-
1
-
-
84858005816
-
Examining the feasibility of bulk commodity production in Escherichia coli
-
Vickers CE, Klein-Marcuschamer D, Krömer JO: Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 2012, 34(4):585-596.
-
(2012)
Biotechnol Lett
, vol.34
, Issue.4
, pp. 585-596
-
-
Vickers, C.E.1
Klein-Marcuschamer, D.2
Krömer, J.O.3
-
3
-
-
78751476638
-
Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli
-
Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH: Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 2011, 108(3):500-510.
-
(2011)
Biotechnol Bioeng
, vol.108
, Issue.3
, pp. 500-510
-
-
Fasan, R.1
Crook, N.C.2
Peters, M.W.3
Meinhold, P.4
Buelter, T.5
Landwehr, M.6
Cirino, P.C.7
Arnold, F.H.8
-
4
-
-
79952106791
-
From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
-
Becker J, Zelder O, Häfner S, Schröder H, Wittmann C: From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng 2011, 13(2):159-168.
-
(2011)
Metab Eng
, vol.13
, Issue.2
, pp. 159-168
-
-
Becker, J.1
Zelder, O.2
Häfner, S.3
Schröder, H.4
Wittmann, C.5
-
5
-
-
79953759834
-
Powering microbes with electricity: direct electron transfer from electrodes to microbes
-
Lovley DR: Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ Microbiol Rep 2011, 3(1):27-35.
-
(2011)
Environ Microbiol Rep
, vol.3
, Issue.1
, pp. 27-35
-
-
Lovley, D.R.1
-
6
-
-
77957147094
-
Microbial electrosynthesis - revisiting the electrical route for microbial production
-
Rabaey K, Rozendal RA: Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Micro 2010, 8(10):706-716.
-
(2010)
Nat Rev Micro
, vol.8
, Issue.10
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.A.2
-
7
-
-
84895072628
-
Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives
-
Rosenbaum MA, Franks AE: Microbial catalysis in bioelectrochemical technologies: status quo, challenges and perspectives. Appl Microbiol Biotechnol 2014, 98(2):509-518.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, Issue.2
, pp. 509-518
-
-
Rosenbaum, M.A.1
Franks, A.E.2
-
8
-
-
84922198482
-
Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications
-
Venkata Mohan S, Velvizhi G, Vamshi Krishna K, Lenin Babu M: Microbial catalyzed electrochemical systems: a bio-factory with multi-facet applications. Bioresour Technol 2014, 165:355-364.
-
(2014)
Bioresour Technol
, vol.165
, pp. 355-364
-
-
Venkata Mohan, S.1
Velvizhi, G.2
Vamshi Krishna, K.3
Lenin Babu, M.4
-
10
-
-
84870791628
-
Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems
-
Patil SA, Haegerhaell C, Gortin L: Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. Bioanal Rev 2012, 4:159-192.
-
(2012)
Bioanal Rev
, vol.4
, pp. 159-192
-
-
Patil, S.A.1
Haegerhaell, C.2
Gortin, L.3
-
11
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?
-
Rosenbaum M, Aulenta F, Villano M, Angenent LT: Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 2011, 102(1):324-333.
-
(2011)
Bioresour Technol
, vol.102
, Issue.1
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
12
-
-
4644305766
-
Biofuel cells select for microbial consortia that self-mediate electron transfer
-
Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W: Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 2004, 70(9):5373-5382.
-
(2004)
Appl Environ Microbiol
, vol.70
, Issue.9
, pp. 5373-5382
-
-
Rabaey, K.1
Boon, N.2
Siciliano, S.D.3
Verhaege, M.4
Verstraete, W.5
-
13
-
-
44449129578
-
Review: direct and indirect electrical stimulation of microbial metabolism
-
Thrash JC, Coates JD: Review: direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 2008, 42(11):3921-3931.
-
(2008)
Environ Sci Technol
, vol.42
, Issue.11
, pp. 3921-3931
-
-
Thrash, J.C.1
Coates, J.D.2
-
14
-
-
0024997534
-
Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system
-
Emde R, Schink B: Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a three-electrode amperometric culture system. Appl Environ Microbiol 1990, 56(9):2771-2776.
-
(1990)
Appl Environ Microbiol
, vol.56
, Issue.9
, pp. 2771-2776
-
-
Emde, R.1
Schink, B.2
-
15
-
-
2642520659
-
Graphite electrodes as electron donors for anaerobic respiration
-
Gregory KB, Bond DR, Lovley DR: Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 2004, 6(6):596-604.
-
(2004)
Environ Microbiol
, vol.6
, Issue.6
, pp. 596-604
-
-
Gregory, K.B.1
Bond, D.R.2
Lovley, D.R.3
-
16
-
-
84954932034
-
Electrochemiacal studies on fermentation. Application of electro-energizing method to L-glutamic acid fermentation
-
Hongo M, Iwahara M: Electrochemiacal studies on fermentation. Application of electro-energizing method to L-glutamic acid fermentation. Agric Biol Chem 1979, 43(10):2075-2081.
-
(1979)
Agric Biol Chem
, vol.43
, Issue.10
, pp. 2075-2081
-
-
Hongo, M.1
Iwahara, M.2
-
17
-
-
78650173757
-
Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds
-
Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR: Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 2010, 1(2):e00103-10.
-
(2010)
mBio
, vol.1
, Issue.2
, pp. e00103-e00110
-
-
Nevin, K.P.1
Woodard, T.L.2
Franks, A.E.3
Summers, Z.M.4
Lovley, D.R.5
-
18
-
-
37349062455
-
Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes
-
Dumas C, Basseguy R, Bergel A: Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes. Electrochim acta 2008, 53(5):2494-2500.
-
(2008)
Electrochim acta
, vol.53
, Issue.5
, pp. 2494-2500
-
-
Dumas, C.1
Basseguy, R.2
Bergel, A.3
-
19
-
-
78650170320
-
Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens
-
Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR: Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 2011, 80(2):142-150.
-
(2011)
Bioelectrochemistry
, vol.80
, Issue.2
, pp. 142-150
-
-
Strycharz, S.M.1
Glaven, R.H.2
Coppi, M.V.3
Gannon, S.M.4
Perpetua, L.A.5
Liu, A.6
Nevin, K.P.7
Lovley, D.R.8
-
20
-
-
71549170875
-
A kinetic perspective on extracellular electron transfer by anode-respiring bacteria
-
Torres CI, Marcus AK, Lee HS, Parameswaran P, Krajmalnik-Brown R, Rittmann BE: A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol Rev 2010, 34(1):3-17.
-
(2010)
FEMS Microbiol Rev
, vol.34
, Issue.1
, pp. 3-17
-
-
Torres, C.I.1
Marcus, A.K.2
Lee, H.S.3
Parameswaran, P.4
Krajmalnik-Brown, R.5
Rittmann, B.E.6
-
21
-
-
84890008510
-
Understanding the Distinguishing Features of a Microbial Fuel Cell as a Biomass-Based Renewable Energy Technology
-
Netherlands: Springer
-
Rittmann BE, Torres CI, Marcus AK: Understanding the Distinguishing Features of a Microbial Fuel Cell as a Biomass-Based Renewable Energy Technology. In Emerging Environmental Technologies. Netherlands: Springer; 2008:1-28.
-
(2008)
Emerging Environmental Technologies
, pp. 1-28
-
-
Rittmann, B.E.1
Torres, C.I.2
Marcus, A.K.3
-
22
-
-
64749084426
-
Exoelectrogenic bacteria that power microbial fuel cells
-
Logan BE: Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 2009, 7(5):375-381.
-
(2009)
Nat Rev Microbiol
, vol.7
, Issue.5
, pp. 375-381
-
-
Logan, B.E.1
-
23
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR: Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 2011, 77(9):2882-2886.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.9
, pp. 2882-2886
-
-
Nevin, K.P.1
Hensley, S.A.2
Franks, A.E.3
Summers, Z.M.4
Ou, J.5
Woodard, T.L.6
Snoeyenbos-West, O.L.7
Lovley, D.R.8
-
24
-
-
80053445630
-
In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals
-
Pandit AV, Mahadevan R: In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals. Microb Cell Fact 2011, 10(1):76-76.
-
(2011)
Microb Cell Fact
, vol.10
, Issue.1
, pp. 76-76
-
-
Pandit, A.V.1
Mahadevan, R.2
-
25
-
-
0033014983
-
Microbial utilization of electrically reduced neutral Red as the sole electron donor for growth and metabolite production
-
Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG: Microbial utilization of electrically reduced neutral Red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 1999, 65(7):2912-2917.
-
(1999)
Appl Environ Microbiol
, vol.65
, Issue.7
, pp. 2912-2917
-
-
Park, D.H.1
Laivenieks, M.2
Guettler, M.V.3
Jain, M.K.4
Zeikus, J.G.5
-
26
-
-
0032904869
-
Utilization of electrically reduced neutral Red byActinobacillus succinogenes: physiological function of neutral Red in membrane-driven fumarate reduction and energy conservation
-
Park DH, Zeikus JG: Utilization of electrically reduced neutral Red byActinobacillus succinogenes: physiological function of neutral Red in membrane-driven fumarate reduction and energy conservation. J Bacteriol 1999, 181(8):2403-2410.
-
(1999)
J Bacteriol
, vol.181
, Issue.8
, pp. 2403-2410
-
-
Park, D.H.1
Zeikus, J.G.2
-
27
-
-
0033580880
-
Structure of the Escherichia coli fumarate reductase respiratory complex
-
Iverson TM, Luna-Chavez C, Cecchini G, Rees DC: Structure of the Escherichia coli fumarate reductase respiratory complex. Science 1999, 284(5422):1961-1966.
-
(1999)
Science
, vol.284
, Issue.5422
, pp. 1961-1966
-
-
Iverson, T.M.1
Luna-Chavez, C.2
Cecchini, G.3
Rees, D.C.4
-
28
-
-
0033080396
-
Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering
-
Schuster S, Dandekar T, Fell DA: Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 1999, 17(2):53-60.
-
(1999)
Trends Biotechnol
, vol.17
, Issue.2
, pp. 53-60
-
-
Schuster, S.1
Dandekar, T.2
Fell, D.A.3
-
29
-
-
58149154663
-
Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism
-
Trinh CT, Wlaschin A, Srienc F: Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 2009, 81(5):813-826.
-
(2009)
Appl Microbiol Biotechnol
, vol.81
, Issue.5
, pp. 813-826
-
-
Trinh, C.T.1
Wlaschin, A.2
Srienc, F.3
-
30
-
-
2942597516
-
Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli
-
McKinlay JB, Zeikus JG: Extracellular iron reduction is mediated in part by neutral red and hydrogenase in Escherichia coli. Appl Environ Microbiol 2004, 70(6):3467-3474.
-
(2004)
Appl Environ Microbiol
, vol.70
, Issue.6
, pp. 3467-3474
-
-
McKinlay, J.B.1
Zeikus, J.G.2
-
31
-
-
0022137984
-
Electrochemical control of redox potential in batch cultures of Escherichia coli
-
Thompson BG, Gerson DF: Electrochemical control of redox potential in batch cultures of Escherichia coli. Biotechnol Bioeng 1985, 27(10):1512-1515.
-
(1985)
Biotechnol Bioeng
, vol.27
, Issue.10
, pp. 1512-1515
-
-
Thompson, B.G.1
Gerson, D.F.2
-
32
-
-
77956860576
-
Sudden emergence of redox active Escherichia coli phenotype: cyclic voltammetric evidence of the overlapping pathways
-
Xie X-H, Li EL, Tang ZK: Sudden emergence of redox active Escherichia coli phenotype: cyclic voltammetric evidence of the overlapping pathways. Int J Electrochem Sci 2010, 5:1070-1081.
-
(2010)
Int J Electrochem Sci
, vol.5
, pp. 1070-1081
-
-
Xie, X.-H.1
Li, E.L.2
Tang, Z.K.3
-
33
-
-
78650594171
-
Engineering of a synthetic electron conduit in living cells
-
Jensen HM, Albers AE, Malley KR, Londer YY, Cohen BE, Helms BA, Weigele P, Groves JT, Ajo-Franklin CM: Engineering of a synthetic electron conduit in living cells. Proc Natl Acad Sci U S A 2010, 107(45):19213-19218.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, Issue.45
, pp. 19213-19218
-
-
Jensen, H.M.1
Albers, A.E.2
Malley, K.R.3
Londer, Y.Y.4
Cohen, B.E.5
Helms, B.A.6
Weigele, P.7
Groves, J.T.8
Ajo-Franklin, C.M.9
-
34
-
-
84923885794
-
The Mtr pathway of shewanella oneidensis MR-1 couples substrate utilization to current production in escherichia coli
-
TerAvest MA, Zajdel TJ, Ajo-Franklin CM: The Mtr pathway of shewanella oneidensis MR-1 couples substrate utilization to current production in escherichia coli. Chem Electro Chem 2014, 1(11):1874-1879.
-
(2014)
Chem Electro Chem
, vol.1
, Issue.11
, pp. 1874-1879
-
-
TerAvest, M.A.1
Zajdel, T.J.2
Ajo-Franklin, C.M.3
-
35
-
-
84870188327
-
Operational and technical considerations for microbial electrosynthesis
-
Desloover J, Arends J, Hennebel T, Rabaey K: Operational and technical considerations for microbial electrosynthesis. Biochem Soc Trans 2012, 40(6):1233-1238.
-
(2012)
Biochem Soc Trans
, vol.40
, Issue.6
, pp. 1233-1238
-
-
Desloover, J.1
Arends, J.2
Hennebel, T.3
Rabaey, K.4
-
36
-
-
79957982062
-
Metabolic and practical considerations on microbial electrosynthesis
-
Rabaey K, Girguis P, Nielsen LK: Metabolic and practical considerations on microbial electrosynthesis. Curr Opin Biotechnol 2011, 22(3):371-377.
-
(2011)
Curr Opin Biotechnol
, vol.22
, Issue.3
, pp. 371-377
-
-
Rabaey, K.1
Girguis, P.2
Nielsen, L.K.3
-
37
-
-
84874628616
-
Microbial electrocatalysis to guide biofuel and biochemical bioprocessing
-
Angenent LT, Rosenbaum MA: Microbial electrocatalysis to guide biofuel and biochemical bioprocessing. Biofuels 2013, 4(2):131-134.
-
(2013)
Biofuels
, vol.4
, Issue.2
, pp. 131-134
-
-
Angenent, L.T.1
Rosenbaum, M.A.2
-
38
-
-
84865362287
-
Bio-based production of C2-C6 platform chemicals
-
Jang Y-S, Kim B, Shin JH, Choi YJ, Choi S, Song CW, Lee J, Park HG, Lee SY: Bio-based production of C2-C6 platform chemicals. Biotechnol Bioeng 2012, 109(10):2437-2459.
-
(2012)
Biotechnol Bioeng
, vol.109
, Issue.10
, pp. 2437-2459
-
-
Jang, Y.-S.1
Kim, B.2
Shin, J.H.3
Choi, Y.J.4
Choi, S.5
Song, C.W.6
Lee, J.7
Park, H.G.8
Lee, S.Y.9
-
39
-
-
84871673203
-
Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals
-
Clomburg JM, Gonzalez R: Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 2013, 31(1):20-28.
-
(2013)
Trends Biotechnol
, vol.31
, Issue.1
, pp. 20-28
-
-
Clomburg, J.M.1
Gonzalez, R.2
-
40
-
-
50249129588
-
A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli
-
Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS: A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metab Eng 2008, 10(5):234-245.
-
(2008)
Metab Eng
, vol.10
, Issue.5
, pp. 234-245
-
-
Gonzalez, R.1
Murarka, A.2
Dharmadi, Y.3
Yazdani, S.S.4
-
41
-
-
0024723183
-
The fermentation pathways of Escherichia coli
-
Clark DP: The fermentation pathways of Escherichia coli. FEMS Microbiol Lett 1989, 63(3):223-234.
-
(1989)
FEMS Microbiol Lett
, vol.63
, Issue.3
, pp. 223-234
-
-
Clark, D.P.1
-
42
-
-
84868307698
-
Geothrix fermentans secretes Two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials
-
Mehta-Kolte MG, Bond DR: Geothrix fermentans secretes Two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl Environ Microbiol 2012, 78(19):6987-6995.
-
(2012)
Appl Environ Microbiol
, vol.78
, Issue.19
, pp. 6987-6995
-
-
Mehta-Kolte, M.G.1
Bond, D.R.2
-
43
-
-
79551652545
-
Towards electrosynthesis in shewanella: energetics of reversing the Mtr pathway for reductive metabolism
-
Ross DE, Flynn JM, Baron DB, Gralnick JA, Bond DR: Towards electrosynthesis in shewanella: energetics of reversing the Mtr pathway for reductive metabolism. PLoS ONE 2011, 6(2):e16649.
-
(2011)
PLoS ONE
, vol.6
, Issue.2
-
-
Ross, D.E.1
Flynn, J.M.2
Baron, D.B.3
Gralnick, J.A.4
Bond, D.R.5
-
44
-
-
34249936957
-
Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry
-
Yazdani SS, Gonzalez R: Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 2007, 18(3):213-219.
-
(2007)
Curr Opin Biotechnol
, vol.18
, Issue.3
, pp. 213-219
-
-
Yazdani, S.S.1
Gonzalez, R.2
-
45
-
-
0018134708
-
Application of mass and energy balance regularities to product formation
-
Erickson LE, Selga SE, Viesturs UE: Application of mass and energy balance regularities to product formation. Biotechnol Bioeng 1978, 20(10):1623-1638.
-
(1978)
Biotechnol Bioeng
, vol.20
, Issue.10
, pp. 1623-1638
-
-
Erickson, L.E.1
Selga, S.E.2
Viesturs, U.E.3
-
46
-
-
84894625461
-
The production of propionic acid, propanol and propylene via sugar fermentation: an industrial perspective on the progress, technical challenges and future outlook
-
Rodriguez BA, Stowers CC, Pham V, Cox BM: The production of propionic acid, propanol and propylene via sugar fermentation: an industrial perspective on the progress, technical challenges and future outlook. Green Chem 2014.
-
(2014)
Green Chem
-
-
Rodriguez, B.A.1
Stowers, C.C.2
Pham, V.3
Cox, B.M.4
-
47
-
-
84865388007
-
Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives
-
Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J: Microbial production of propionic acid from propionibacteria: current state, challenges and perspectives. Crit Rev Biotechnol 2012, 32(4):374-381.
-
(2012)
Crit Rev Biotechnol
, vol.32
, Issue.4
, pp. 374-381
-
-
Liu, L.1
Zhu, Y.2
Li, J.3
Wang, M.4
Lee, P.5
Du, G.6
Chen, J.7
-
48
-
-
70350569791
-
Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici
-
Zhang A, Yang S-T: Propionic acid production from glycerol by metabolically engineered Propionibacterium acidipropionici. Process Biochem 2009, 44(12):1346-1351.
-
(2009)
Process Biochem
, vol.44
, Issue.12
, pp. 1346-1351
-
-
Zhang, A.1
Yang, S.-T.2
-
49
-
-
0036360494
-
Bulk Chemicals from Biotechnology: The Case of 1, 3-Propanediol Production and the new Trends
-
Springer
-
Zeng A-P, Biebl H: Bulk Chemicals from Biotechnology: The Case of 1, 3-Propanediol Production and the new Trends. In Tools and Applications of Biochemical Engineering Science. Springer; 2002:239-259.
-
(2002)
Tools and Applications of Biochemical Engineering Science
, pp. 239-259
-
-
Zeng, A.-P.1
Biebl, H.2
-
50
-
-
0142027026
-
Metabolic engineering for the microbial production of 1, 3-propanediol
-
Nakamura CE, Whited GM: Metabolic engineering for the microbial production of 1, 3-propanediol. Curr Opin Biotechnol 2003, 14(5):454-459.
-
(2003)
Curr Opin Biotechnol
, vol.14
, Issue.5
, pp. 454-459
-
-
Nakamura, C.E.1
Whited, G.M.2
-
51
-
-
0003778120
-
Bioconversion of a Fermentable Carbon Source to 1, 3-Propanediol by a Single Microorganism.
-
Laffend LA, Nagarajan V, Nakamura CE: Bioconversion of a Fermentable Carbon Source to 1, 3-Propanediol by a Single Microorganism. Google Patents; 1997.
-
(1997)
Google Patents
-
-
Laffend, L.A.1
Nagarajan, V.2
Nakamura, C.E.3
-
52
-
-
78650815236
-
Glycerol degradation in single-chamber microbial fuel cells
-
Nimje VR, Chen C-Y, Chen C-C, Chen H-R, Tseng M-J, Jean J-S, Chang Y-F: Glycerol degradation in single-chamber microbial fuel cells. Bioresour Technol 2011, 102(3):2629-2634.
-
(2011)
Bioresour Technol
, vol.102
, Issue.3
, pp. 2629-2634
-
-
Nimje, V.R.1
Chen, C.-Y.2
Chen, C.-C.3
Chen, H.-R.4
Tseng, M.-J.5
Jean, J.-S.6
Chang, Y.-F.7
-
53
-
-
33645761181
-
Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing
-
Cheng S, Liu H, Logan BE: Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environ Sci Technol 2006, 40(7):2426-2432.
-
(2006)
Environ Sci Technol
, vol.40
, Issue.7
, pp. 2426-2432
-
-
Cheng, S.1
Liu, H.2
Logan, B.E.3
-
54
-
-
84865553792
-
Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell
-
Reiche A, Kirkwood KM: Comparison of Escherichia coli and anaerobic consortia derived from compost as anodic biocatalysts in a glycerol-oxidizing microbial fuel cell. Bioresour Technol 2012, 123:318-323.
-
(2012)
Bioresour Technol
, vol.123
, pp. 318-323
-
-
Reiche, A.1
Kirkwood, K.M.2
-
56
-
-
79952694448
-
Microbial 2, 3-butanediol production: a state-of-the-art review
-
Ji X-J, Huang H, Ouyang P-K: Microbial 2, 3-butanediol production: a state-of-the-art review. Biotechnol Adv 2011, 29(3):351-364.
-
(2011)
Biotechnol Adv
, vol.29
, Issue.3
, pp. 351-364
-
-
Ji, X.-J.1
Huang, H.2
Ouyang, P.-K.3
-
57
-
-
82755161073
-
Microbial production of diols as platform chemicals: recent progresses
-
Zeng A-P, Sabra W: Microbial production of diols as platform chemicals: recent progresses. Curr Opin Biotechnol 2011, 22(6):749-757.
-
(2011)
Curr Opin Biotechnol
, vol.22
, Issue.6
, pp. 749-757
-
-
Zeng, A.-P.1
Sabra, W.2
-
58
-
-
84923861016
-
Production of p-Aminobenzoic acid by metabolically engineered Escherichia coli
-
ahead-of-print
-
Koma D, Yamanaka H, Moriyoshi K, Sakai K, Masuda T, Sato Y, Toida K, Ohmoto T: Production of p-Aminobenzoic acid by metabolically engineered Escherichia coli. Biosci Biotechnol Biochem 2014, ahead-of-print:1-8.
-
(2014)
Biosci Biotechnol Biochem
, pp. 1-8
-
-
Koma, D.1
Yamanaka, H.2
Moriyoshi, K.3
Sakai, K.4
Masuda, T.5
Sato, Y.6
Toida, K.7
Ohmoto, T.8
-
59
-
-
0000029295
-
On elementary flux modes in biochemical reaction systems at steady state
-
Schuster S, Hilgetag C: On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 1994, 2(02):165-182.
-
(1994)
J Biol Syst
, vol.2
, Issue.2
, pp. 165-182
-
-
Schuster, S.1
Hilgetag, C.2
-
60
-
-
52949098408
-
Large-scale computation of elementary flux modes with bit pattern trees
-
Terzer M, Stelling J: Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 2008, 24(19):2229-2235.
-
(2008)
Bioinformatics
, vol.24
, Issue.19
, pp. 2229-2235
-
-
Terzer, M.1
Stelling, J.2
|