., Wittmann C. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng 2013, 15:184-195.
-
(2013)
Metab Eng
, vol.15
, pp. 184-195
-
-
Kind, S.1
Becker, J.2
Wittmann, C.3
-
22
-
-
84905451378
-
Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis
-
Guo Y.F., Han M., Yan W.L., Xu J.Z., Zhang W.G. Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. Biotechnol Bioprocess Eng 2014, 19:456-467.
-
(2014)
Biotechnol Bioprocess Eng
, vol.19
, pp. 456-467
-
-
Guo, Y.F.1
Han, M.2
Yan, W.L.3
Xu, J.Z.4
Zhang, W.G.5
-
23
-
-
0023131480
-
Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine
-
Eggeling I., Cordes C., Eggeling L., Sahm H. Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol 1987, 25:346-351.
-
(1987)
Appl Microbiol Biotechnol
, vol.25
, pp. 346-351
-
-
Eggeling, I.1
Cordes, C.2
Eggeling, L.3
Sahm, H.4
-
24
-
-
43949108572
-
Corynebacterium glutamicum tailored for high-yield l-valine production
-
Blombach B., Schreiner M.E., Bartek T., Oldiges M., Eikmanns B.J. Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 2008, 79:471-479.
-
(2008)
Appl Microbiol Biotechnol
, vol.79
, pp. 471-479
-
-
Blombach, B.1
Schreiner, M.E.2
Bartek, T.3
Oldiges, M.4
Eikmanns, B.J.5
-
25
-
-
84925045121
-
Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production
-
Chen C., Li Y., Hu J., Dong X., Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metab Eng 2015, 29:66-75.
-
(2015)
Metab Eng
, vol.29
, pp. 66-75
-
-
Chen, C.1
Li, Y.2
Hu, J.3
Dong, X.4
Wang, X.5
-
26
-
-
84856138130
-
Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions
-
Hasegawa S., Uematsu K., Natsuma Y., Suda M., Hiraga K., Jojima T., Inui M., Yukawa H. Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 2012, 78:865-875.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 865-875
-
-
Hasegawa, S.1
Uematsu, K.2
Natsuma, Y.3
Suda, M.4
Hiraga, K.5
Jojima, T.6
Inui, M.7
Yukawa, H.8
-
27
-
-
84874690816
-
Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions
-
Hasegawa S., Suda M., Uematsu K., Natsuma Y., Hiraga K., Jojima T., Inui M., Yukawa H. Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol 2013, 79:1250-1257.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 1250-1257
-
-
Hasegawa, S.1
Suda, M.2
Uematsu, K.3
Natsuma, Y.4
Hiraga, K.5
Jojima, T.6
Inui, M.7
Yukawa, H.8
-
28
-
-
79953162662
-
Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering
-
Park J.H., Jang Y.S., Lee J.W., Lee S.Y. Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol Bioeng 2011, 108:1140-1147.
-
(2011)
Biotechnol Bioeng
, vol.108
, pp. 1140-1147
-
-
Park, J.H.1
Jang, Y.S.2
Lee, J.W.3
Lee, S.Y.4
-
29
-
-
84892459391
-
Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction
-
Vogt M., Haas S., Klaffl S., Polen T., Eggeling L., van Ooyen J., Bott M. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 2014, 22:40-52.
-
(2014)
Metab Eng
, vol.22
, pp. 40-52
-
-
Vogt, M.1
Haas, S.2
Klaffl, S.3
Polen, T.4
Eggeling, L.5
van Ooyen, J.6
Bott, M.7
-
30
-
-
84925511011
-
The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation
-
Vogt M., Krumbach K., Bang W.G., van Ooyen J., Noack S., Klein B., Bott M., Eggeling L. The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol 2015, 99:791-800.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 791-800
-
-
Vogt, M.1
Krumbach, K.2
Bang, W.G.3
van Ooyen, J.4
Noack, S.5
Klein, B.6
Bott, M.7
Eggeling, L.8
-
31
-
-
84907362164
-
Metabolic engineering of Corynebacterium glutamicum for l-arginine production
-
Park S.H., Kim H.U., Kim T.Y., Park J.S., Kim S.S., Lee S.Y. Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat Commun 2014, 5:4618.
-
(2014)
Nat Commun
, vol.5
, pp. 4618
-
-
Park, S.H.1
Kim, H.U.2
Kim, T.Y.3
Park, J.S.4
Kim, S.S.5
Lee, S.Y.6
-
32
-
-
84925218937
-
Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis
-
Ginesy M., Belotserkovsky J., Enman J., Isaksson L., Rova U. Metabolic engineering of Escherichia coli for enhanced arginine biosynthesis. Microb Cell Fact 2015, 14:29.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 29
-
-
Ginesy, M.1
Belotserkovsky, J.2
Enman, J.3
Isaksson, L.4
Rova, U.5
-
33
-
-
84920074788
-
Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine
-
Kim S.Y., Lee J., Lee S.Y. Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol Bioeng 2015, 112:416-421.
-
(2015)
Biotechnol Bioeng
, vol.112
, pp. 416-421
-
-
Kim, S.Y.1
Lee, J.2
Lee, S.Y.3
-
34
-
-
84940206768
-
Advancing metabolic engineering through systems biology of industrial microorganisms
-
Dai Z., Nielsen J. Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 2015, 36:8-15.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 8-15
-
-
Dai, Z.1
Nielsen, J.2
-
35
-
-
79952578981
-
Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis
-
Park J.H., Kim T.Y., Lee K.H., Lee S.Y. Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 2011, 108:934-946.
-
(2011)
Biotechnol Bioeng
, vol.108
, pp. 934-946
-
-
Park, J.H.1
Kim, T.Y.2
Lee, K.H.3
Lee, S.Y.4
-
36
-
-
34249934691
-
Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation
-
Park J.H., Lee K.H., Kim T.Y., Lee S.Y. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 2007, 104:7797-7802.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 7797-7802
-
-
Park, J.H.1
Lee, K.H.2
Kim, T.Y.3
Lee, S.Y.4
-
37
-
-
36849002434
-
Systems metabolic engineering of Escherichia coli for l-threonine production
-
Lee K.H., Park J.H., Kim T.Y., Kim H.U., Lee S.Y. Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 2007, 3:149.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 149
-
-
Lee, K.H.1
Park, J.H.2
Kim, T.Y.3
Kim, H.U.4
Lee, S.Y.5
-
38
-
-
0036161274
-
A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant
-
Ohnishi J., Mitsuhashi S., Hayashi M., Ando S., Yokoi H., Ochiai K., Ikeda M. A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 2002, 58:217-223.
-
(2002)
Appl Microbiol Biotechnol
, vol.58
, pp. 217-223
-
-
Ohnishi, J.1
Mitsuhashi, S.2
Hayashi, M.3
Ando, S.4
Yokoi, H.5
Ochiai, K.6
Ikeda, M.7
-
39
-
-
79952106791
-
From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
Becker J., Zelder O., Hafner S., Schroder H., Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 2011, 13:159-168.
-
(2011)
Metab Eng
, vol.13
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Hafner, S.3
Schroder, H.4
Wittmann, C.5
-
40
-
-
80052802581
-
13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing Corynebacterium glutamicum
-
13C metabolic flux analysis of pyruvate dehydrogenase complex-deficient, l-valine-producing Corynebacterium glutamicum. Appl Environ Microbiol 2011, 77:6644-6652.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 6644-6652
-
-
Bartek, T.1
Blombach, B.2
Lang, S.3
Eikmanns, B.J.4
Wiechert, W.5
Oldiges, M.6
Noh, K.7
Noack, S.8
-
41
-
-
27744506402
-
Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources
-
Becker J., Klopprogge C., Zelder O., Heinzle E., Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 2005, 71:8587-8596.
-
(2005)
Appl Environ Microbiol
, vol.71
, pp. 8587-8596
-
-
Becker, J.1
Klopprogge, C.2
Zelder, O.3
Heinzle, E.4
Wittmann, C.5
-
42
-
-
10444258178
-
Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source
-
Wittmann C., Kiefer P., Zelder O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 2004, 70:7277-7287.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 7277-7287
-
-
Wittmann, C.1
Kiefer, P.2
Zelder, O.3
-
43
-
-
34447620670
-
Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis
-
Shirai T., Fujimura K., Furusawa C., Nagahisa K., Shioya S., Shimizu H. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 2007, 6:19.
-
(2007)
Microb Cell Fact
, vol.6
, pp. 19
-
-
Shirai, T.1
Fujimura, K.2
Furusawa, C.3
Nagahisa, K.4
Shioya, S.5
Shimizu, H.6
-
44
-
-
84887626505
-
Isotopically non-stationary metabolic flux analysis: complex yet highly informative
-
Wiechert W., Nöh K. Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 2013, 24:979-986.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 979-986
-
-
Wiechert, W.1
Nöh, K.2
-
45
-
-
84887628469
-
13C metabolic flux analysis: optimal design of isotopic labeling experiments
-
13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 2013, 24:1116-1121.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 1116-1121
-
-
Antoniewicz, M.R.1
-
46
-
-
17144387903
-
From stationary to instationary metabolic flux analysis
-
Wiechert W., Nöh K. From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 2005, 92:145-172.
-
(2005)
Adv Biochem Eng Biotechnol
, vol.92
, pp. 145-172
-
-
Wiechert, W.1
Nöh, K.2
-
47
-
-
84882640384
-
Flux analysis and metabolomics for systematic metabolic engineering of microorganisms
-
Toya Y., Shimizu H. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv 2013, 31:818-826.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 818-826
-
-
Toya, Y.1
Shimizu, H.2
-
48
-
-
84887622596
-
Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks
-
Antoniewicz M.R. Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks. Curr Opin Biotechnol 2013, 24:973-978.
-
(2013)
Curr Opin Biotechnol
, vol.24
, pp. 973-978
-
-
Antoniewicz, M.R.1
-
49
-
-
84901635621
-
Improvement of constraint-based flux estimation during l-phenylalanine production with Escherichia coli using targeted knock-out mutants
-
Weiner M., Trondle J., Albermann C., Sprenger G.A., Weuster-Botz D. Improvement of constraint-based flux estimation during l-phenylalanine production with Escherichia coli using targeted knock-out mutants. Biotechnol Bioeng 2014, 111:1406-1416.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 1406-1416
-
-
Weiner, M.1
Trondle, J.2
Albermann, C.3
Sprenger, G.A.4
Weuster-Botz, D.5
-
50
-
-
84884324572
-
Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli
-
Nishio Y., Ogishima S., Ichikawa M., Yamada Y., Usuda Y., Masuda T., Tanaka H. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Syst Biol 2013, 7:92.
-
(2013)
BMC Syst Biol
, vol.7
, pp. 92
-
-
Nishio, Y.1
Ogishima, S.2
Ichikawa, M.3
Yamada, Y.4
Usuda, Y.5
Masuda, T.6
Tanaka, H.7
-
51
-
-
68049144661
-
Ensemble modeling for strain development of l-lysine-producing Escherichia coli
-
Contador C.A., Rizk M.L., Asenjo J.A., Liao J.C. Ensemble modeling for strain development of l-lysine-producing Escherichia coli. Metab Eng 2009, 11:221-233.
-
(2009)
Metab Eng
, vol.11
, pp. 221-233
-
-
Contador, C.A.1
Rizk, M.L.2
Asenjo, J.A.3
Liao, J.C.4
-
52
-
-
84934907570
-
Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum
-
Zhou L.B., Zeng A.P. Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 2015, 4:729-734.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 729-734
-
-
Zhou, L.B.1
Zeng, A.P.2
-
53
-
-
84952794328
-
Engineering a Lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum
-
Zhou L.B., Zeng A.P. Engineering a Lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 2015, 4:1335-1340.
-
(2015)
ACS Synth Biol
, vol.4
, pp. 1335-1340
-
-
Zhou, L.B.1
Zeng, A.P.2
-
54
-
-
84862193202
-
The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids
-
Mustafi N., Grunberger A., Kohlheyer D., Bott M., Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 2012, 14:449-457.
-
(2012)
Metab Eng
, vol.14
, pp. 449-457
-
-
Mustafi, N.1
Grunberger, A.2
Kohlheyer, D.3
Bott, M.4
Frunzke, J.5
-
55
-
-
84861434998
-
A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level
-
Binder S., Schendzielorz G., Stabler N., Krumbach K., Hoffmann K., Bott M., Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 2012, 13:R40.
-
(2012)
Genome Biol
, vol.13
, pp. R40
-
-
Binder, S.1
Schendzielorz, G.2
Stabler, N.3
Krumbach, K.4
Hoffmann, K.5
Bott, M.6
Eggeling, L.7
-
56
-
-
84896118650
-
Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains
-
Mustafi N., Grünberger A., Mahr R., Helfrich S., Nöh K., Blombach B., Kohlheyer D., Frunzke J. Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS ONE 2014, 9:e85731.
-
(2014)
PLoS ONE
, vol.9
-
-
Mustafi, N.1
Grünberger, A.2
Mahr, R.3
Helfrich, S.4
Nöh, K.5
Blombach, B.6
Kohlheyer, D.7
Frunzke, J.8
-
57
-
-
84878367693
-
Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine
-
Jiang L.Y., Chen S.G., Zhang Y.Y., Liu J.Z. Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine. BMC Biotechnol 2013, 13:47.
-
(2013)
BMC Biotechnol
, vol.13
, pp. 47
-
-
Jiang, L.Y.1
Chen, S.G.2
Zhang, Y.Y.3
Liu, J.Z.4
-
58
-
-
84945388093
-
Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum
-
Mahr R., Gatgens C., Gatgens J., Polen T., Kalinowski J., Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng 2015, 32:184-194.
-
(2015)
Metab Eng
, vol.32
, pp. 184-194
-
-
Mahr, R.1
Gatgens, C.2
Gatgens, J.3
Polen, T.4
Kalinowski, J.5
Frunzke, J.6
-
59
-
-
36148935215
-
Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation
-
Mimitsuka T., Sawai H., Hatsu M., Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 2007, 71:2130-2135.
-
(2007)
Biosci Biotechnol Biochem
, vol.71
, pp. 2130-2135
-
-
Mimitsuka, T.1
Sawai, H.2
Hatsu, M.3
Yamada, K.4
-
60
-
-
77953231876
-
Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane
-
Kind S., Jeong W.K., Schroder H., Wittmann C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 2010, 12:341-351.
-
(2010)
Metab Eng
, vol.12
, pp. 341-351
-
-
Kind, S.1
Jeong, W.K.2
Schroder, H.3
Wittmann, C.4
-
61
-
-
77955576962
-
Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum
-
Kind S., Jeong W.K., Schroder H., Zelder O., Wittmann C. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 2010, 76:5175-5180.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 5175-5180
-
-
Kind, S.1
Jeong, W.K.2
Schroder, H.3
Zelder, O.4
Wittmann, C.5
-
62
-
-
80052022244
-
Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum
-
Kind S., Kreye S., Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 2011, 13:617-627.
-
(2011)
Metab Eng
, vol.13
, pp. 617-627
-
-
Kind, S.1
Kreye, S.2
Wittmann, C.3
-
63
-
-
58549095930
-
Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase
-
Tateno T., Okada Y., Tsuchidate T., Tanaka T., Fukuda H., Kondo A. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009, 82:115-121.
-
(2009)
Appl Microbiol Biotechnol
, vol.82
, pp. 115-121
-
-
Tateno, T.1
Okada, Y.2
Tsuchidate, T.3
Tanaka, T.4
Fukuda, H.5
Kondo, A.6
-
64
-
-
84877144792
-
Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane
-
Buschke N., Becker J., Schafer R., Kiefer P., Biedendieck R., Wittmann C. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 2013, 8:557-570.
-
(2013)
Biotechnol J
, vol.8
, pp. 557-570
-
-
Buschke, N.1
Becker, J.2
Schafer, R.3
Kiefer, P.4
Biedendieck, R.5
Wittmann, C.6
-
65
-
-
84947046218
-
Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate
-
Lessmeier L., Pfeifenschneider J., Carnicer M., Heux S., Portais J.C., Wendisch V.F. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 2015, 99:10163-10176.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 10163-10176
-
-
Lessmeier, L.1
Pfeifenschneider, J.2
Carnicer, M.3
Heux, S.4
Portais, J.C.5
Wendisch, V.F.6
-
66
-
-
79952108763
-
Putrescine production by engineered Corynebacterium glutamicum
-
Schneider J., Wendisch V.F. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2010, 88:859-868.
-
(2010)
Appl Microbiol Biotechnol
, vol.88
, pp. 859-868
-
-
Schneider, J.1
Wendisch, V.F.2
-
67
-
-
84918519693
-
Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production
-
Peters-Wendisch P., Gotker S., Heider S.A., Komati Reddy G., Nguyen A.Q., Stansen K.C., Wendisch V.F. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. J Biotechnol 2014, 192:346-354.
-
(2014)
J Biotechnol
, vol.192
, pp. 346-354
-
-
Peters-Wendisch, P.1
Gotker, S.2
Heider, S.A.3
Komati Reddy, G.4
Nguyen, A.Q.5
Stansen, K.C.6
Wendisch, V.F.7
-
68
-
-
85016910499
-
Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum
-
Nguyen A.Q., Schneider J., Reddy G.K., Wendisch V.F. Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum. Metabolites 2015, 5:211-231.
-
(2015)
Metabolites
, vol.5
, pp. 211-231
-
-
Nguyen, A.Q.1
Schneider, J.2
Reddy, G.K.3
Wendisch, V.F.4
-
69
-
-
84942521860
-
Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine
-
Jensen J.V., Eberhardt D., Wendisch V.F. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 2015, 214:85-94.
-
(2015)
J Biotechnol
, vol.214
, pp. 85-94
-
-
Jensen, J.V.1
Eberhardt, D.2
Wendisch, V.F.3
-
70
-
-
84905453093
-
Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction
-
Feng J., Gu Y., Sun Y., Han L., Yang C., Zhang W., Cao M., Song C., Gao W., Wang S. Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction. Microb Biotechnol 2014, 7:446-455.
-
(2014)
Microb Biotechnol
, vol.7
, pp. 446-455
-
-
Feng, J.1
Gu, Y.2
Sun, Y.3
Han, L.4
Yang, C.5
Zhang, W.6
Cao, M.7
Song, C.8
Gao, W.9
Wang, S.10
-
71
-
-
84943570374
-
Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering
-
Feng J., Gu Y., Quan Y., Cao M., Gao W., Zhang W., Wang S., Yang C., Song C. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab Eng 2015, 32:106-115.
-
(2015)
Metab Eng
, vol.32
, pp. 106-115
-
-
Feng, J.1
Gu, Y.2
Quan, Y.3
Cao, M.4
Gao, W.5
Zhang, W.6
Wang, S.7
Yang, C.8
Song, C.9
-
72
-
-
84965175292
-
Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid
-
Feng L., Zhang Y., Fu J., Mao Y., Chen T., Zhao X., Wang Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 2015.
-
(2015)
Biotechnol Bioeng
-
-
Feng, L.1
Zhang, Y.2
Fu, J.3
Mao, Y.4
Chen, T.5
Zhao, X.6
Wang, Z.7
-
74
-
-
84925510421
-
2-Keto acids based biosynthesis pathways for renewable fuels and chemicals
-
Tashiro Y., Rodriguez G.M., Atsumi S. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 2015, 42:361-373.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 361-373
-
-
Tashiro, Y.1
Rodriguez, G.M.2
Atsumi, S.3
|