-
2
-
-
33646462999
-
Application of solid-state fermentation to food industry – a review
-
2 Couto, S.R., Sanromán, M.A., Application of solid-state fermentation to food industry – a review. J. Food Eng. 76 (2006), 291–302.
-
(2006)
J. Food Eng.
, vol.76
, pp. 291-302
-
-
Couto, S.R.1
Sanromán, M.A.2
-
3
-
-
84953776518
-
Butanol production by fermentation: efficient bioreactors
-
S.W. Snyder Royal Society of Chemistry
-
3 Mariano, A.P., et al. Butanol production by fermentation: efficient bioreactors. Snyder, S.W., (eds.) In Commercializing Biobased Products: Opportunities, Challenges, Benefits, and Risks, 2015, Royal Society of Chemistry, 48–70.
-
(2015)
In Commercializing Biobased Products: Opportunities, Challenges, Benefits, and Risks
, pp. 48-70
-
-
Mariano, A.P.1
-
4
-
-
0003985221
-
Bioprocess Engineering Principles
-
Elsevier
-
4 Doran, P.M., Bioprocess Engineering Principles. 2013, Elsevier.
-
(2013)
-
-
Doran, P.M.1
-
5
-
-
84904861777
-
Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media
-
5 Peng, L., et al. Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media. Appl. Microbiol. Biotechnol. 98 (2014), 6847–6858.
-
(2014)
Appl. Microbiol. Biotechnol.
, vol.98
, pp. 6847-6858
-
-
Peng, L.1
-
6
-
-
84992391243
-
Bioprocess technology and product development
-
S. Biswas et al. (eds.) Asiatech Publishers
-
6 Binod, P., Pandey, A., Bioprocess technology and product development. Biswas, S., et al. (eds.) In Bioprocess and Bioproducts – Technology, trends and opportunities, 2009, Asiatech Publishers, 10–27.
-
(2009)
In Bioprocess and Bioproducts – Technology, trends and opportunities
, pp. 10-27
-
-
Binod, P.1
Pandey, A.2
-
7
-
-
34247893244
-
Fermentation pathways
-
Chapter 11 A.G. Moat et al. (eds.) 4th edn John Wiley & Sons
-
7 Moat, A.G., et al. Fermentation pathways. Chapter 11 Moat, A.G., et al. (eds.) In Microbrobial Physiology, 4th edn, 2002, John Wiley & Sons.
-
(2002)
In Microbrobial Physiology
-
-
Moat, A.G.1
-
8
-
-
78751627523
-
Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform
-
8 Agler, M.T., et al. Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol. 29 (2011), 70–78.
-
(2011)
Trends Biotechnol.
, vol.29
, pp. 70-78
-
-
Agler, M.T.1
-
9
-
-
77957147094
-
Microbial electrosynthesis – revisiting the electrical route for microbial production
-
9 Rabaey, K., Rozendal, R.a., Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
11
-
-
79957982062
-
Metabolic and practical considerations on microbial electrosynthesis
-
11 Rabaey, K., et al. Metabolic and practical considerations on microbial electrosynthesis. Curr. Opin. Biotechnol. 22 (2011), 371–377.
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 371-377
-
-
Rabaey, K.1
-
12
-
-
44449129578
-
Review: direct and indirect electrical stimulation of microbial metabolism
-
12 Thrash, J.C., Coates, J.D., Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 42 (2008), 3921–3931.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 3921-3931
-
-
Thrash, J.C.1
Coates, J.D.2
-
13
-
-
79953759834
-
Powering microbes with electricity: direct electron transfer from electrodes to microbes
-
13 Lovley, D.R., Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environmental Microbiology Reports 3 (2011), 27–35.
-
(2011)
Environmental Microbiology Reports
, vol.3
, pp. 27-35
-
-
Lovley, D.R.1
-
14
-
-
21344461500
-
Extracellular electron transfer via microbial nanowires
-
14 Reguera, G., et al. Extracellular electron transfer via microbial nanowires. Nature 435 (2005), 1098–1101.
-
(2005)
Nature
, vol.435
, pp. 1098-1101
-
-
Reguera, G.1
-
15
-
-
84923930357
-
Identifying target processes for microbial electrosynthesis by elementary mode analysis
-
15 Kracke, F., Krömer, J.O., Identifying target processes for microbial electrosynthesis by elementary mode analysis. BMC Bioinformatics 15 (2014), 410–423.
-
(2014)
BMC Bioinformatics
, vol.15
, pp. 410-423
-
-
Kracke, F.1
Krömer, J.O.2
-
16
-
-
84936993627
-
Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems
-
Published online June 11, 2015
-
16 Kracke, F., et al. Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems. Frontiers in Microbiology, 2015 Published online June 11, 2015 http://dx.doi.org/10.3389/fmicb.2015.00575.
-
(2015)
Frontiers in Microbiology
-
-
Kracke, F.1
-
17
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
17 Nevin, K., et al. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77 (2011), 2882–2886.
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 2882-2886
-
-
Nevin, K.1
-
18
-
-
0017343370
-
Energy conservation in chemotrophic anaerobic bacteria
-
18 Thauer, R.K., et al. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41 (1977), 100–180.
-
(1977)
Bacteriol. Rev.
, vol.41
, pp. 100-180
-
-
Thauer, R.K.1
-
19
-
-
0011936618
-
-
John Wiley & Sons
-
19 Flickinger, M.C., Drew, S.W., (eds.) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation, 1999, John Wiley & Sons.
-
(1999)
Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation
-
-
Flickinger, M.C.1
Drew, S.W.2
-
20
-
-
84906945974
-
A critical revisit of the key parameters used to describe microbial electrochemical systems
-
20 Sharma, M., et al. A critical revisit of the key parameters used to describe microbial electrochemical systems. Electrochim. Acta 140 (2014), 191–208.
-
(2014)
Electrochim. Acta
, vol.140
, pp. 191-208
-
-
Sharma, M.1
-
21
-
-
0036663710
-
+-dependent formate dehydrogenase
-
+-dependent formate dehydrogenase. Metab. Eng. 4 (2002), 217–229.
-
(2002)
Metab. Eng.
, vol.4
, pp. 217-229
-
-
Berríos-Rivera, S.J.1
-
22
-
-
84958212306
-
Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system
-
22 Lai, B., et al. Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnol. Biofuels, 9, 2016, 39.
-
(2016)
Biotechnol. Biofuels
, vol.9
, pp. 39
-
-
Lai, B.1
-
23
-
-
77954511031
-
Relevance of microbial coculture fermentations in biotechnology
-
23 Bader, J., et al. Relevance of microbial coculture fermentations in biotechnology. J. Appl. Microbiol. 109 (2010), 371–387.
-
(2010)
J. Appl. Microbiol.
, vol.109
, pp. 371-387
-
-
Bader, J.1
-
24
-
-
84871442035
-
Pervaporative recovery of ABE during continuous cultivation: enhancement of performance
-
24 Van Hecke, W., et al. Pervaporative recovery of ABE during continuous cultivation: enhancement of performance. Bioresour. Technol. 129 (2013), 421–429.
-
(2013)
Bioresour. Technol.
, vol.129
, pp. 421-429
-
-
Van Hecke, W.1
-
25
-
-
38849148408
-
Dark fermentative H2 production from xylose and lactose – effects of on-line pH control
-
25 Calli, B., et al. Dark fermentative H2 production from xylose and lactose – effects of on-line pH control. Int. J. Hydrogen Energy 33 (2008), 522–530.
-
(2008)
Int. J. Hydrogen Energy
, vol.33
, pp. 522-530
-
-
Calli, B.1
-
26
-
-
84871917478
-
Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase
-
26 Arioli, S., et al. Increasing the heme-dependent respiratory efficiency of Lactococcus lactis by inhibition of lactate dehydrogenase. Appl. Environ. Microbiol. 79 (2013), 376–380.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 376-380
-
-
Arioli, S.1
-
27
-
-
0035983313
-
Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds
-
27 Farid, M.a., et al. Alcohol production from starch by mixed cultures of Aspergillus awamori and immobilized Saccharomyces cerevisiae at different agitation speeds. J. Basic Microbiol. 42 (2002), 162–171.
-
(2002)
J. Basic Microbiol.
, vol.42
, pp. 162-171
-
-
Farid, M.A.1
-
28
-
-
79952147700
-
Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria
-
28 Flynn, J.M., et al. Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria. MBio, 1, 2010, e00190.
-
(2010)
MBio
, vol.1
, pp. e00190
-
-
Flynn, J.M.1
-
29
-
-
84954932034
-
Application of electro-energizing method to L-glutamic acid fermentation
-
29 Hongo, M., Iwahara, M., Application of electro-energizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43 (1979), 2075–2081.
-
(1979)
Agric. Biol. Chem.
, vol.43
, pp. 2075-2081
-
-
Hongo, M.1
Iwahara, M.2
-
30
-
-
0001462037
-
Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent
-
30 Kim, T.S., Kim, B.H., Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent. Biotechnol. Lett. 10 (1988), 123–128.
-
(1988)
Biotechnol. Lett.
, vol.10
, pp. 123-128
-
-
Kim, T.S.1
Kim, B.H.2
-
31
-
-
84930934882
-
Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440
-
31 Schmitz, S., et al. Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440. Front. Microbiol., 6, 2015, 284.
-
(2015)
Front. Microbiol.
, vol.6
, pp. 284
-
-
Schmitz, S.1
-
32
-
-
80053445630
-
In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals
-
32 Pandit, A.V., Mahadevan, R., In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb. Cell Fact., 10, 2011, 76.
-
(2011)
Microb. Cell Fact.
, vol.10
, pp. 76
-
-
Pandit, A.V.1
Mahadevan, R.2
-
33
-
-
84946121603
-
Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae
-
33 Mathew, A.S., et al. Enhanced ethanol production via electrostatically accelerated fermentation of glucose using Saccharomyces cerevisiae. Sci. Rep., 5, 2015, 15713.
-
(2015)
Sci. Rep.
, vol.5
, pp. 15713
-
-
Mathew, A.S.1
-
34
-
-
50649100520
-
Handbook of Industrial Biocatalysis
-
CRC Press
-
34 Hou, C.T., Handbook of Industrial Biocatalysis. 2005, CRC Press.
-
(2005)
-
-
Hou, C.T.1
-
35
-
-
0032904869
-
Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation
-
35 Park, D.H., Zeikus, J.G., Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181 (1999), 2403–2410.
-
(1999)
J. Bacteriol.
, vol.181
, pp. 2403-2410
-
-
Park, D.H.1
Zeikus, J.G.2
-
36
-
-
0036118547
-
Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae
-
36 Shin, H., et al. Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 58 (2002), 476–481.
-
(2002)
Appl. Microbiol. Biotechnol.
, vol.58
, pp. 476-481
-
-
Shin, H.1
-
37
-
-
84865389363
-
Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor
-
37 Choi, O., et al. Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor. Biotechnol. Bioeng. 109 (2012), 2494–2502.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 2494-2502
-
-
Choi, O.1
-
38
-
-
84864659735
-
Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies
-
38 Schievano, A., et al. Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. Environ. Sci. Technol. 46 (2012), 8502–8510.
-
(2012)
Environ. Sci. Technol.
, vol.46
, pp. 8502-8510
-
-
Schievano, A.1
-
39
-
-
84934893760
-
Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode
-
39 Batlle-Vilanova, P., et al. Deciphering the electron transfer mechanisms for biogas upgrading to biomethane within a mixed culture biocathode. RSC Adv. 5 (2015), 52243–52251.
-
(2015)
RSC Adv.
, vol.5
, pp. 52243-52251
-
-
Batlle-Vilanova, P.1
-
40
-
-
74549116839
-
Optimizing mixed-culture bioprocessing to convert wastes into bioenergy
-
L. Wall et al. (eds.) 2008 edn ASM Press
-
40 Angenent, L.T., Wrenn, B.A., Optimizing mixed-culture bioprocessing to convert wastes into bioenergy. Wall, L., et al. (eds.) In: Bioenergy, 2008 edn, 2008, ASM Press, 179–194.
-
(2008)
In: Bioenergy
, pp. 179-194
-
-
Angenent, L.T.1
Wrenn, B.A.2
-
41
-
-
84942333291
-
State of the art and future concept of food waste fermentation to bioenergy
-
41 Sen, B., et al. State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 53 (2016), 547–557.
-
(2016)
Renew. Sustain. Energy Rev.
, vol.53
, pp. 547-557
-
-
Sen, B.1
-
42
-
-
84930959088
-
Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion
-
42 Zhao, Z., et al. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion. Sci. Rep., 5, 2015, 11094.
-
(2015)
Sci. Rep.
, vol.5
, pp. 11094
-
-
Zhao, Z.1
-
43
-
-
84874393037
-
Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery
-
43 Babu, M.L., et al. Bio-electrolytic conversion of acidogenic effluents to biohydrogen: an integration strategy for higher substrate conversion and product recovery. Bioresour. Technol. 133 (2013), 322–331.
-
(2013)
Bioresour. Technol.
, vol.133
, pp. 322-331
-
-
Babu, M.L.1
-
44
-
-
84936997056
-
Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell
-
44 Modestra, J.A., et al. Electro-fermentation of real-field acidogenic spent wash effluents for additional biohydrogen production with simultaneous treatment in a microbial electrolysis cell. Sep. Purif. Technol. 150 (2015), 308–315.
-
(2015)
Sep. Purif. Technol.
, vol.150
, pp. 308-315
-
-
Modestra, J.A.1
-
45
-
-
0033014983
-
Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production
-
45 Park, D.H., et al. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65 (1999), 2912–2917.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 2912-2917
-
-
Park, D.H.1
-
46
-
-
84992366303
-
-
Hafez, H.M. Greenfield Ethanol Inc. Method and system for electro-assisted hydrogen production from organic material. US A1.
-
46 Hafez, H.M. Greenfield Ethanol Inc. Method and system for electro-assisted hydrogen production from organic material. US 20130217089 A1.
-
(2013)
-
-
-
47
-
-
67649577235
-
High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells
-
47 Selembo, P.A., et al. High hydrogen production from glycerol or glucose by electrohydrogenesis using microbial electrolysis cells. Int. J. Hydrogen Energy 34 (2009), 5373–5381.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 5373-5381
-
-
Selembo, P.A.1
-
48
-
-
84879816867
-
Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system
-
48 Dennis, P.G., et al. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system. Appl. Environ. Microbiol. 79 (2013), 4008–4014.
-
(2013)
Appl. Environ. Microbiol.
, vol.79
, pp. 4008-4014
-
-
Dennis, P.G.1
-
49
-
-
84885152223
-
Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol
-
49 Zhou, M., et al. Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol. Environ. Sci. Technol. 47 (2013), 11199–11205.
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 11199-11205
-
-
Zhou, M.1
-
50
-
-
84928091817
-
Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system
-
50 Zhou, M., et al. Development of bioelectrocatalytic activity stimulates mixed-culture reduction of glycerol in a bioelectrochemical system. Microb. Biotechnol. 8 (2015), 483–489.
-
(2015)
Microb. Biotechnol.
, vol.8
, pp. 483-489
-
-
Zhou, M.1
-
51
-
-
84940706028
-
Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations
-
51 Xafenias, N., et al. Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations. Process Biochem. 50 (2015), 1499–1508.
-
(2015)
Process Biochem.
, vol.50
, pp. 1499-1508
-
-
Xafenias, N.1
-
52
-
-
75349113313
-
Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures
-
52 Steinbusch, K.J.J., et al. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 44 (2010), 513–517.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 513-517
-
-
Steinbusch, K.J.J.1
-
53
-
-
84879759623
-
Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures
-
53 Van Eerten-Jansen, M.C.A.A., et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustain. Chem. Eng. 1 (2013), 513–518.
-
(2013)
ACS Sustain. Chem. Eng.
, vol.1
, pp. 513-518
-
-
Van Eerten-Jansen, M.C.A.A.1
-
54
-
-
84858746639
-
Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes
-
54 Van Hecke, W., et al. Integrated bioprocess for long-term continuous cultivation of Clostridium acetobutylicum coupled to pervaporation with PDMS composite membranes. Bioresour. Technol. 111 (2012), 368–377.
-
(2012)
Bioresour. Technol.
, vol.111
, pp. 368-377
-
-
Van Hecke, W.1
-
55
-
-
44049105889
-
Succinic acid: a new platform chemical for biobased polymers from renewable resources
-
55 Bechthold, I., et al. Succinic acid: a new platform chemical for biobased polymers from renewable resources. Chem. Eng. Technol. 31 (2008), 647–654.
-
(2008)
Chem. Eng. Technol.
, vol.31
, pp. 647-654
-
-
Bechthold, I.1
-
56
-
-
84902596879
-
Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams
-
56 Andersen, S.J., et al. Electrolytic membrane extraction enables production of fine chemicals from biorefinery sidestreams. Environ. Sci. Technol. 48 (2014), 7135–7142.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 7135-7142
-
-
Andersen, S.J.1
-
57
-
-
84969195348
-
2 through microbial electrosynthesis
-
2 through microbial electrosynthesis. Environ. Sci. Technol. Lett. 2 (2015), 325–328.
-
(2015)
Environ. Sci. Technol. Lett.
, vol.2
, pp. 325-328
-
-
Gildemyn, S.1
-
58
-
-
84926645424
-
In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis
-
58 Xu, J., et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chem. Commun. 51 (2015), 6847–6850.
-
(2015)
Chem. Commun.
, vol.51
, pp. 6847-6850
-
-
Xu, J.1
-
59
-
-
0022462103
-
Novel method of lactic acid production by electrodialysis fermentation
-
59 Hongo, M., et al. Novel method of lactic acid production by electrodialysis fermentation. Appl. Envir. Microbiol. 52 (1986), 314–319.
-
(1986)
Appl. Envir. Microbiol.
, vol.52
, pp. 314-319
-
-
Hongo, M.1
-
60
-
-
84859481789
-
Inhibition by fatty acids during fermentation of pre-treated waste activated sludge
-
60 Pratt, S., et al. Inhibition by fatty acids during fermentation of pre-treated waste activated sludge. J. Biotechnol. 159 (2012), 38–43.
-
(2012)
J. Biotechnol.
, vol.159
, pp. 38-43
-
-
Pratt, S.1
-
61
-
-
84864214496
-
Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates
-
61 Agler, M.T., et al. Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ. Sci., 5, 2012, 8189.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 8189
-
-
Agler, M.T.1
-
62
-
-
84877085204
-
Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter
-
62 Grootscholten, T.I.M., et al. Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter. Bioresour. Technol. 136 (2013), 735–738.
-
(2013)
Bioresour. Technol.
, vol.136
, pp. 735-738
-
-
Grootscholten, T.I.M.1
-
63
-
-
84888127530
-
In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410
-
63 Choi, K., et al. In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410. Appl. Biochem. Biotechnol. 171 (2013), 1094–1107.
-
(2013)
Appl. Biochem. Biotechnol.
, vol.171
, pp. 1094-1107
-
-
Choi, K.1
-
64
-
-
84962325618
-
Electro-stimulated microbial factory for value added product synthesis
-
Published online March 19. 2016
-
64 Roy, S., et al. Electro-stimulated microbial factory for value added product synthesis. Bioresour. Technol., 2016 Published online March 19. 2016 http://dx.doi.org/10.1016/j.biortech.2016.03.052.
-
(2016)
Bioresour. Technol.
-
-
Roy, S.1
-
65
-
-
82755189684
-
Microbial production of building block chemicals and polymers
-
65 Lee, J.W., et al. Microbial production of building block chemicals and polymers. Curr. Opin. Biotechnol. 22 (2011), 758–767.
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 758-767
-
-
Lee, J.W.1
-
66
-
-
84866611337
-
Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers
-
66 Sindhu, R., et al. Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Arch. Biol. Technol. 54 (2011), 783–794.
-
(2011)
Brazilian Arch. Biol. Technol.
, vol.54
, pp. 783-794
-
-
Sindhu, R.1
-
67
-
-
84892476595
-
Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy
-
67 Cok, B., et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioprod. Biorefining 8 (2014), 16–29.
-
(2014)
Biofuels, Bioprod. Biorefining
, vol.8
, pp. 16-29
-
-
Cok, B.1
-
68
-
-
4344656907
-
Production of bioenergy and biochemicals from industrial and agricultural wastewater
-
68 Angenent, L.T., et al. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22 (2004), 477–485.
-
(2004)
Trends Biotechnol.
, vol.22
, pp. 477-485
-
-
Angenent, L.T.1
-
69
-
-
0032919470
-
2 supply and glucose concentration
-
2 supply and glucose concentration. Enzyme Microb. Technol. 24 (1999), 549–554.
-
(1999)
Enzyme Microb. Technol.
, vol.24
, pp. 549-554
-
-
Lee, P.C.1
-
70
-
-
33751279921
-
Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures
-
70 Geertman, J-M.A., et al. Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 6 (2006), 1193–1203.
-
(2006)
FEMS Yeast Res.
, vol.6
, pp. 1193-1203
-
-
Geertman, J.-M.A.1
-
71
-
-
42949095941
-
Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593
-
71 Liu, Y.-P., et al. Strategies of pH control and glucose-fed batch fermentation for production of succinic acid by Actinobacillus succinogenes CGMCC1593. J. Chem. Technol. Biotechnol. 83 (2008), 722–729.
-
(2008)
J. Chem. Technol. Biotechnol.
, vol.83
, pp. 722-729
-
-
Liu, Y.-P.1
-
72
-
-
84992417649
-
Electrofermentation of tea
-
72 Lominadze, G.S., Electrofermentation of tea. Sovetskie Subtropiki 8 (1940), 27–28.
-
(1940)
Sovetskie Subtropiki
, vol.8
, pp. 27-28
-
-
Lominadze, G.S.1
-
73
-
-
0025043391
-
Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent
-
73 Kim, T.S., et al. Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent. Biotechnol. Lett. 12 (1990), 757–760.
-
(1990)
Biotechnol. Lett.
, vol.12
, pp. 757-760
-
-
Kim, T.S.1
-
74
-
-
0023058682
-
Electrical stimulation of hybridoma cells producing monoclonal antibody to cAMP
-
74 Suzuki, M., et al. Electrical stimulation of hybridoma cells producing monoclonal antibody to cAMP. Biochim. Biophys. Acta - Mol. Cell Res. 889 (1986), 149–155.
-
(1986)
Biochim. Biophys. Acta - Mol. Cell Res.
, vol.889
, pp. 149-155
-
-
Suzuki, M.1
-
75
-
-
0024997534
-
Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system
-
75 Emde, R., Schink, B., Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl. Environ. Microbiol. 56 (1990), 2771–2776.
-
(1990)
Appl. Environ. Microbiol.
, vol.56
, pp. 2771-2776
-
-
Emde, R.1
Schink, B.2
-
76
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
76 Gregory, K.B., et al. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6 (2004), 596–604.
-
(2004)
Environ. Microbiol.
, vol.6
, pp. 596-604
-
-
Gregory, K.B.1
-
77
-
-
19944407181
-
Electrical stimulation of Saccharomyces cervisiae cultures
-
77 Araújo, O.Q.F., et al. Electrical stimulation of Saccharomyces cervisiae cultures. Bras. J. Microbiol. 35 (2004), 97–103.
-
(2004)
Bras. J. Microbiol.
, vol.35
, pp. 97-103
-
-
Araújo, O.Q.F.1
-
78
-
-
47049103719
-
Towards practical implementation of bioelectrochemical wastewater treatment
-
78 Rozendal, R.A., et al. Towards practical implementation of bioelectrochemical wastewater treatment. Trends in Biotechnology 26 (2008), 450–459.
-
(2008)
Trends in Biotechnology
, vol.26
, pp. 450-459
-
-
Rozendal, R.A.1
-
79
-
-
66249100237
-
Direct biological conversion of electrical current into methane by electromethanogenesis
-
79 Cheng, S., et al. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43 (2009), 3953–3958.
-
(2009)
Environ. Sci. Technol.
, vol.43
, pp. 3953-3958
-
-
Cheng, S.1
-
80
-
-
84888854306
-
Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes
-
80 Vasudevan, D., et al. Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour. Technol. 151 (2014), 378–382.
-
(2014)
Bioresour. Technol.
, vol.151
, pp. 378-382
-
-
Vasudevan, D.1
-
81
-
-
84889605641
-
Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols
-
81 Liu, K., et al. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols. Bioresour. Technol. 152 (2014), 337–346.
-
(2014)
Bioresour. Technol.
, vol.152
, pp. 337-346
-
-
Liu, K.1
-
82
-
-
84938740525
-
Dark fermentation effectiveness as a key step for waste biomass refineries: influence of organic matter macromolecular composition and bioavailability
-
82 Manzini, E., et al. Dark fermentation effectiveness as a key step for waste biomass refineries: influence of organic matter macromolecular composition and bioavailability. Int. J. Energy Res. 39 (2015), 1519–1527.
-
(2015)
Int. J. Energy Res.
, vol.39
, pp. 1519-1527
-
-
Manzini, E.1
-
83
-
-
84883876329
-
Nanomaterials for bio-functionalized electrodes: recent trends
-
83 Walcarius, A., et al. Nanomaterials for bio-functionalized electrodes: recent trends. J. Mater. Chem. 1 (2013), 4878–4908.
-
(2013)
J. Mater. Chem.
, vol.1
, pp. 4878-4908
-
-
Walcarius, A.1
-
84
-
-
84939457867
-
Modified carbon electrodes: a new approach for bioelectrochemical systems
-
84 Fiset, E., Puig, S., Modified carbon electrodes: a new approach for bioelectrochemical systems. J. Bioremediation Biodegrad. 6 (2015), 1–2.
-
(2015)
J. Bioremediation Biodegrad.
, vol.6
, pp. 1-2
-
-
Fiset, E.1
Puig, S.2
-
85
-
-
71749118347
-
Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport
-
85 Sleutels, T., et al. Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport. Int. J. Hydrogen Energy 34 (2009), 9655–9661.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 9655-9661
-
-
Sleutels, T.1
-
86
-
-
84902603337
-
Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems
-
86 Guo, K., et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems. Environ. Sci. Technol. 48 (2014), 7151–7156.
-
(2014)
Environ. Sci. Technol.
, vol.48
, pp. 7151-7156
-
-
Guo, K.1
-
87
-
-
84880960750
-
Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance
-
87 Cercado, B., et al. Biotic and abiotic characterization of bioanodes formed on oxidized carbon electrodes as a basis to predict their performance. Biosens. Bioelectron. 50 (2013), 373–381.
-
(2013)
Biosens. Bioelectron.
, vol.50
, pp. 373-381
-
-
Cercado, B.1
-
88
-
-
76849084828
-
Scaling up microbial fuel cells and other bioelectrochemical systems
-
88 Logan, B.E., Scaling up microbial fuel cells and other bioelectrochemical systems. Appl. Microbiol. Biotechnol. 85 (2010), 1665–1671.
-
(2010)
Appl. Microbiol. Biotechnol.
, vol.85
, pp. 1665-1671
-
-
Logan, B.E.1
-
89
-
-
84918517242
-
Reactor concepts for bioelectrochemical syntheses and energy conversion
-
89 Krieg, T., et al. Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32 (2014), 645–655.
-
(2014)
Trends Biotechnol.
, vol.32
, pp. 645-655
-
-
Krieg, T.1
|