메뉴 건너뛰기




Volumn 34, Issue 11, 2016, Pages 866-878

Electro-Fermentation – Merging Electrochemistry with Fermentation in Industrial Applications

Author keywords

biorefinery; electro fermentation; extracellular electron transfer; industrial fermentation; microbial electrochemical technologies

Indexed keywords

ELECTROCHEMISTRY; METABOLISM; REFINING;

EID: 84965177018     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2016.04.007     Document Type: Review
Times cited : (223)

References (89)
  • 2
    • 33646462999 scopus 로고    scopus 로고
    • Application of solid-state fermentation to food industry – a review
    • 2 Couto, S.R., Sanromán, M.A., Application of solid-state fermentation to food industry – a review. J. Food Eng. 76 (2006), 291–302.
    • (2006) J. Food Eng. , vol.76 , pp. 291-302
    • Couto, S.R.1    Sanromán, M.A.2
  • 4
    • 0003985221 scopus 로고    scopus 로고
    • Bioprocess Engineering Principles
    • Elsevier
    • 4 Doran, P.M., Bioprocess Engineering Principles. 2013, Elsevier.
    • (2013)
    • Doran, P.M.1
  • 5
    • 84904861777 scopus 로고    scopus 로고
    • Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media
    • 5 Peng, L., et al. Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media. Appl. Microbiol. Biotechnol. 98 (2014), 6847–6858.
    • (2014) Appl. Microbiol. Biotechnol. , vol.98 , pp. 6847-6858
    • Peng, L.1
  • 7
    • 34247893244 scopus 로고    scopus 로고
    • Fermentation pathways
    • Chapter 11 A.G. Moat et al. (eds.) 4th edn John Wiley & Sons
    • 7 Moat, A.G., et al. Fermentation pathways. Chapter 11 Moat, A.G., et al. (eds.) In Microbrobial Physiology, 4th edn, 2002, John Wiley & Sons.
    • (2002) In Microbrobial Physiology
    • Moat, A.G.1
  • 8
    • 78751627523 scopus 로고    scopus 로고
    • Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
    • 8 Agler, M.T., et al. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29 (2011), 70–78.
    • (2011) Trends Biotechnol. , vol.29 , pp. 70-78
    • Agler, M.T.1
  • 9
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis – revisiting the electrical route for microbial production
    • 9 Rabaey, K., Rozendal, R.a., Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.A.2
  • 10
    • 84897101157 scopus 로고    scopus 로고
    • Editorial overview: energy biotechnology
    • 10 Rabaey, K., Ragauskas, A.J., Editorial overview: energy biotechnology. Curr. Opin. Biotechnol. 27 (2014), 5–6.
    • (2014) Curr. Opin. Biotechnol. , vol.27 , pp. 5-6
    • Rabaey, K.1    Ragauskas, A.J.2
  • 11
    • 79957982062 scopus 로고    scopus 로고
    • Metabolic and practical considerations on microbial electrosynthesis
    • 11 Rabaey, K., et al. Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol. 22 (2011), 371–377.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 371-377
    • Rabaey, K.1
  • 12
    • 44449129578 scopus 로고    scopus 로고
    • Review: direct and indirect electrical stimulation of microbial metabolism
    • 12 Thrash, J.C., Coates, J.D., Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 42 (2008), 3921–3931.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 3921-3931
    • Thrash, J.C.1    Coates, J.D.2
  • 13
    • 79953759834 scopus 로고    scopus 로고
    • Powering microbes with electricity: direct electron transfer from electrodes to microbes
    • 13 Lovley, D.R., Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environmental Microbiology Reports 3 (2011), 27–35.
    • (2011) Environmental Microbiology Reports , vol.3 , pp. 27-35
    • Lovley, D.R.1
  • 14
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • 14 Reguera, G., et al. Extracellular electron transfer via microbial nanowires. Nature 435 (2005), 1098–1101.
    • (2005) Nature , vol.435 , pp. 1098-1101
    • Reguera, G.1
  • 15
    • 84923930357 scopus 로고    scopus 로고
    • Identifying target processes for microbial electrosynthesis by elementary mode analysis
    • 15 Kracke, F., Krömer, J.O., Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15 (2014), 410–423.
    • (2014) BMC Bioinformatics , vol.15 , pp. 410-423
    • Kracke, F.1    Krömer, J.O.2
  • 16
    • 84936993627 scopus 로고    scopus 로고
    • Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems
    • Published online June 11, 2015
    • 16 Kracke, F., et al. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 2015 Published online June 11, 2015 http://dx.doi.org/10.3389/fmicb.2015.00575.
    • (2015) Frontiers in Microbiology
    • Kracke, F.1
  • 17
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • 17 Nevin, K., et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77 (2011), 2882–2886.
    • (2011) Appl. Environ. Microbiol. , vol.77 , pp. 2882-2886
    • Nevin, K.1
  • 18
    • 0017343370 scopus 로고
    • Energy conservation in chemotrophic anaerobic bacteria
    • 18 Thauer, R.K., et al. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41 (1977), 100–180.
    • (1977) Bacteriol. Rev. , vol.41 , pp. 100-180
    • Thauer, R.K.1
  • 20
    • 84906945974 scopus 로고    scopus 로고
    • A critical revisit of the key parameters used to describe microbial electrochemical systems
    • 20 Sharma, M., et al. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim. Acta 140 (2014), 191–208.
    • (2014) Electrochim. Acta , vol.140 , pp. 191-208
    • Sharma, M.1
  • 21
    • 0036663710 scopus 로고    scopus 로고
    • +-dependent formate dehydrogenase
    • +-dependent formate dehydrogenase. Metab. Eng. 4 (2002), 217–229.
    • (2002) Metab. Eng. , vol.4 , pp. 217-229
    • Berríos-Rivera, S.J.1
  • 22
    • 84958212306 scopus 로고    scopus 로고
    • Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system
    • 22 Lai, B., et al. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol. Biofuels, 9, 2016, 39.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 39
    • Lai, B.1
  • 23
    • 77954511031 scopus 로고    scopus 로고
    • Relevance of microbial coculture fermentations in biotechnology
    • 23 Bader, J., et al. Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109 (2010), 371–387.
    • (2010) J. Appl. Microbiol. , vol.109 , pp. 371-387
    • Bader, J.1
  • 24
    • 84871442035 scopus 로고    scopus 로고
    • Pervaporative recovery of ABE during continuous cultivation: enhancement of performance
    • 24 Van Hecke, W., et al. Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour. Technol. 129 (2013), 421–429.
    • (2013) Bioresour. Technol. , vol.129 , pp. 421-429
    • Van Hecke, W.1
  • 25
    • 38849148408 scopus 로고    scopus 로고
    • Dark fermentative H2 production from xylose and lactose – effects of on-line pH control
    • 25 Calli, B., et al. Dark fermentative H2 production from xylose and lactose – effects of on-line pH control. Int. J. Hydrogen Energy 33 (2008), 522–530.
    • (2008) Int. J. Hydrogen Energy , vol.33 , pp. 522-530
    • Calli, B.1
  • 26
    • 84871917478 scopus 로고    scopus 로고
    • Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase
    • 26 Arioli, S., et al. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl. Environ. Microbiol. 79 (2013), 376–380.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 376-380
    • Arioli, S.1
  • 27
    • 0035983313 scopus 로고    scopus 로고
    • Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds
    • 27 Farid, M.a., et al. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. J. Basic Microbiol. 42 (2002), 162–171.
    • (2002) J. Basic Microbiol. , vol.42 , pp. 162-171
    • Farid, M.A.1
  • 28
    • 79952147700 scopus 로고    scopus 로고
    • Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria
    • 28 Flynn, J.M., et al. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio, 1, 2010, e00190.
    • (2010) MBio , vol.1 , pp. e00190
    • Flynn, J.M.1
  • 29
    • 84954932034 scopus 로고
    • Application of electro-energizing method to L-glutamic acid fermentation
    • 29 Hongo, M., Iwahara, M., Application of electro-energizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43 (1979), 2075–2081.
    • (1979) Agric. Biol. Chem. , vol.43 , pp. 2075-2081
    • Hongo, M.1    Iwahara, M.2
  • 30
    • 0001462037 scopus 로고
    • Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent
    • 30 Kim, T.S., Kim, B.H., Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol. Lett. 10 (1988), 123–128.
    • (1988) Biotechnol. Lett. , vol.10 , pp. 123-128
    • Kim, T.S.1    Kim, B.H.2
  • 31
    • 84930934882 scopus 로고    scopus 로고
    • Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440
    • 31 Schmitz, S., et al. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol., 6, 2015, 284.
    • (2015) Front. Microbiol. , vol.6 , pp. 284
    • Schmitz, S.1
  • 32
    • 80053445630 scopus 로고    scopus 로고
    • In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals
    • 32 Pandit, A.V., Mahadevan, R., In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb. Cell Fact., 10, 2011, 76.
    • (2011) Microb. Cell Fact. , vol.10 , pp. 76
    • Pandit, A.V.1    Mahadevan, R.2
  • 33
    • 84946121603 scopus 로고    scopus 로고
    • Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae
    • 33 Mathew, A.S., et al. Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae. Sci. Rep., 5, 2015, 15713.
    • (2015) Sci. Rep. , vol.5 , pp. 15713
    • Mathew, A.S.1
  • 34
    • 50649100520 scopus 로고    scopus 로고
    • Handbook of Industrial Biocatalysis
    • CRC Press
    • 34 Hou, C.T., Handbook of Industrial Biocatalysis. 2005, CRC Press.
    • (2005)
    • Hou, C.T.1
  • 35
    • 0032904869 scopus 로고    scopus 로고
    • Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
    • 35 Park, D.H., Zeikus, J.G., Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181 (1999), 2403–2410.
    • (1999) J. Bacteriol. , vol.181 , pp. 2403-2410
    • Park, D.H.1    Zeikus, J.G.2
  • 36
    • 0036118547 scopus 로고    scopus 로고
    • Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae
    • 36 Shin, H., et al. Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 58 (2002), 476–481.
    • (2002) Appl. Microbiol. Biotechnol. , vol.58 , pp. 476-481
    • Shin, H.1
  • 37
    • 84865389363 scopus 로고    scopus 로고
    • Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor
    • 37 Choi, O., et al. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol. Bioeng. 109 (2012), 2494–2502.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2494-2502
    • Choi, O.1
  • 38
    • 84864659735 scopus 로고    scopus 로고
    • Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies
    • 38 Schievano, A., et al. Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 46 (2012), 8502–8510.
    • (2012) Environ. Sci. Technol. , vol.46 , pp. 8502-8510
    • Schievano, A.1
  • 39
    • 84934893760 scopus 로고    scopus 로고
    • Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode
    • 39 Batlle-Vilanova, P., et al. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode. RSC Adv. 5 (2015), 52243–52251.
    • (2015) RSC Adv. , vol.5 , pp. 52243-52251
    • Batlle-Vilanova, P.1
  • 40
    • 74549116839 scopus 로고    scopus 로고
    • Optimizing mixed-culture bioprocessing to convert wastes into bioenergy
    • L. Wall et al. (eds.) 2008 edn ASM Press
    • 40 Angenent, L.T., Wrenn, B.A., Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. Wall, L., et al. (eds.) In: Bioenergy, 2008 edn, 2008, ASM Press, 179–194.
    • (2008) In: Bioenergy , pp. 179-194
    • Angenent, L.T.1    Wrenn, B.A.2
  • 41
    • 84942333291 scopus 로고    scopus 로고
    • State of the art and future concept of food waste fermentation to bioenergy
    • 41 Sen, B., et al. State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 53 (2016), 547–557.
    • (2016) Renew. Sustain. Energy Rev. , vol.53 , pp. 547-557
    • Sen, B.1
  • 42
    • 84930959088 scopus 로고    scopus 로고
    • Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion
    • 42 Zhao, Z., et al. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci. Rep., 5, 2015, 11094.
    • (2015) Sci. Rep. , vol.5 , pp. 11094
    • Zhao, Z.1
  • 43
    • 84874393037 scopus 로고    scopus 로고
    • Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery
    • 43 Babu, M.L., et al. Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery. Bioresour. Technol. 133 (2013), 322–331.
    • (2013) Bioresour. Technol. , vol.133 , pp. 322-331
    • Babu, M.L.1
  • 44
    • 84936997056 scopus 로고    scopus 로고
    • Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell
    • 44 Modestra, J.A., et al. Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell. Sep. Purif. Technol. 150 (2015), 308–315.
    • (2015) Sep. Purif. Technol. , vol.150 , pp. 308-315
    • Modestra, J.A.1
  • 45
    • 0033014983 scopus 로고    scopus 로고
    • Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production
    • 45 Park, D.H., et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65 (1999), 2912–2917.
    • (1999) Appl. Environ. Microbiol. , vol.65 , pp. 2912-2917
    • Park, D.H.1
  • 46
    • 84992366303 scopus 로고    scopus 로고
    • Hafez, H.M. Greenfield Ethanol Inc. Method and system for electro-assisted hydrogen production from organic material. US A1.
    • 46 Hafez, H.M. Greenfield Ethanol Inc. Method and system for electro-assisted hydrogen production from organic material. US 20130217089 A1.
    • (2013)
  • 47
    • 67649577235 scopus 로고    scopus 로고
    • High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells
    • 47 Selembo, P.A., et al. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy 34 (2009), 5373–5381.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 5373-5381
    • Selembo, P.A.1
  • 48
    • 84879816867 scopus 로고    scopus 로고
    • Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system
    • 48 Dennis, P.G., et al. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl. Environ. Microbiol. 79 (2013), 4008–4014.
    • (2013) Appl. Environ. Microbiol. , vol.79 , pp. 4008-4014
    • Dennis, P.G.1
  • 49
    • 84885152223 scopus 로고    scopus 로고
    • Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol
    • 49 Zhou, M., et al. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ. Sci. Technol. 47 (2013), 11199–11205.
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 11199-11205
    • Zhou, M.1
  • 50
    • 84928091817 scopus 로고    scopus 로고
    • Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system
    • 50 Zhou, M., et al. Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. Microb. Biotechnol. 8 (2015), 483–489.
    • (2015) Microb. Biotechnol. , vol.8 , pp. 483-489
    • Zhou, M.1
  • 51
    • 84940706028 scopus 로고    scopus 로고
    • Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations
    • 51 Xafenias, N., et al. Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations. Process Biochem. 50 (2015), 1499–1508.
    • (2015) Process Biochem. , vol.50 , pp. 1499-1508
    • Xafenias, N.1
  • 52
    • 75349113313 scopus 로고    scopus 로고
    • Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures
    • 52 Steinbusch, K.J.J., et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 44 (2010), 513–517.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 513-517
    • Steinbusch, K.J.J.1
  • 53
    • 84879759623 scopus 로고    scopus 로고
    • Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures
    • 53 Van Eerten-Jansen, M.C.A.A., et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain. Chem. Eng. 1 (2013), 513–518.
    • (2013) ACS Sustain. Chem. Eng. , vol.1 , pp. 513-518
    • Van Eerten-Jansen, M.C.A.A.1
  • 54
    • 84858746639 scopus 로고    scopus 로고
    • Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes
    • 54 Van Hecke, W., et al. Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour. Technol. 111 (2012), 368–377.
    • (2012) Bioresour. Technol. , vol.111 , pp. 368-377
    • Van Hecke, W.1
  • 55
    • 44049105889 scopus 로고    scopus 로고
    • Succinic acid: a new platform chemical for biobased polymers from renewable resources
    • 55 Bechthold, I., et al. Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem. Eng. Technol. 31 (2008), 647–654.
    • (2008) Chem. Eng. Technol. , vol.31 , pp. 647-654
    • Bechthold, I.1
  • 56
    • 84902596879 scopus 로고    scopus 로고
    • Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
    • 56 Andersen, S.J., et al. Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48 (2014), 7135–7142.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 7135-7142
    • Andersen, S.J.1
  • 57
    • 84969195348 scopus 로고    scopus 로고
    • 2 through microbial electrosynthesis
    • 2 through microbial electrosynthesis. Environ. Sci. Technol. Lett. 2 (2015), 325–328.
    • (2015) Environ. Sci. Technol. Lett. , vol.2 , pp. 325-328
    • Gildemyn, S.1
  • 58
    • 84926645424 scopus 로고    scopus 로고
    • In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis
    • 58 Xu, J., et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem. Commun. 51 (2015), 6847–6850.
    • (2015) Chem. Commun. , vol.51 , pp. 6847-6850
    • Xu, J.1
  • 59
    • 0022462103 scopus 로고
    • Novel method of lactic acid production by electrodialysis fermentation
    • 59 Hongo, M., et al. Novel method of lactic acid production by electrodialysis fermentation. Appl. Envir. Microbiol. 52 (1986), 314–319.
    • (1986) Appl. Envir. Microbiol. , vol.52 , pp. 314-319
    • Hongo, M.1
  • 60
    • 84859481789 scopus 로고    scopus 로고
    • Inhibition by fatty acids during fermentation of pre-treated waste activated sludge
    • 60 Pratt, S., et al. Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. J. Biotechnol. 159 (2012), 38–43.
    • (2012) J. Biotechnol. , vol.159 , pp. 38-43
    • Pratt, S.1
  • 61
    • 84864214496 scopus 로고    scopus 로고
    • Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates
    • 61 Agler, M.T., et al. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ. Sci., 5, 2012, 8189.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 8189
    • Agler, M.T.1
  • 62
    • 84877085204 scopus 로고    scopus 로고
    • Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter
    • 62 Grootscholten, T.I.M., et al. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. Bioresour. Technol. 136 (2013), 735–738.
    • (2013) Bioresour. Technol. , vol.136 , pp. 735-738
    • Grootscholten, T.I.M.1
  • 63
    • 84888127530 scopus 로고    scopus 로고
    • In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410
    • 63 Choi, K., et al. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Appl. Biochem. Biotechnol. 171 (2013), 1094–1107.
    • (2013) Appl. Biochem. Biotechnol. , vol.171 , pp. 1094-1107
    • Choi, K.1
  • 64
    • 84962325618 scopus 로고    scopus 로고
    • Electro-stimulated microbial factory for value added product synthesis
    • Published online March 19. 2016
    • 64 Roy, S., et al. Electro-stimulated microbial factory for value added product synthesis. Bioresour. Technol., 2016 Published online March 19. 2016 http://dx.doi.org/10.1016/j.biortech.2016.03.052.
    • (2016) Bioresour. Technol.
    • Roy, S.1
  • 65
    • 82755189684 scopus 로고    scopus 로고
    • Microbial production of building block chemicals and polymers
    • 65 Lee, J.W., et al. Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 22 (2011), 758–767.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 758-767
    • Lee, J.W.1
  • 66
    • 84866611337 scopus 로고    scopus 로고
    • Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers
    • 66 Sindhu, R., et al. Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Arch. Biol. Technol. 54 (2011), 783–794.
    • (2011) Brazilian Arch. Biol. Technol. , vol.54 , pp. 783-794
    • Sindhu, R.1
  • 67
    • 84892476595 scopus 로고    scopus 로고
    • Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy
    • 67 Cok, B., et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioprod. Biorefining 8 (2014), 16–29.
    • (2014) Biofuels, Bioprod. Biorefining , vol.8 , pp. 16-29
    • Cok, B.1
  • 68
    • 4344656907 scopus 로고    scopus 로고
    • Production of bioenergy and biochemicals from industrial and agricultural wastewater
    • 68 Angenent, L.T., et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22 (2004), 477–485.
    • (2004) Trends Biotechnol. , vol.22 , pp. 477-485
    • Angenent, L.T.1
  • 69
    • 0032919470 scopus 로고    scopus 로고
    • 2 supply and glucose concentration
    • 2 supply and glucose concentration. Enzyme Microb. Technol. 24 (1999), 549–554.
    • (1999) Enzyme Microb. Technol. , vol.24 , pp. 549-554
    • Lee, P.C.1
  • 70
    • 33751279921 scopus 로고    scopus 로고
    • Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
    • 70 Geertman, J-M.A., et al. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 6 (2006), 1193–1203.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 1193-1203
    • Geertman, J.-M.A.1
  • 71
    • 42949095941 scopus 로고    scopus 로고
    • Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593
    • 71 Liu, Y.-P., et al. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. J. Chem. Technol. Biotechnol. 83 (2008), 722–729.
    • (2008) J. Chem. Technol. Biotechnol. , vol.83 , pp. 722-729
    • Liu, Y.-P.1
  • 72
    • 84992417649 scopus 로고
    • Electrofermentation of tea
    • 72 Lominadze, G.S., Electrofermentation of tea. Sovetskie Subtropiki 8 (1940), 27–28.
    • (1940) Sovetskie Subtropiki , vol.8 , pp. 27-28
    • Lominadze, G.S.1
  • 73
    • 0025043391 scopus 로고
    • Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent
    • 73 Kim, T.S., et al. Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent. Biotechnol. Lett. 12 (1990), 757–760.
    • (1990) Biotechnol. Lett. , vol.12 , pp. 757-760
    • Kim, T.S.1
  • 74
    • 0023058682 scopus 로고
    • Electrical stimulation of hybridoma cells producing monoclonal antibody to cAMP
    • 74 Suzuki, M., et al. Electrical stimulation of hybridoma cells producing monoclonal antibody to cAMP. Biochim. Biophys. Acta - Mol. Cell Res. 889 (1986), 149–155.
    • (1986) Biochim. Biophys. Acta - Mol. Cell Res. , vol.889 , pp. 149-155
    • Suzuki, M.1
  • 75
    • 0024997534 scopus 로고
    • Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system
    • 75 Emde, R., Schink, B., Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl. Environ. Microbiol. 56 (1990), 2771–2776.
    • (1990) Appl. Environ. Microbiol. , vol.56 , pp. 2771-2776
    • Emde, R.1    Schink, B.2
  • 76
    • 2642520659 scopus 로고    scopus 로고
    • Graphite electrodes as electron donors for anaerobic respiration
    • 76 Gregory, K.B., et al. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6 (2004), 596–604.
    • (2004) Environ. Microbiol. , vol.6 , pp. 596-604
    • Gregory, K.B.1
  • 77
    • 19944407181 scopus 로고    scopus 로고
    • Electrical stimulation of Saccharomyces cervisiae cultures
    • 77 Araújo, O.Q.F., et al. Electrical stimulation of Saccharomyces cervisiae cultures. Bras. J. Microbiol. 35 (2004), 97–103.
    • (2004) Bras. J. Microbiol. , vol.35 , pp. 97-103
    • Araújo, O.Q.F.1
  • 78
    • 47049103719 scopus 로고    scopus 로고
    • Towards practical implementation of bioelectrochemical wastewater treatment
    • 78 Rozendal, R.A., et al. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26 (2008), 450–459.
    • (2008) Trends in Biotechnology , vol.26 , pp. 450-459
    • Rozendal, R.A.1
  • 79
    • 66249100237 scopus 로고    scopus 로고
    • Direct biological conversion of electrical current into methane by electromethanogenesis
    • 79 Cheng, S., et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43 (2009), 3953–3958.
    • (2009) Environ. Sci. Technol. , vol.43 , pp. 3953-3958
    • Cheng, S.1
  • 80
    • 84888854306 scopus 로고    scopus 로고
    • Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes
    • 80 Vasudevan, D., et al. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour. Technol. 151 (2014), 378–382.
    • (2014) Bioresour. Technol. , vol.151 , pp. 378-382
    • Vasudevan, D.1
  • 81
    • 84889605641 scopus 로고    scopus 로고
    • Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols
    • 81 Liu, K., et al. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour. Technol. 152 (2014), 337–346.
    • (2014) Bioresour. Technol. , vol.152 , pp. 337-346
    • Liu, K.1
  • 82
    • 84938740525 scopus 로고    scopus 로고
    • Dark fermentation effectiveness as a key step for waste biomass refineries: influence of organic matter macromolecular composition and bioavailability
    • 82 Manzini, E., et al. Dark fermentation effectiveness as a key step for waste biomass refineries: influence of organic matter macromolecular composition and bioavailability. Int. J. Energy Res. 39 (2015), 1519–1527.
    • (2015) Int. J. Energy Res. , vol.39 , pp. 1519-1527
    • Manzini, E.1
  • 83
    • 84883876329 scopus 로고    scopus 로고
    • Nanomaterials for bio-functionalized electrodes: recent trends
    • 83 Walcarius, A., et al. Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. 1 (2013), 4878–4908.
    • (2013) J. Mater. Chem. , vol.1 , pp. 4878-4908
    • Walcarius, A.1
  • 84
    • 84939457867 scopus 로고    scopus 로고
    • Modified carbon electrodes: a new approach for bioelectrochemical systems
    • 84 Fiset, E., Puig, S., Modified carbon electrodes: a new approach for bioelectrochemical systems. J. Bioremediation Biodegrad. 6 (2015), 1–2.
    • (2015) J. Bioremediation Biodegrad. , vol.6 , pp. 1-2
    • Fiset, E.1    Puig, S.2
  • 85
    • 71749118347 scopus 로고    scopus 로고
    • Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport
    • 85 Sleutels, T., et al. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int. J. Hydrogen Energy 34 (2009), 9655–9661.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 9655-9661
    • Sleutels, T.1
  • 86
    • 84902603337 scopus 로고    scopus 로고
    • Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems
    • 86 Guo, K., et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ. Sci. Technol. 48 (2014), 7151–7156.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 7151-7156
    • Guo, K.1
  • 87
    • 84880960750 scopus 로고    scopus 로고
    • Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance
    • 87 Cercado, B., et al. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosens. Bioelectron. 50 (2013), 373–381.
    • (2013) Biosens. Bioelectron. , vol.50 , pp. 373-381
    • Cercado, B.1
  • 88
    • 76849084828 scopus 로고    scopus 로고
    • Scaling up microbial fuel cells and other bioelectrochemical systems
    • 88 Logan, B.E., Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85 (2010), 1665–1671.
    • (2010) Appl. Microbiol. Biotechnol. , vol.85 , pp. 1665-1671
    • Logan, B.E.1
  • 89
    • 84918517242 scopus 로고    scopus 로고
    • Reactor concepts for bioelectrochemical syntheses and energy conversion
    • 89 Krieg, T., et al. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32 (2014), 645–655.
    • (2014) Trends Biotechnol. , vol.32 , pp. 645-655
    • Krieg, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.