메뉴 건너뛰기




Volumn , Issue , 2009, Pages 769-776

Natural image denoising with convolutional networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATION THEORY; COMPUTER ARCHITECTURE; COMPUTER VISION; CONVOLUTION; MARKOV PROCESSES; MEAN FIELD THEORY; NETWORK ARCHITECTURE;

EID: 78149296699     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (911)

References (22)
  • 3
    • 0021518209 scopus 로고
    • Stochastic relaxation Gibbs distributions and the Bayesian restoration of images
    • S. Geman, D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. Pattern Analysis and Machine Intelligence, 1984.
    • (1984) Pattern Analysis and Machine Intelligence
    • Geman, S.1    Geman, D.2
  • 4
    • 24644467818 scopus 로고    scopus 로고
    • Fields of Experts: A framework for learning image priors
    • S. Roth, M.J. Black. Fields of Experts: a framework for learning image priors. CVPR 2005.
    • (2005) CVPR
    • Roth, S.1    Black, M.J.2
  • 6
    • 35148861156 scopus 로고    scopus 로고
    • What makes a good model of natural images?
    • Y. Weiss, W.T. Freeman. What makes a good model of natural images? CVPR 2007.
    • (2007) CVPR
    • Weiss, Y.1    Freeman, W.T.2
  • 7
  • 8
    • 0032025550 scopus 로고    scopus 로고
    • Filters, random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling
    • S.C. Zhu, Y. Wu, D. Mumford. Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling. International Journal of Computer Vision, 1998.
    • (1998) International Journal of Computer Vision
    • Zhu, S.C.1    Wu, Y.2    Mumford, D.3
  • 9
    • 84898983746 scopus 로고    scopus 로고
    • Discriminative fields for modeling spatial dependencies in natural images
    • S. Kumar, M. Hebert. Discriminative fields for modeling spatial dependencies in natural images. NIPS*2004.
    • (2004) NIPS
    • Kumar, S.1    Hebert, M.2
  • 10
    • 85161984485 scopus 로고    scopus 로고
    • Multiscale conditional random fields for image labeling
    • X. He, R Zemel, M.C. Perpinan. Multiscale conditional random fields for image labeling. CVPR 2004.
    • (2004) CVPR
    • He, X.1    Zemel, R.2    Perpinan, M.C.3
  • 12
    • 33749243863 scopus 로고    scopus 로고
    • Learning in markov random fields: An empirical study
    • S. Parise, M. Welling. Learning in markov random fields: An empirical study. Joint Stat. Meeting, 2005.
    • (2005) Joint Stat. Meeting
    • Parise, S.1    Welling, M.2
  • 15
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F.J. Huang, L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. CVPR 2004.
    • (2004) CVPR
    • Lecun, Y.1    Huang, F.J.2    Bottou, L.3
  • 17
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. Hinton, R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 2006.
    • (2006) Science
    • Hinton, G.1    Salakhutdinov, R.2
  • 18
    • 70049094447 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • M. Ranzato, YL Boureau, Y. LeCun. Sparse feature learning for deep belief networks. NIPS*2007.
    • (2007) NIPS
    • Ranzato, M.1    Boureau, Y.L.2    Lecun, Y.3
  • 20
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. ICCV 2001.
    • (2001) ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 22
    • 84858757853 scopus 로고    scopus 로고
    • Learning continuous attractors in recurrent networks
    • H.S. Seung. Learning continuous attractors in recurrent networks. NIPS*1997.
    • (1997) NIPS
    • Seung, H.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.