메뉴 건너뛰기




Volumn 42, Issue , 2016, Pages 133-146

Recent advances in amino acid production by microbial cells

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACIDS; CELLS; CYTOLOGY; METABOLIC ENGINEERING; METABOLISM;

EID: 84966708853     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2016.04.017     Document Type: Review
Times cited : (101)

References (74)
  • 1
    • 85008095806 scopus 로고
    • Studies on the amino acid fermentation. Part 1. Production of l-glutamic acid by various microorganisms
    • Kinoshita S., Udaka S., Shimono M. Studies on the amino acid fermentation. Part 1. Production of l-glutamic acid by various microorganisms. J Gen Appl Microbiol 1957, 50:193-205.
    • (1957) J Gen Appl Microbiol , vol.50 , pp. 193-205
    • Kinoshita, S.1    Udaka, S.2    Shimono, M.3
  • 2
    • 72849181002 scopus 로고
    • Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus
    • Udaka S. Screening method for microorganisms accumulating metabolites and its use in the isolation of Micrococcus glutamicus. J Bacteriol 1960, 79:754-755.
    • (1960) J Bacteriol , vol.79 , pp. 754-755
    • Udaka, S.1
  • 3
    • 53049087092 scopus 로고    scopus 로고
    • Towards systems metabolic engineering of microorganisms for amino acid production
    • Park J.H., Lee S.Y. Towards systems metabolic engineering of microorganisms for amino acid production. Curr Opin Biotechnol 2008, 19:454-460.
    • (2008) Curr Opin Biotechnol , vol.19 , pp. 454-460
    • Park, J.H.1    Lee, S.Y.2
  • 4
    • 0002640894 scopus 로고
    • Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids
    • Shiio I., Otsuka S.I., Takahashi M. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J Biochem 1962, 51:56-62.
    • (1962) J Biochem , vol.51 , pp. 56-62
    • Shiio, I.1    Otsuka, S.I.2    Takahashi, M.3
  • 5
    • 0001021102 scopus 로고
    • Biochemical effects of fatty acid and its derivatives on l-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of l-glutamic acid and the growth of Brevibacterium lactofermentum
    • Takinami K., Yoshii H., Tsuri H., Okada H. Biochemical effects of fatty acid and its derivatives on l-glutamic acid fermentation. Part III. Biotin-Tween 60 relationship in the accumulation of l-glutamic acid and the growth of Brevibacterium lactofermentum. Agric Biol Chem 1965, 29:351-359.
    • (1965) Agric Biol Chem , vol.29 , pp. 351-359
    • Takinami, K.1    Yoshii, H.2    Tsuri, H.3    Okada, H.4
  • 6
    • 0002972244 scopus 로고
    • Effect of penicillin on amino acid fermentation
    • Nara T., Samejima H., Kinoshita S. Effect of penicillin on amino acid fermentation. Agric Biol Chem 1964, 28:120-124.
    • (1964) Agric Biol Chem , vol.28 , pp. 120-124
    • Nara, T.1    Samejima, H.2    Kinoshita, S.3
  • 7
    • 0031178552 scopus 로고    scopus 로고
    • Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum
    • Kawahara Y., Takahashi-Fuke K., Shimizu E., Nakamatsu T., Nakamori S. Relationship between the glutamate production and the activity of 2-oxoglutarate dehydrogenase in Brevibacterium lactofermentum. Biosci Biotechnol Biochem 1997, 61:1109-1112.
    • (1997) Biosci Biotechnol Biochem , vol.61 , pp. 1109-1112
    • Kawahara, Y.1    Takahashi-Fuke, K.2    Shimizu, E.3    Nakamatsu, T.4    Nakamori, S.5
  • 8
    • 34547211797 scopus 로고    scopus 로고
    • Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production
    • Nakamura J., Hirano S., Ito H., Wachi M. Mutations of the Corynebacterium glutamicum NCgl1221 gene, encoding a mechanosensitive channel homolog, induce l-glutamic acid production. Appl Environ Microbiol 2007, 73:4491-4498.
    • (2007) Appl Environ Microbiol , vol.73 , pp. 4491-4498
    • Nakamura, J.1    Hirano, S.2    Ito, H.3    Wachi, M.4
  • 9
    • 78650660341 scopus 로고    scopus 로고
    • The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel
    • Hashimoto K., Nakamura K., Kuroda T., Yabe I., Nakamatsu T., Kawasaki H. The protein encoded by NCgl1221 in Corynebacterium glutamicum functions as a mechanosensitive channel. Biosci Biotechnol Biochem 2010, 74:2546-2549.
    • (2010) Biosci Biotechnol Biochem , vol.74 , pp. 2546-2549
    • Hashimoto, K.1    Nakamura, K.2    Kuroda, T.3    Yabe, I.4    Nakamatsu, T.5    Kawasaki, H.6
  • 10
    • 84874394877 scopus 로고    scopus 로고
    • Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives
    • Becker M., Börngen K., Nomura T., Battle A.R., Marin K., Martinac B., Krämer R. Glutamate efflux mediated by Corynebacterium glutamicum MscCG, Escherichia coli MscS, and their derivatives. Biochim Biophys Acta 2013, 1828:1230-1240.
    • (2013) Biochim Biophys Acta , vol.1828 , pp. 1230-1240
    • Becker, M.1    Börngen, K.2    Nomura, T.3    Battle, A.R.4    Marin, K.5    Martinac, B.6    Krämer, R.7
  • 14
    • 85007881932 scopus 로고
    • Studies on lysine fermentation I. The control mechanism on lysine accumulation by homoserine and threonine
    • Nakayama K., Kitada S., Kinoshita S. Studies on lysine fermentation I. The control mechanism on lysine accumulation by homoserine and threonine. J Gen Appl Microbiol 1961, 7:145-154.
    • (1961) J Gen Appl Microbiol , vol.7 , pp. 145-154
    • Nakayama, K.1    Kitada, S.2    Kinoshita, S.3
  • 15
    • 85007985083 scopus 로고
    • Microbial production of l-lysine III. Production by mutants resistant to S-(2-aminoethyl)-l-cysteine
    • Sano K., Shiio I. Microbial production of l-lysine III. Production by mutants resistant to S-(2-aminoethyl)-l-cysteine. J Gen Appl Microbiol 1970, 16:373-391.
    • (1970) J Gen Appl Microbiol , vol.16 , pp. 373-391
    • Sano, K.1    Shiio, I.2
  • 16
    • 78149443330 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production
    • Takeno S., Murata R., Kobayashi R., Mitsuhashi S., Ikeda M. Engineering of Corynebacterium glutamicum with an NADPH-generating glycolytic pathway for l-lysine production. Appl Environ Microbiol 2010, 76:7154-7160.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7154-7160
    • Takeno, S.1    Murata, R.2    Kobayashi, R.3    Mitsuhashi, S.4    Ikeda, M.5
  • 17
    • 84903743153 scopus 로고    scopus 로고
    • A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase
    • Bommareddy R.R., Chen Z., Rappert S., Zeng A.P. A de novo NADPH generation pathway for improving lysine production of Corynebacterium glutamicum by rational design of the coenzyme specificity of glyceraldehyde 3-phosphate dehydrogenase. Metab Eng 2014, 25:30-37.
    • (2014) Metab Eng , vol.25 , pp. 30-37
    • Bommareddy, R.R.1    Chen, Z.2    Rappert, S.3    Zeng, A.P.4
  • 18
    • 73249151004 scopus 로고    scopus 로고
    • Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum
    • Becker J., Klopprogge C., Schroder H., Wittmann C. Metabolic engineering of the tricarboxylic acid cycle for improved lysine production by Corynebacterium glutamicum. Appl Environ Microbiol 2009, 75:7866-7869.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 7866-7869
    • Becker, J.1    Klopprogge, C.2    Schroder, H.3    Wittmann, C.4
  • 19
    • 84862689750 scopus 로고    scopus 로고
    • Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity
    • van Ooyen J., Noack S., Bott M., Reth A., Eggeling L. Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng 2012, 109:2070-2081.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 2070-2081
    • van Ooyen, J.1    Noack, S.2    Bott, M.3    Reth, A.4    Eggeling, L.5
  • 20
    • 84884224413 scopus 로고    scopus 로고
    • Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate
    • Buchholz J., Schwentner A., Brunnenkan B., Gabris C., Grimm S., Gerstmeir R., Takors R., Eikmanns B.J., Blombach B. Platform engineering of Corynebacterium glutamicum with reduced pyruvate dehydrogenase complex activity for improved production of l-lysine, l-valine, and 2-ketoisovalerate. Appl Environ Microbiol 2013, 79:5566-5575.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 5566-5575
    • Buchholz, J.1    Schwentner, A.2    Brunnenkan, B.3    Gabris, C.4    Grimm, S.5    Gerstmeir, R.6    Takors, R.7    Eikmanns, B.J.8    Blombach, B.9
  • 21
    • 84872409095 scopus 로고    scopus 로고
    • Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum
    • Kind S., Becker J., Wittmann C. Increased lysine production by flux coupling of the tricarboxylic acid cycle and the lysine biosynthetic pathway-metabolic engineering of the availability of succinyl-CoA in Corynebacterium glutamicum. Metab Eng 2013, 15:184-195.
    • (2013) Metab Eng , vol.15 , pp. 184-195
    • Kind, S.1    Becker, J.2    Wittmann, C.3
  • 22
    • 84905451378 scopus 로고    scopus 로고
    • Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis
    • Guo Y.F., Han M., Yan W.L., Xu J.Z., Zhang W.G. Generation of branched-chain amino acids resistant Corynebacterium glutamicum acetohydroxy acid synthase by site-directed mutagenesis. Biotechnol Bioprocess Eng 2014, 19:456-467.
    • (2014) Biotechnol Bioprocess Eng , vol.19 , pp. 456-467
    • Guo, Y.F.1    Han, M.2    Yan, W.L.3    Xu, J.Z.4    Zhang, W.G.5
  • 23
    • 0023131480 scopus 로고
    • Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine
    • Eggeling I., Cordes C., Eggeling L., Sahm H. Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of α-ketobutyrate to l-isoleucine. Appl Microbiol Biotechnol 1987, 25:346-351.
    • (1987) Appl Microbiol Biotechnol , vol.25 , pp. 346-351
    • Eggeling, I.1    Cordes, C.2    Eggeling, L.3    Sahm, H.4
  • 25
    • 84925045121 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production
    • Chen C., Li Y., Hu J., Dong X., Wang X. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for l-valine production. Metab Eng 2015, 29:66-75.
    • (2015) Metab Eng , vol.29 , pp. 66-75
    • Chen, C.1    Li, Y.2    Hu, J.3    Dong, X.4    Wang, X.5
  • 26
    • 84856138130 scopus 로고    scopus 로고
    • Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions
    • Hasegawa S., Uematsu K., Natsuma Y., Suda M., Hiraga K., Jojima T., Inui M., Yukawa H. Improvement of the redox balance increases l-valine production by Corynebacterium glutamicum under oxygen deprivation conditions. Appl Environ Microbiol 2012, 78:865-875.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 865-875
    • Hasegawa, S.1    Uematsu, K.2    Natsuma, Y.3    Suda, M.4    Hiraga, K.5    Jojima, T.6    Inui, M.7    Yukawa, H.8
  • 27
    • 84874690816 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions
    • Hasegawa S., Suda M., Uematsu K., Natsuma Y., Hiraga K., Jojima T., Inui M., Yukawa H. Engineering of Corynebacterium glutamicum for high-yield l-valine production under oxygen deprivation conditions. Appl Environ Microbiol 2013, 79:1250-1257.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 1250-1257
    • Hasegawa, S.1    Suda, M.2    Uematsu, K.3    Natsuma, Y.4    Hiraga, K.5    Jojima, T.6    Inui, M.7    Yukawa, H.8
  • 28
    • 79953162662 scopus 로고    scopus 로고
    • Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering
    • Park J.H., Jang Y.S., Lee J.W., Lee S.Y. Escherichia coli W as a new platform strain for the enhanced production of l-valine by systems metabolic engineering. Biotechnol Bioeng 2011, 108:1140-1147.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 1140-1147
    • Park, J.H.1    Jang, Y.S.2    Lee, J.W.3    Lee, S.Y.4
  • 29
    • 84892459391 scopus 로고    scopus 로고
    • Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction
    • Vogt M., Haas S., Klaffl S., Polen T., Eggeling L., van Ooyen J., Bott M. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for l-leucine overproduction. Metab Eng 2014, 22:40-52.
    • (2014) Metab Eng , vol.22 , pp. 40-52
    • Vogt, M.1    Haas, S.2    Klaffl, S.3    Polen, T.4    Eggeling, L.5    van Ooyen, J.6    Bott, M.7
  • 30
    • 84925511011 scopus 로고    scopus 로고
    • The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation
    • Vogt M., Krumbach K., Bang W.G., van Ooyen J., Noack S., Klein B., Bott M., Eggeling L. The contest for precursors: channelling l-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation. Appl Microbiol Biotechnol 2015, 99:791-800.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 791-800
    • Vogt, M.1    Krumbach, K.2    Bang, W.G.3    van Ooyen, J.4    Noack, S.5    Klein, B.6    Bott, M.7    Eggeling, L.8
  • 31
    • 84907362164 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for l-arginine production
    • Park S.H., Kim H.U., Kim T.Y., Park J.S., Kim S.S., Lee S.Y. Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat Commun 2014, 5:4618.
    • (2014) Nat Commun , vol.5 , pp. 4618
    • Park, S.H.1    Kim, H.U.2    Kim, T.Y.3    Park, J.S.4    Kim, S.S.5    Lee, S.Y.6
  • 33
    • 84920074788 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine
    • Kim S.Y., Lee J., Lee S.Y. Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol Bioeng 2015, 112:416-421.
    • (2015) Biotechnol Bioeng , vol.112 , pp. 416-421
    • Kim, S.Y.1    Lee, J.2    Lee, S.Y.3
  • 34
    • 84940206768 scopus 로고    scopus 로고
    • Advancing metabolic engineering through systems biology of industrial microorganisms
    • Dai Z., Nielsen J. Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 2015, 36:8-15.
    • (2015) Curr Opin Biotechnol , vol.36 , pp. 8-15
    • Dai, Z.1    Nielsen, J.2
  • 35
    • 79952578981 scopus 로고    scopus 로고
    • Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis
    • Park J.H., Kim T.Y., Lee K.H., Lee S.Y. Fed-batch culture of Escherichia coli for l-valine production based on in silico flux response analysis. Biotechnol Bioeng 2011, 108:934-946.
    • (2011) Biotechnol Bioeng , vol.108 , pp. 934-946
    • Park, J.H.1    Kim, T.Y.2    Lee, K.H.3    Lee, S.Y.4
  • 36
    • 34249934691 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation
    • Park J.H., Lee K.H., Kim T.Y., Lee S.Y. Metabolic engineering of Escherichia coli for the production of l-valine based on transcriptome analysis and in silico gene knockout simulation. Proc Natl Acad Sci U S A 2007, 104:7797-7802.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 7797-7802
    • Park, J.H.1    Lee, K.H.2    Kim, T.Y.3    Lee, S.Y.4
  • 37
    • 36849002434 scopus 로고    scopus 로고
    • Systems metabolic engineering of Escherichia coli for l-threonine production
    • Lee K.H., Park J.H., Kim T.Y., Kim H.U., Lee S.Y. Systems metabolic engineering of Escherichia coli for l-threonine production. Mol Syst Biol 2007, 3:149.
    • (2007) Mol Syst Biol , vol.3 , pp. 149
    • Lee, K.H.1    Park, J.H.2    Kim, T.Y.3    Kim, H.U.4    Lee, S.Y.5
  • 38
    • 0036161274 scopus 로고    scopus 로고
    • A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant
    • Ohnishi J., Mitsuhashi S., Hayashi M., Ando S., Yokoi H., Ochiai K., Ikeda M. A novel methodology employing Corynebacterium glutamicum genome information to generate a new l-lysine-producing mutant. Appl Microbiol Biotechnol 2002, 58:217-223.
    • (2002) Appl Microbiol Biotechnol , vol.58 , pp. 217-223
    • Ohnishi, J.1    Mitsuhashi, S.2    Hayashi, M.3    Ando, S.4    Yokoi, H.5    Ochiai, K.6    Ikeda, M.7
  • 39
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
    • Becker J., Zelder O., Hafner S., Schroder H., Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 2011, 13:159-168.
    • (2011) Metab Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Hafner, S.3    Schroder, H.4    Wittmann, C.5
  • 41
    • 27744506402 scopus 로고    scopus 로고
    • Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources
    • Becker J., Klopprogge C., Zelder O., Heinzle E., Wittmann C. Amplified expression of fructose 1,6-bisphosphatase in Corynebacterium glutamicum increases in vivo flux through the pentose phosphate pathway and lysine production on different carbon sources. Appl Environ Microbiol 2005, 71:8587-8596.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 8587-8596
    • Becker, J.1    Klopprogge, C.2    Zelder, O.3    Heinzle, E.4    Wittmann, C.5
  • 42
    • 10444258178 scopus 로고    scopus 로고
    • Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source
    • Wittmann C., Kiefer P., Zelder O. Metabolic fluxes in Corynebacterium glutamicum during lysine production with sucrose as carbon source. Appl Environ Microbiol 2004, 70:7277-7287.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 7277-7287
    • Wittmann, C.1    Kiefer, P.2    Zelder, O.3
  • 43
    • 34447620670 scopus 로고    scopus 로고
    • Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis
    • Shirai T., Fujimura K., Furusawa C., Nagahisa K., Shioya S., Shimizu H. Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb Cell Fact 2007, 6:19.
    • (2007) Microb Cell Fact , vol.6 , pp. 19
    • Shirai, T.1    Fujimura, K.2    Furusawa, C.3    Nagahisa, K.4    Shioya, S.5    Shimizu, H.6
  • 44
    • 84887626505 scopus 로고    scopus 로고
    • Isotopically non-stationary metabolic flux analysis: complex yet highly informative
    • Wiechert W., Nöh K. Isotopically non-stationary metabolic flux analysis: complex yet highly informative. Curr Opin Biotechnol 2013, 24:979-986.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 979-986
    • Wiechert, W.1    Nöh, K.2
  • 45
    • 84887628469 scopus 로고    scopus 로고
    • 13C metabolic flux analysis: optimal design of isotopic labeling experiments
    • 13C metabolic flux analysis: optimal design of isotopic labeling experiments. Curr Opin Biotechnol 2013, 24:1116-1121.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 1116-1121
    • Antoniewicz, M.R.1
  • 46
    • 17144387903 scopus 로고    scopus 로고
    • From stationary to instationary metabolic flux analysis
    • Wiechert W., Nöh K. From stationary to instationary metabolic flux analysis. Adv Biochem Eng Biotechnol 2005, 92:145-172.
    • (2005) Adv Biochem Eng Biotechnol , vol.92 , pp. 145-172
    • Wiechert, W.1    Nöh, K.2
  • 47
    • 84882640384 scopus 로고    scopus 로고
    • Flux analysis and metabolomics for systematic metabolic engineering of microorganisms
    • Toya Y., Shimizu H. Flux analysis and metabolomics for systematic metabolic engineering of microorganisms. Biotechnol Adv 2013, 31:818-826.
    • (2013) Biotechnol Adv , vol.31 , pp. 818-826
    • Toya, Y.1    Shimizu, H.2
  • 48
    • 84887622596 scopus 로고    scopus 로고
    • Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks
    • Antoniewicz M.R. Dynamic metabolic flux analysis-tools for probing transient states of metabolic networks. Curr Opin Biotechnol 2013, 24:973-978.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 973-978
    • Antoniewicz, M.R.1
  • 49
    • 84901635621 scopus 로고    scopus 로고
    • Improvement of constraint-based flux estimation during l-phenylalanine production with Escherichia coli using targeted knock-out mutants
    • Weiner M., Trondle J., Albermann C., Sprenger G.A., Weuster-Botz D. Improvement of constraint-based flux estimation during l-phenylalanine production with Escherichia coli using targeted knock-out mutants. Biotechnol Bioeng 2014, 111:1406-1416.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 1406-1416
    • Weiner, M.1    Trondle, J.2    Albermann, C.3    Sprenger, G.A.4    Weuster-Botz, D.5
  • 50
    • 84884324572 scopus 로고    scopus 로고
    • Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli
    • Nishio Y., Ogishima S., Ichikawa M., Yamada Y., Usuda Y., Masuda T., Tanaka H. Analysis of l-glutamic acid fermentation by using a dynamic metabolic simulation model of Escherichia coli. BMC Syst Biol 2013, 7:92.
    • (2013) BMC Syst Biol , vol.7 , pp. 92
    • Nishio, Y.1    Ogishima, S.2    Ichikawa, M.3    Yamada, Y.4    Usuda, Y.5    Masuda, T.6    Tanaka, H.7
  • 51
    • 68049144661 scopus 로고    scopus 로고
    • Ensemble modeling for strain development of l-lysine-producing Escherichia coli
    • Contador C.A., Rizk M.L., Asenjo J.A., Liao J.C. Ensemble modeling for strain development of l-lysine-producing Escherichia coli. Metab Eng 2009, 11:221-233.
    • (2009) Metab Eng , vol.11 , pp. 221-233
    • Contador, C.A.1    Rizk, M.L.2    Asenjo, J.A.3    Liao, J.C.4
  • 52
    • 84934907570 scopus 로고    scopus 로고
    • Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum
    • Zhou L.B., Zeng A.P. Exploring lysine riboswitch for metabolic flux control and improvement of l-lysine synthesis in Corynebacterium glutamicum. ACS Synth Biol 2015, 4:729-734.
    • (2015) ACS Synth Biol , vol.4 , pp. 729-734
    • Zhou, L.B.1    Zeng, A.P.2
  • 53
    • 84952794328 scopus 로고    scopus 로고
    • Engineering a Lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum
    • Zhou L.B., Zeng A.P. Engineering a Lysine-ON riboswitch for metabolic control of lysine production in Corynebacterium glutamicum. ACS Synth Biol 2015, 4:1335-1340.
    • (2015) ACS Synth Biol , vol.4 , pp. 1335-1340
    • Zhou, L.B.1    Zeng, A.P.2
  • 54
    • 84862193202 scopus 로고    scopus 로고
    • The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids
    • Mustafi N., Grunberger A., Kohlheyer D., Bott M., Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 2012, 14:449-457.
    • (2012) Metab Eng , vol.14 , pp. 449-457
    • Mustafi, N.1    Grunberger, A.2    Kohlheyer, D.3    Bott, M.4    Frunzke, J.5
  • 55
    • 84861434998 scopus 로고    scopus 로고
    • A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level
    • Binder S., Schendzielorz G., Stabler N., Krumbach K., Hoffmann K., Bott M., Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 2012, 13:R40.
    • (2012) Genome Biol , vol.13 , pp. R40
    • Binder, S.1    Schendzielorz, G.2    Stabler, N.3    Krumbach, K.4    Hoffmann, K.5    Bott, M.6    Eggeling, L.7
  • 56
    • 84896118650 scopus 로고    scopus 로고
    • Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains
    • Mustafi N., Grünberger A., Mahr R., Helfrich S., Nöh K., Blombach B., Kohlheyer D., Frunzke J. Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS ONE 2014, 9:e85731.
    • (2014) PLoS ONE , vol.9
    • Mustafi, N.1    Grünberger, A.2    Mahr, R.3    Helfrich, S.4    Nöh, K.5    Blombach, B.6    Kohlheyer, D.7    Frunzke, J.8
  • 57
    • 84878367693 scopus 로고    scopus 로고
    • Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine
    • Jiang L.Y., Chen S.G., Zhang Y.Y., Liu J.Z. Metabolic evolution of Corynebacterium glutamicum for increased production of l-ornithine. BMC Biotechnol 2013, 13:47.
    • (2013) BMC Biotechnol , vol.13 , pp. 47
    • Jiang, L.Y.1    Chen, S.G.2    Zhang, Y.Y.3    Liu, J.Z.4
  • 58
    • 84945388093 scopus 로고    scopus 로고
    • Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum
    • Mahr R., Gatgens C., Gatgens J., Polen T., Kalinowski J., Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metab Eng 2015, 32:184-194.
    • (2015) Metab Eng , vol.32 , pp. 184-194
    • Mahr, R.1    Gatgens, C.2    Gatgens, J.3    Polen, T.4    Kalinowski, J.5    Frunzke, J.6
  • 59
    • 36148935215 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation
    • Mimitsuka T., Sawai H., Hatsu M., Yamada K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 2007, 71:2130-2135.
    • (2007) Biosci Biotechnol Biochem , vol.71 , pp. 2130-2135
    • Mimitsuka, T.1    Sawai, H.2    Hatsu, M.3    Yamada, K.4
  • 60
    • 77953231876 scopus 로고    scopus 로고
    • Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane
    • Kind S., Jeong W.K., Schroder H., Wittmann C. Systems-wide metabolic pathway engineering in Corynebacterium glutamicum for bio-based production of diaminopentane. Metab Eng 2010, 12:341-351.
    • (2010) Metab Eng , vol.12 , pp. 341-351
    • Kind, S.1    Jeong, W.K.2    Schroder, H.3    Wittmann, C.4
  • 61
    • 77955576962 scopus 로고    scopus 로고
    • Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum
    • Kind S., Jeong W.K., Schroder H., Zelder O., Wittmann C. Identification and elimination of the competing N-acetyldiaminopentane pathway for improved production of diaminopentane by Corynebacterium glutamicum. Appl Environ Microbiol 2010, 76:5175-5180.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 5175-5180
    • Kind, S.1    Jeong, W.K.2    Schroder, H.3    Zelder, O.4    Wittmann, C.5
  • 62
    • 80052022244 scopus 로고    scopus 로고
    • Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum
    • Kind S., Kreye S., Wittmann C. Metabolic engineering of cellular transport for overproduction of the platform chemical 1,5-diaminopentane in Corynebacterium glutamicum. Metab Eng 2011, 13:617-627.
    • (2011) Metab Eng , vol.13 , pp. 617-627
    • Kind, S.1    Kreye, S.2    Wittmann, C.3
  • 63
    • 58549095930 scopus 로고    scopus 로고
    • Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase
    • Tateno T., Okada Y., Tsuchidate T., Tanaka T., Fukuda H., Kondo A. Direct production of cadaverine from soluble starch using Corynebacterium glutamicum coexpressing α-amylase and lysine decarboxylase. Appl Microbiol Biotechnol 2009, 82:115-121.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 115-121
    • Tateno, T.1    Okada, Y.2    Tsuchidate, T.3    Tanaka, T.4    Fukuda, H.5    Kondo, A.6
  • 64
    • 84877144792 scopus 로고    scopus 로고
    • Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane
    • Buschke N., Becker J., Schafer R., Kiefer P., Biedendieck R., Wittmann C. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol J 2013, 8:557-570.
    • (2013) Biotechnol J , vol.8 , pp. 557-570
    • Buschke, N.1    Becker, J.2    Schafer, R.3    Kiefer, P.4    Biedendieck, R.5    Wittmann, C.6
  • 65
    • 84947046218 scopus 로고    scopus 로고
    • Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate
    • Lessmeier L., Pfeifenschneider J., Carnicer M., Heux S., Portais J.C., Wendisch V.F. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate. Appl Microbiol Biotechnol 2015, 99:10163-10176.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 10163-10176
    • Lessmeier, L.1    Pfeifenschneider, J.2    Carnicer, M.3    Heux, S.4    Portais, J.C.5    Wendisch, V.F.6
  • 66
    • 79952108763 scopus 로고    scopus 로고
    • Putrescine production by engineered Corynebacterium glutamicum
    • Schneider J., Wendisch V.F. Putrescine production by engineered Corynebacterium glutamicum. Appl Microbiol Biotechnol 2010, 88:859-868.
    • (2010) Appl Microbiol Biotechnol , vol.88 , pp. 859-868
    • Schneider, J.1    Wendisch, V.F.2
  • 68
    • 85016910499 scopus 로고    scopus 로고
    • Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum
    • Nguyen A.Q., Schneider J., Reddy G.K., Wendisch V.F. Fermentative production of the diamine putrescine: system metabolic engineering of Corynebacterium glutamicum. Metabolites 2015, 5:211-231.
    • (2015) Metabolites , vol.5 , pp. 211-231
    • Nguyen, A.Q.1    Schneider, J.2    Reddy, G.K.3    Wendisch, V.F.4
  • 69
    • 84942521860 scopus 로고    scopus 로고
    • Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine
    • Jensen J.V., Eberhardt D., Wendisch V.F. Modular pathway engineering of Corynebacterium glutamicum for production of the glutamate-derived compounds ornithine, proline, putrescine, citrulline, and arginine. J Biotechnol 2015, 214:85-94.
    • (2015) J Biotechnol , vol.214 , pp. 85-94
    • Jensen, J.V.1    Eberhardt, D.2    Wendisch, V.F.3
  • 70
    • 84905453093 scopus 로고    scopus 로고
    • Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction
    • Feng J., Gu Y., Sun Y., Han L., Yang C., Zhang W., Cao M., Song C., Gao W., Wang S. Metabolic engineering of Bacillus amyloliquefaciens for poly-gamma-glutamic acid (γ-PGA) overproduction. Microb Biotechnol 2014, 7:446-455.
    • (2014) Microb Biotechnol , vol.7 , pp. 446-455
    • Feng, J.1    Gu, Y.2    Sun, Y.3    Han, L.4    Yang, C.5    Zhang, W.6    Cao, M.7    Song, C.8    Gao, W.9    Wang, S.10
  • 71
    • 84943570374 scopus 로고    scopus 로고
    • Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering
    • Feng J., Gu Y., Quan Y., Cao M., Gao W., Zhang W., Wang S., Yang C., Song C. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Metab Eng 2015, 32:106-115.
    • (2015) Metab Eng , vol.32 , pp. 106-115
    • Feng, J.1    Gu, Y.2    Quan, Y.3    Cao, M.4    Gao, W.5    Zhang, W.6    Wang, S.7    Yang, C.8    Song, C.9
  • 72
    • 84965175292 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid
    • Feng L., Zhang Y., Fu J., Mao Y., Chen T., Zhao X., Wang Z. Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 2015.
    • (2015) Biotechnol Bioeng
    • Feng, L.1    Zhang, Y.2    Fu, J.3    Mao, Y.4    Chen, T.5    Zhao, X.6    Wang, Z.7
  • 74
    • 84925510421 scopus 로고    scopus 로고
    • 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals
    • Tashiro Y., Rodriguez G.M., Atsumi S. 2-Keto acids based biosynthesis pathways for renewable fuels and chemicals. J Ind Microbiol Biotechnol 2015, 42:361-373.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 361-373
    • Tashiro, Y.1    Rodriguez, G.M.2    Atsumi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.