메뉴 건너뛰기




Volumn 5, Issue , 2015, Pages

Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion

Author keywords

[No Author keywords available]

Indexed keywords

METHANE; SEWAGE;

EID: 84930959088     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep11094     Document Type: Article
Times cited : (186)

References (59)
  • 1
    • 81855166621 scopus 로고    scopus 로고
    • Anaerobic digestion in global bio-energy production: Potential and research challenges
    • Appels, Lise et al. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew Sustain Energ Rev 15, 4295 (2011).
    • (2011) Renew Sustain Energ Rev , vol.15 , pp. 4295
    • Appels, L.1
  • 2
    • 84896699061 scopus 로고    scopus 로고
    • The role of anaerobic digestion in the emerging energy economy
    • Batstone, D. J. & Virdis, B. The role of anaerobic digestion in the emerging energy economy. Curr Opin Biotechnol 27, 142 (2014).
    • (2014) Curr Opin Biotechnol , vol.27 , pp. 142
    • Batstone, D.J.1    Virdis, B.2
  • 4
    • 40749156248 scopus 로고    scopus 로고
    • Inhibition of anaerobic digestion process: A review
    • Chen, Ye, Cheng, Jay J. & Creamer, Kurt S. Inhibition of anaerobic digestion process: A review. Bioresource Technol 99, 4044 (2008).
    • (2008) Bioresource Technol , vol.99 , pp. 4044
    • Chen, Y.1    Cheng, J.J.2    Creamer, K.S.3
  • 5
    • 84868629743 scopus 로고    scopus 로고
    • Genomic Insights into Syntrophy: The Paradigm for Anaerobic Metabolic Cooperation
    • Sieber, Jessica R., McInerney, Michael J. & Gunsalus, Robert P. Genomic Insights into Syntrophy: The Paradigm for Anaerobic Metabolic Cooperation. Annu Rev Microbiol 66, 429 (2012).
    • (2012) Annu Rev Microbiol , vol.66 , pp. 429
    • Sieber, J.R.1    McInerney, M.J.2    Gunsalus, R.P.3
  • 6
    • 67651202726 scopus 로고    scopus 로고
    • Electron transfer in syntrophic communities of anaerobic bacteria and archaea
    • Stams, Alfons J. M. & Plugge, Caroline M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7, 568 (2009).
    • (2009) Nat Rev Microbiol , vol.7 , pp. 568
    • Stams, A.J.M.1    Plugge, C.M.2
  • 7
    • 84890454863 scopus 로고    scopus 로고
    • A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane
    • Rotaru, Amelia-Elena et al. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energ Environ Sci 7, 408 (2013).
    • (2013) Energ Environ Sci , vol.7 , pp. 408
    • Rotaru, A.-E.1
  • 8
    • 54449087315 scopus 로고    scopus 로고
    • Syntrophic Growth on Formate: A New Microbial Niche in Anoxic Environments
    • Dolfing, J. et al. Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments. Appl Environ Microb 74, 6126 (2008).
    • (2008) Appl Environ Microb , vol.74 , pp. 6126
    • Dolfing, J.1
  • 9
    • 33644947596 scopus 로고    scopus 로고
    • Exocellular electron transfer in anaerobic microbial communities
    • Stams, Alfons J. M. et al. Exocellular electron transfer in anaerobic microbial communities. Environ Microbiol 8, 371 (2006).
    • (2006) Environ Microbiol , vol.8 , pp. 371
    • Stams, A.J.M.1
  • 10
    • 78649707496 scopus 로고    scopus 로고
    • Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria
    • Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413 (2010).
    • (2010) Science , vol.330 , pp. 1413
    • Summers, Z.M.1
  • 11
    • 0027523571 scopus 로고
    • Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals
    • Lovley, D. R. et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159, 336 (1993).
    • (1993) Arch Microbiol , vol.159 , pp. 336
    • Lovley, D.R.1
  • 12
    • 0028050079 scopus 로고
    • Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism
    • Caccavo, F. Jr et al. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microb 60, 3752 (1994).
    • (1994) Appl Environ Microb , vol.60 , pp. 3752
    • Caccavo, F.1
  • 13
    • 80052564960 scopus 로고    scopus 로고
    • Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates
    • Morita, M. et al. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. MBio 2, e111 (2011).
    • (2011) MBio , vol.2 , pp. e111
    • Morita, M.1
  • 14
    • 34047135116 scopus 로고    scopus 로고
    • Methanosaeta, the forgotten methanogen?
    • Smith, K. S. & Ingram-Smith, C. Methanosaeta, the forgotten methanogen? Trends Microbiol 15, 150 (2007).
    • (2007) Trends Microbiol , vol.15 , pp. 150
    • Smith, K.S.1    Ingram-Smith, C.2
  • 15
    • 0034042288 scopus 로고    scopus 로고
    • Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments
    • Snoeyenbos-West, O. L., Nevin, K. P., Anderson, R. T. & Lovley, D. R. Enrichment of Geobacter Species in Response to Stimulation of Fe(III) Reduction in Sandy Aquifer Sediments. Microbial Ecol 39, 153 (2000).
    • (2000) Microbial Ecol , vol.39 , pp. 153
    • Snoeyenbos-West, O.L.1    Nevin, K.P.2    Anderson, R.T.3    Lovley, D.R.4
  • 16
    • 77954635013 scopus 로고    scopus 로고
    • Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor
    • Zhang, Tian et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol 12, 1011 (2010).
    • (2010) Environ Microbiol , vol.12 , pp. 1011
    • Zhang, T.1
  • 17
    • 81855206235 scopus 로고    scopus 로고
    • Geobacter: The microbe electric's physiology, ecology, and practical applications
    • Lovley, D. R. et al. Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 59, 1 (2011).
    • (2011) Adv Microb Physiol , vol.59 , pp. 1
    • Lovley, D.R.1
  • 18
    • 84858078430 scopus 로고    scopus 로고
    • Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge
    • Lu, L., Xing, D. & Ren, N. Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 46, 2425 (2012).
    • (2012) Water Res , vol.46 , pp. 2425
    • Lu, L.1    Xing, D.2    Ren, N.3
  • 19
    • 84871408348 scopus 로고    scopus 로고
    • Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge
    • Sasaki, D. et al. Operation of a cylindrical bioelectrochemical reactor containing carbon fiber fabric for efficient methane fermentation from thickened sewage sludge. Bioresource Technol 129, 366 (2013).
    • (2013) Bioresource Technol , vol.129 , pp. 366
    • Sasaki, D.1
  • 20
    • 84898802509 scopus 로고    scopus 로고
    • Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities
    • Yu, Hongguang et al. Start-Up of an Anaerobic Dynamic Membrane Digester for Waste Activated Sludge Digestion: Temporal Variations in Microbial Communities. PLoS ONE 9, e93710 (2014).
    • (2014) PLoS ONE , vol.9
    • Yu, H.1
  • 21
    • 79959886819 scopus 로고    scopus 로고
    • Bioenergetic challenges of microbial iron metabolisms
    • Bird, L. J., Bonnefoy, V. & Newman, D. K. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol 19, 330 (2011).
    • (2011) Trends Microbiol , vol.19 , pp. 330
    • Bird, L.J.1    Bonnefoy, V.2    Newman, D.K.3
  • 22
    • 0034100017 scopus 로고    scopus 로고
    • Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens
    • Nevin, K. P. & Lovley, D. R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microb 66, 2248 (2000).
    • (2000) Appl Environ Microb , vol.66 , pp. 2248
    • Nevin, K.P.1    Lovley, D.R.2
  • 23
    • 33748853295 scopus 로고    scopus 로고
    • Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction
    • Weber, Karrie A., Achenbach, Laurie A. & Coates, John D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4, 752 (2006).
    • (2006) Nat Rev Microbiol , vol.4 , pp. 752
    • Weber, K.A.1    Achenbach, L.A.2    Coates, J.D.3
  • 24
    • 0037337606 scopus 로고    scopus 로고
    • Electricity production by Geobacter sulfurreducens attached to electrodes
    • Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microb 69, 1548 (2003).
    • (2003) Appl Environ Microb , vol.69 , pp. 1548
    • Bond, D.R.1    Lovley, D.R.2
  • 25
    • 82555168002 scopus 로고    scopus 로고
    • Live wires: Direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
    • Lovley, Derek R. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination. Energ Environ Sci 4, 4896 (2011).
    • (2011) Energ Environ Sci , vol.4 , pp. 4896
    • Lovley, D.R.1
  • 26
    • 64749084426 scopus 로고    scopus 로고
    • Exoelectrogenic bacteria that power microbial fuel cells
    • Logan, Bruce E. Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7, 375 (2009).
    • (2009) Nat Rev Microbiol , vol.7 , pp. 375
    • Logan, B.E.1
  • 27
    • 33751004376 scopus 로고    scopus 로고
    • Electricity-producing bacterial communities in microbial fuel cells
    • Logan, Bruce E. & Regan, John M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14, 512 (2006).
    • (2006) Trends Microbiol , vol.14 , pp. 512
    • Logan, B.E.1    Regan, J.M.2
  • 28
    • 84880430658 scopus 로고    scopus 로고
    • Electricity generation from food wastes and microbial community structure in microbial fuel cells
    • Jia, Jianna et al. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technol 144, 94 (2013).
    • (2013) Bioresource Technol , vol.144 , pp. 94
    • Jia, J.1
  • 29
    • 57149103124 scopus 로고    scopus 로고
    • Microbial biofilm voltammetry: Direct electrochemical characterization of catalytic electrode-attached biofilms
    • Marsili, E. et al. Microbial biofilm voltammetry: direct electrochemical characterization of catalytic electrode-attached biofilms. Appl Environ Microb 74, 7329 (2008).
    • (2008) Appl Environ Microb , vol.74 , pp. 7329
    • Marsili, E.1
  • 30
    • 67650032105 scopus 로고    scopus 로고
    • Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer
    • Richter, Hanno et al. Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energ Environ Sci 2, 506 (2009).
    • (2009) Energ Environ Sci , vol.2 , pp. 506
    • Richter, H.1
  • 31
    • 66249100237 scopus 로고    scopus 로고
    • Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis
    • Cheng, Shaoan, Xing, Defeng, Call, Douglas F. & Logan, Bruce E. Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis. Environ Sci Technol 43, 3953 (2009).
    • (2009) Environ Sci Technol , vol.43 , pp. 3953
    • Cheng, S.1    Xing, D.2    Call, D.F.3    Logan, B.E.4
  • 32
    • 74649087256 scopus 로고    scopus 로고
    • Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture
    • Villano, Marianna et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresource Technol 101, 3085 (2010).
    • (2010) Bioresource Technol , vol.101 , pp. 3085
    • Villano, M.1
  • 33
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane
    • Call, Douglas & Logan, Bruce E. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environ Sci Technol 42, 3401 (2008).
    • (2008) Environ Sci Technol , vol.42 , pp. 3401
    • Call, D.1    Logan, B.E.2
  • 34
    • 57449102625 scopus 로고    scopus 로고
    • Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter
    • Logan, Bruce E. et al. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter. Environ Sci Technol 42, 8630 (2008).
    • (2008) Environ Sci Technol , vol.42 , pp. 8630
    • Logan, B.E.1
  • 35
    • 84904890558 scopus 로고    scopus 로고
    • Plugging in or going wireless: Strategies for interspecies electron transfer
    • Shrestha, P. M. & Rotaru, A. E. Plugging in or going wireless: strategies for interspecies electron transfer. Front Microbiol 5, 237 (2014).
    • (2014) Front Microbiol , vol.5 , pp. 237
    • Shrestha, P.M.1    Rotaru, A.E.2
  • 36
    • 84870050017 scopus 로고    scopus 로고
    • Promoting direct interspecies electron transfer with activated carbon
    • Liu, Fanghua et al. Promoting direct interspecies electron transfer with activated carbon. Energ Environ Sci 5, 8982 (2012).
    • (2012) Energ Environ Sci , vol.5 , pp. 8982
    • Liu, F.1
  • 37
    • 84911419611 scopus 로고    scopus 로고
    • Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes
    • Luo, Chenghao, Lü, Fan, Shao, Liming & He, Pinjing Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Res 68, 710 (2015).
    • (2015) Water Res , vol.68 , pp. 710
    • Luo, C.1    Lü, F.2    Shao, L.3    He, P.4
  • 38
    • 84907957062 scopus 로고    scopus 로고
    • Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures
    • Chen, Shanshan et al. Carbon cloth stimulates direct interspecies electron transfer in syntrophic co-cultures. Bioresource Technol 173, 82 (2014).
    • (2014) Bioresource Technol , vol.173 , pp. 82
    • Chen, S.1
  • 39
    • 84916602365 scopus 로고    scopus 로고
    • Response of anaerobic granular sludge to single-wall carbon nanotube exposure
    • Li, Ling-Li et al. Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res 70, 1 (2015).
    • (2015) Water Res , vol.70 , pp. 1
    • Li, L.-L.1
  • 40
    • 84870050017 scopus 로고    scopus 로고
    • Promoting direct interspecies electron transfer with activated carbon
    • Liu, Fanghua et al. Promoting direct interspecies electron transfer with activated carbon. Energ Environ Sci 5, 8982 (2012).
    • (2012) Energ Environ Sci , vol.5 , pp. 8982
    • Liu, F.1
  • 41
    • 84891443317 scopus 로고    scopus 로고
    • Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells
    • Kouzuma, Atsushi et al. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells. PLoS ONE 8, e77443 (2013).
    • (2013) PLoS ONE , vol.8
    • Kouzuma, A.1
  • 42
    • 84862339996 scopus 로고    scopus 로고
    • Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity
    • Gregoire, K. P. & Becker, J. G. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity. Bioresource Technol 119, 208 (2012).
    • (2012) Bioresource Technol , vol.119 , pp. 208
    • Gregoire, K.P.1    Becker, J.G.2
  • 43
    • 77955926840 scopus 로고    scopus 로고
    • Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters
    • Kiely, Patrick D. et al. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters. Bioresource Technol 102, 388 (2011).
    • (2011) Bioresource Technol , vol.102 , pp. 388
    • Kiely, P.D.1
  • 44
    • 84875532295 scopus 로고    scopus 로고
    • Salt removal using multiple microbial desalination cells under continuous flow conditions
    • Qu, Youpeng et al. Salt removal using multiple microbial desalination cells under continuous flow conditions. Desalination 317, 17 (2013).
    • (2013) Desalination , vol.317 , pp. 17
    • Qu, Y.1
  • 45
    • 33947400655 scopus 로고    scopus 로고
    • Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation
    • Reguera, G., Pollina, R. B., Nicoll, J. S. & Lovley, D. R. Possible nonconductive role of Geobacter sulfurreducens pilus nanowires in biofilm formation. J Bacteriol 189, 2125 (2007).
    • (2007) J Bacteriol , vol.189 , pp. 2125
    • Reguera, G.1    Pollina, R.B.2    Nicoll, J.S.3    Lovley, D.R.4
  • 46
    • 21344461500 scopus 로고    scopus 로고
    • Extracellular electron transfer via microbial nanowires
    • Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098 (2005).
    • (2005) Nature , vol.435 , pp. 1098
    • Reguera, G.1
  • 47
    • 84856743101 scopus 로고    scopus 로고
    • Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells
    • Malvankar, Nikhil S., Tuominen, Mark T. & Lovley, Derek R. Biofilm conductivity is a decisive variable for high-current-density Geobacter sulfurreducens microbial fuel cells. Energ Environ Sci 5, 5790 (2012).
    • (2012) Energ Environ Sci , vol.5 , pp. 5790
    • Malvankar, N.S.1    Tuominen, M.T.2    Lovley, D.R.3
  • 49
    • 84897609033 scopus 로고    scopus 로고
    • Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
    • De Vrieze, J. et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion. Water Res 54, 211 (2014).
    • (2014) Water Res , vol.54 , pp. 211
    • De Vrieze, J.1
  • 50
    • 78650290811 scopus 로고    scopus 로고
    • Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology
    • Zhang, Peng et al. Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation: Kinetics and Microbiology. Environ Sci Technol 44, 9343 (2010).
    • (2010) Environ Sci Technol , vol.44 , pp. 9343
    • Zhang, P.1
  • 51
    • 79952573161 scopus 로고    scopus 로고
    • Chemical inhibitors of methanogenesis and putative applications
    • Liu, He, Wang, Jin, Wang, Aijie & Chen, Jian. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biot 89, 1333 (2011).
    • (2011) Appl Microbiol Biot , vol.89 , pp. 1333
    • Liu, H.1    Wang, J.2    Wang, A.3    Chen, J.4
  • 52
    • 84878930535 scopus 로고    scopus 로고
    • Self-adaption of methane-producing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction
    • Hao, Liping et al. Self-adaption of methane-producing communities to pH disturbance at different acetate concentrations by shifting pathways and population interaction. Bioresource Technol 140, 319 (2013).
    • (2013) Bioresource Technol , vol.140 , pp. 319
    • Hao, L.1
  • 53
    • 78651391674 scopus 로고    scopus 로고
    • Predominant Contribution of Syntrophic Acetate Oxidation to Thermophilic Methane Formation at High Acetate Concentrations
    • Hao, Li-Ping et al. Predominant Contribution of Syntrophic Acetate Oxidation to Thermophilic Methane Formation at High Acetate Concentrations. Environ Sci Technol 45, 508 (2011).
    • (2011) Environ Sci Technol , vol.45 , pp. 508
    • Hao, L.-P.1
  • 54
    • 84872324436 scopus 로고    scopus 로고
    • Methyl Fluoride Affects Methanogenesis Rather than Community Composition of Methanogenic Archaea in a Rice Field Soil
    • Daebeler, Anne, Gansen, Martina & Frenzel, Peter. Methyl Fluoride Affects Methanogenesis Rather than Community Composition of Methanogenic Archaea in a Rice Field Soil. PLoS ONE 8, e53656 (2013).
    • (2013) PLoS ONE , vol.8
    • Daebeler, A.1    Gansen, M.2    Frenzel, P.3
  • 56
    • 14844285391 scopus 로고    scopus 로고
    • Carbohydrate analysis by a phenol-sulfuric acid method in microplate format
    • Masuko, Tatsuya et al. Carbohydrate analysis by a phenol-sulfuric acid method in microplate format. Anal Biochem 339, 69 (2005).
    • (2005) Anal Biochem , vol.339 , pp. 69
    • Masuko, T.1
  • 57
    • 34249658993 scopus 로고    scopus 로고
    • Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification
    • Jiang, Su, Chen, Yinguang & Zhou, Qi. Effect of sodium dodecyl sulfate on waste activated sludge hydrolysis and acidification. Chem Eng J 132, 311 (2007).
    • (2007) Chem Eng J , vol.132 , pp. 311
    • Jiang, S.1    Chen, Y.2    Zhou, Q.3
  • 58
    • 77950339839 scopus 로고    scopus 로고
    • A rapid selection strategy for an anodophilic consortium for microbial fuel cells
    • Wang, Aijie et al. A rapid selection strategy for an anodophilic consortium for microbial fuel cells. Bioresource Technol 101, 5733 (2010).
    • (2010) Bioresource Technol , vol.101 , pp. 5733
    • Wang, A.1
  • 59
    • 0032080492 scopus 로고    scopus 로고
    • Anaerobic Benzene Oxidation in the Fe(III) Reduction Zone of Petroleum-Contaminated Aquifers
    • Anderson, Robert T., Rooney-Varga, Juliette N., Gaw, Catherine V. & Lovley, Derek R. Anaerobic Benzene Oxidation in the Fe(III) Reduction Zone of Petroleum-Contaminated Aquifers. Environ Sci Technol 32, 1222 (1998).
    • (1998) Environ Sci Technol , vol.32 , pp. 1222
    • Anderson, R.T.1    Rooney-Varga, J.N.2    Gaw, C.V.3    Lovley, D.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.