메뉴 건너뛰기




Volumn 40, Issue 2, 2016, Pages 329-339

Mathematical, Fuzzy Logic and Artificial Neural Network Modeling Techniques to Predict Drying Kinetics of Onion

Author keywords

[No Author keywords available]

Indexed keywords

AIR; BACKPROPAGATION ALGORITHMS; COMPUTER CIRCUITS; DIFFUSION IN LIQUIDS; DRYERS (EQUIPMENT); DYNAMIC MODELS; FLUIDIZED BED PROCESS; FLUIDIZED BEDS; FOOD PRODUCTS; FORECASTING; FUZZY INFERENCE; FUZZY LOGIC; FUZZY NEURAL NETWORKS; HEAT PUMP SYSTEMS; HUMIDITY CONTROL; HYPERBOLIC FUNCTIONS; MASS TRANSFER; MATLAB; MEAN SQUARE ERROR; MEMBERSHIP FUNCTIONS; NEURAL NETWORKS; RECONFIGURABLE HARDWARE; THERMAL PROCESSING (FOODS); TOPOLOGY;

EID: 84962892954     PISSN: 01458892     EISSN: 17454549     Source Type: Journal    
DOI: 10.1111/jfpp.12610     Document Type: Article
Times cited : (76)

References (46)
  • 1
    • 26444459777 scopus 로고    scopus 로고
    • Determination of suitable thin layer drying curve model for some vegetables and fruits
    • Akpinar, E.K. 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. J. Food Eng. 73, 75-84.
    • (2006) J. Food Eng. , vol.73 , pp. 75-84
    • Akpinar, E.K.1
  • 2
    • 34948908731 scopus 로고    scopus 로고
    • Thin-layer drying of porous materials: Selection of the appropriate mathematical model and relationships between thin-layer models parameters
    • Aleksandra, S. 2007. Thin-layer drying of porous materials: Selection of the appropriate mathematical model and relationships between thin-layer models parameters. Chem. Eng. Process. 46, 1324-1331.
    • (2007) Chem. Eng. Process. , vol.46 , pp. 1324-1331
    • Aleksandra, S.1
  • 3
    • 15244339915 scopus 로고    scopus 로고
    • A first principles - neural networks approach to model a vibrated fluidized bed dryer: Simulations and experimental results
    • Alvarez, P.I., Blasco, R., Gomez, J. and Cubillos, F.A. 2005. A first principles - neural networks approach to model a vibrated fluidized bed dryer: Simulations and experimental results. Dry. Technol. 23, 187-203.
    • (2005) Dry. Technol. , vol.23 , pp. 187-203
    • Alvarez, P.I.1    Blasco, R.2    Gomez, J.3    Cubillos, F.A.4
  • 5
    • 77955590616 scopus 로고    scopus 로고
    • Association of Official Analytical Chemists, Arlington, VA.
    • Association of Official Analytical Chemists. 1999. Official Methods of Analysis, Association of Official Analytical Chemists, Arlington, VA.
    • (1999) Official Methods of Analysis
  • 6
    • 31944434546 scopus 로고    scopus 로고
    • Fluidized bed paddy drying in optimal conditions via adaptive fuzzy logic control
    • Atthajariyakul, S. and Leephakpreeda, T. 2006. Fluidized bed paddy drying in optimal conditions via adaptive fuzzy logic control. J. Food Eng. 75, 104-114.
    • (2006) J. Food Eng. , vol.75 , pp. 104-114
    • Atthajariyakul, S.1    Leephakpreeda, T.2
  • 7
    • 84923033196 scopus 로고    scopus 로고
    • Mass transfer kinetics of eggplant during osmotic dehydration by neural networks
    • (in press).
    • Bahmani, A., Jafari, S.M., Shahidi, S.A. and Dehnad, D. 2015. Mass transfer kinetics of eggplant during osmotic dehydration by neural networks. J. Food Process. Preserv. doi: 10.1111/jfpp.12435 (in press).
    • (2015) J. Food Process. Preserv.
    • Bahmani, A.1    Jafari, S.M.2    Shahidi, S.A.3    Dehnad, D.4
  • 8
    • 84860389241 scopus 로고    scopus 로고
    • An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using artificial neural network
    • Balbay, A., Sahin, O. and Karabatak, M. 2011. An investigation of drying process of shelled pistachios in a newly designed fixed bed dryer system by using artificial neural network. Dry. Technol. 29, 1685-1696.
    • (2011) Dry. Technol. , vol.29 , pp. 1685-1696
    • Balbay, A.1    Sahin, O.2    Karabatak, M.3
  • 9
    • 0034908130 scopus 로고    scopus 로고
    • Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization
    • Chen, C.R., Ramaswamy, H.S. and Alli, I. 2001. Prediction of quality changes during osmo-convective drying of blueberries using neural network models for process optimization. Dry. Technol. 19, 507-523.
    • (2001) Dry. Technol. , vol.19 , pp. 507-523
    • Chen, C.R.1    Ramaswamy, H.S.2    Alli, I.3
  • 11
    • 84962853642 scopus 로고    scopus 로고
    • Estimation of conversion factor for paddy by using Artificial Neural Network in a fluidized bed drying system
    • in Persian with English abstract).
    • Chichan Amiri, R., Khosh Taghaza, M.H., Montazer, G.A., Minaiee, S. and Alizadeh, R. 2009. Estimation of conversion factor for paddy by using Artificial Neural Network in a fluidized bed drying system. Iranian J. Sci. Technol. Agric. Nat. Resour. 48, 285-298 (in Persian with English abstract).
    • (2009) Iranian J. Sci. Technol. Agric. Nat. Resour. , vol.48 , pp. 285-298
    • Chichan Amiri, R.1    Khosh Taghaza, M.H.2    Montazer, G.A.3    Minaiee, S.4    Alizadeh, R.5
  • 12
    • 38849201825 scopus 로고    scopus 로고
    • Drying kinetics and quality changes during drying of red pepper
    • Di Scala, K. and Crapiste, G. 2008. Drying kinetics and quality changes during drying of red pepper. Lebensm.-Wiss. Technol. 41, 789-795.
    • (2008) Lebensm.-Wiss. Technol. , vol.41 , pp. 789-795
    • Di Scala, K.1    Crapiste, G.2
  • 13
    • 0141956017 scopus 로고    scopus 로고
    • Convective air drying characteristics of thin layer carrots
    • Doymaz, I˙. 2004. Convective air drying characteristics of thin layer carrots. J. Food Eng. 61, 359-364.
    • (2004) J. Food Eng. , vol.61 , pp. 359-364
    • Doymaz, I.1
  • 14
    • 34547525049 scopus 로고    scopus 로고
    • Comparison of genetic algorithm and neural network approaches for the drying process of carrot
    • Erenturk, S. and Erenturk, K. 2007. Comparison of genetic algorithm and neural network approaches for the drying process of carrot. J. Food Eng. 78, 905-912.
    • (2007) J. Food Eng. , vol.78 , pp. 905-912
    • Erenturk, S.1    Erenturk, K.2
  • 15
    • 80052976341 scopus 로고    scopus 로고
    • Evaluation of drying parameters and sorption isotherms of mint leaves (M. pulegium)
    • Ethman Kan, C.S., Sid Ahmed, M.A.O. and Kouhila, M. 2009. Evaluation of drying parameters and sorption isotherms of mint leaves (M. pulegium). Rev. Energ. Renouvel. 12, 449-470.
    • (2009) Rev. Energ. Renouvel. , vol.12 , pp. 449-470
    • Ethman Kan, C.S.1    Sid Ahmed, M.A.O.2    Kouhila, M.3
  • 16
    • 84877256127 scopus 로고    scopus 로고
    • Use of artificial intelligence for the modeling of drying processes
    • Farkas, I. 2013. Use of artificial intelligence for the modeling of drying processes. Dry. Technol. 31, 848-855.
    • (2013) Dry. Technol. , vol.31 , pp. 848-855
    • Farkas, I.1
  • 17
    • 80053570160 scopus 로고    scopus 로고
    • Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit
    • Fathi, M., Mohebbi, M. and Razavi, S.M.A. 2011a. Application of image analysis and artificial neural network to predict mass transfer kinetics and color changes of osmotically dehydrated kiwifruit. Food Bioprocess Technol. 4, 1357-1366.
    • (2011) Food Bioprocess Technol. , vol.4 , pp. 1357-1366
    • Fathi, M.1    Mohebbi, M.2    Razavi, S.M.A.3
  • 18
    • 80053573935 scopus 로고    scopus 로고
    • Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm
    • Fathi, M., Mohebbi, M. and Razavi, S.M.A. 2011b. Effect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithm. Food Bioproc. Tech. 4, 1519-1526.
    • (2011) Food Bioproc. Tech. , vol.4 , pp. 1519-1526
    • Fathi, M.1    Mohebbi, M.2    Razavi, S.M.A.3
  • 19
    • 84975861192 scopus 로고    scopus 로고
    • Prediction of the physicochemical properties of spray-dried black mulberry (Morus nigra) juice using artificial neural networks
    • Fazaeli, M., Emam-Djomeh, Z., Omid, M. and Kalbasi-Ashtari, A. 2013. Prediction of the physicochemical properties of spray-dried black mulberry (Morus nigra) juice using artificial neural networks. Food Bioprocess Technol. 6, 585-590.
    • (2013) Food Bioprocess Technol. , vol.6 , pp. 585-590
    • Fazaeli, M.1    Emam-Djomeh, Z.2    Omid, M.3    Kalbasi-Ashtari, A.4
  • 21
    • 84896776205 scopus 로고    scopus 로고
    • Optimization of closed-cycle fluidized bed drying of sesame seeds using response surface methodology and genetic algorithms
    • Hashemi Shahraki, M., Jafari, S.M., Mashkour, M. and Esmaeilzadeh, E. 2014. Optimization of closed-cycle fluidized bed drying of sesame seeds using response surface methodology and genetic algorithms. Int. J. Food Eng. 10, 167-182.
    • (2014) Int. J. Food Eng. , vol.10 , pp. 167-182
    • Hashemi Shahraki, M.1    Jafari, S.M.2    Mashkour, M.3    Esmaeilzadeh, E.4
  • 22
    • 84887898120 scopus 로고    scopus 로고
    • Comparison of three drying processes to obtain an apple peel food ingredient
    • Henríquez, M., Almonacid, S., Lutz, M., Simpson, R. and Valdenegro, M. 2013. Comparison of three drying processes to obtain an apple peel food ingredient. CyTA J. Food 11, 127-135.
    • (2013) CyTA J. Food , vol.11 , pp. 127-135
    • Henríquez, M.1    Almonacid, S.2    Lutz, M.3    Simpson, R.4    Valdenegro, M.5
  • 23
    • 0345393182 scopus 로고    scopus 로고
    • An artificial neural network model for prediction of drying rates
    • Islam, M.D.R., Sabalani, S.S. and Mujumdar, A.S. 2003. An artificial neural network model for prediction of drying rates. Dry. Technol. 21, 1867-1884.
    • (2003) Dry. Technol. , vol.21 , pp. 1867-1884
    • Islam, M.D.R.1    Sabalani, S.S.2    Mujumdar, A.S.3
  • 24
    • 84890467835 scopus 로고    scopus 로고
    • Evaluation of thin-layer drying models and artificial neural networks for describing drying kinetics of canola seed in a heat pump assisted fluidized bed dryer
    • Malekjani, N., Jafari, S.M., Rahmati, M.H., Esmaeilzadeh, E. and Mirzaee, H.A. 2013. Evaluation of thin-layer drying models and artificial neural networks for describing drying kinetics of canola seed in a heat pump assisted fluidized bed dryer. Int. J. Food Eng. 9, 375-384.
    • (2013) Int. J. Food Eng. , vol.9 , pp. 375-384
    • Malekjani, N.1    Jafari, S.M.2    Rahmati, M.H.3    Esmaeilzadeh, E.4    Mirzaee, H.A.5
  • 26
    • 78751585148 scopus 로고    scopus 로고
    • Experimental and theoretical investigation of corn drying in a microwave-assisted fluidized bed dryer using artificial neural network
    • Momenzadeh, L., Zomorodian, A. and Mowla, D. 2011. Experimental and theoretical investigation of corn drying in a microwave-assisted fluidized bed dryer using artificial neural network. Food Bioprod. Process. 89, 15-21.
    • (2011) Food Bioprod. Process. , vol.89 , pp. 15-21
    • Momenzadeh, L.1    Zomorodian, A.2    Mowla, D.3
  • 27
    • 77953614109 scopus 로고    scopus 로고
    • Guinea RPF convective drying of onion: Kinetics and nutritional evaluation
    • Mota, C.L., Luciano, C., Dias, A. and Barroca, M.J. 2010. Guinea RPF convective drying of onion: Kinetics and nutritional evaluation. Food Bioprod. Process. 88, 115-123.
    • (2010) Food Bioprod. Process. , vol.88 , pp. 115-123
    • Mota, C.L.1    Luciano, C.2    Dias, A.3    Barroca, M.J.4
  • 28
    • 84878880720 scopus 로고    scopus 로고
    • Microwave-vacuum drying of sour cherry: Comparison of mathematical models and artificial neural networks
    • Motavali, A., Najafi, G., Abbasi, S., Minaei, S. and Ghaderi, A. 2013. Microwave-vacuum drying of sour cherry: Comparison of mathematical models and artificial neural networks. J. Food Sci. Technol. 50, 714-722.
    • (2013) J. Food Sci. Technol. , vol.50 , pp. 714-722
    • Motavali, A.1    Najafi, G.2    Abbasi, S.3    Minaei, S.4    Ghaderi, A.5
  • 29
    • 84916943790 scopus 로고    scopus 로고
    • Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network
    • Murthy, T. and Manohar, B. 2014. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network. J. Food Sci. Technol. 51, 3712-3721.
    • (2014) J. Food Sci. Technol. , vol.51 , pp. 3712-3721
    • Murthy, T.1    Manohar, B.2
  • 30
    • 84975801910 scopus 로고    scopus 로고
    • Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by artificial neural networks
    • Nazghelichi, T., Aghbashlo, M., Kianmehr, M.H. and Omid, M. 2011a. Prediction of energy and exergy of carrot cubes in a fluidized bed dryer by artificial neural networks. Dry. Technol. 29, 295-307.
    • (2011) Dry. Technol. , vol.29 , pp. 295-307
    • Nazghelichi, T.1    Aghbashlo, M.2    Kianmehr, M.H.3    Omid, M.4
  • 31
    • 80054921131 scopus 로고    scopus 로고
    • Prediction of carrot cubes drying kinetics during fluidized bed drying by artificial neural network
    • Nazghelichi, T., Kianmehr, M. and Aghbashlo, M. 2011b. Prediction of carrot cubes drying kinetics during fluidized bed drying by artificial neural network. J. Food Sci. Technol. 48, 542-550.
    • (2011) J. Food Sci. Technol. , vol.48 , pp. 542-550
    • Nazghelichi, T.1    Kianmehr, M.2    Aghbashlo, M.3
  • 32
  • 33
    • 15844395466 scopus 로고    scopus 로고
    • A new predictive neural architecture for solving temperature inverse problems in microwave-assisted drying processes
    • Pedreño-Molina, J.L., Monzo-Cabrera, J. and Sanchez-Hernandez, D. 2005. A new predictive neural architecture for solving temperature inverse problems in microwave-assisted drying processes. Neurocomputing 64, 521-528.
    • (2005) Neurocomputing , vol.64 , pp. 521-528
    • Pedreño-Molina, J.L.1    Monzo-Cabrera, J.2    Sanchez-Hernandez, D.3
  • 35
    • 33846967062 scopus 로고    scopus 로고
    • Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying
    • Poonnoy, P., Tansakul, A. and Chinnan, M. 2007. Artificial neural network modeling for temperature and moisture content prediction in tomato slices undergoing microwave-vacuum drying. J. Food Sci. 72, E42-E47.
    • (2007) J. Food Sci. , vol.72 , pp. E42-E47
    • Poonnoy, P.1    Tansakul, A.2    Chinnan, M.3
  • 36
    • 84921986682 scopus 로고    scopus 로고
    • CRC Press/Taylor & Francis Group, Boca Raton, FL.
    • Ratti, C. 2009. Advances in Food Dehydration, CRC Press/Taylor & Francis Group, Boca Raton, FL.
    • (2009) Advances in Food Dehydration
    • Ratti, C.1
  • 37
    • 27644590015 scopus 로고    scopus 로고
    • Mathematical modeling of solar tunnel drying of thin layer organic tomato
    • Sacilik, K., Keskin, R. and Konuralp Elicin, A. 2006. Mathematical modeling of solar tunnel drying of thin layer organic tomato. J. Food Eng. 73, 231-238.
    • (2006) J. Food Eng. , vol.73 , pp. 231-238
    • Sacilik, K.1    Keskin, R.2    Konuralp Elicin, A.3
  • 38
    • 78649350038 scopus 로고    scopus 로고
    • Application of Peleg model to study effect of water temperature and storage time on rehydration kinetics of air dried potato cubes
    • Salimi Hizaji, A., Maghsoudlou, Y. and Jafari, S.M. 2010. Application of Peleg model to study effect of water temperature and storage time on rehydration kinetics of air dried potato cubes. Lat. Am. Appl. Res. 40, 131-136.
    • (2010) Lat. Am. Appl. Res. , vol.40 , pp. 131-136
    • Salimi Hizaji, A.1    Maghsoudlou, Y.2    Jafari, S.M.3
  • 39
    • 84862148132 scopus 로고    scopus 로고
    • Advanced modeling of food convective drying: A comparison between artificial neural networks and hybrid approaches
    • Saraceno, A., Aversa, M. and Curico, S. 2012. Advanced modeling of food convective drying: A comparison between artificial neural networks and hybrid approaches. Food Bioproc. Tech. 5, 1694-1705.
    • (2012) Food Bioproc. Tech. , vol.5 , pp. 1694-1705
    • Saraceno, A.1    Aversa, M.2    Curico, S.3
  • 40
    • 84962958774 scopus 로고    scopus 로고
    • Simulation of kinetics model for thin layer drying of orange (Thompson variety) by using artificial neural network
    • in Persian with English abstract).
    • Sharifi, M., Rafiee, S., Keyhani, A. and Omid, M. 2010. Simulation of kinetics model for thin layer drying of orange (Thompson variety) by using artificial neural network. Iranian Food Sci. Technol. J. 7, 39-49 (in Persian with English abstract).
    • (2010) Iranian Food Sci. Technol. J. , vol.7 , pp. 39-49
    • Sharifi, M.1    Rafiee, S.2    Keyhani, A.3    Omid, M.4
  • 41
    • 83755162306 scopus 로고    scopus 로고
    • Prediction of moisture content of bergamot fruit during thin-layer drying using Artificial Neural Networks
    • In (P. Pichappan, H. Ahmadi and E. Ariwa, eds.) Springer Berlin, Heidelberg.
    • Sharifi, M., Rafiee, S., Ahmadi, H. and Rezaee, M. 2011. Prediction of moisture content of bergamot fruit during thin-layer drying using Artificial Neural Networks. In Innovative Computing Technology (P. Pichappan, H. Ahmadi and E. Ariwa, eds.) pp. 71-80, Springer Berlin, Heidelberg.
    • (2011) Innovative Computing Technology , pp. 71-80
    • Sharifi, M.1    Rafiee, S.2    Ahmadi, H.3    Rezaee, M.4
  • 42
    • 80054965209 scopus 로고    scopus 로고
    • Drying kinetics and ANN modeling of paneer at low pressure superheated steam
    • Shrivastav, S. and Kumbhar, B.K. 2011. Drying kinetics and ANN modeling of paneer at low pressure superheated steam. J. Food Sci. Technol. 48, 577-583.
    • (2011) J. Food Sci. Technol. , vol.48 , pp. 577-583
    • Shrivastav, S.1    Kumbhar, B.K.2
  • 43
    • 2942617053 scopus 로고    scopus 로고
    • Modeling of thin layer drying kinetics of some fruits under open-air sun drying process
    • Togrul, I. and Pehlivan, D. 2004. Modeling of thin layer drying kinetics of some fruits under open-air sun drying process. J. Food Eng. 65, 413-425.
    • (2004) J. Food Eng. , vol.65 , pp. 413-425
    • Togrul, I.1    Pehlivan, D.2
  • 45
    • 70349865009 scopus 로고    scopus 로고
    • Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice
    • Youssefi, S., Emam-Djomeh, Z. and Mousavi, S.M. 2009. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in the prediction of quality parameters of spray-dried pomegranate juice. Dry. Technol. 27, 910-917.
    • (2009) Dry. Technol. , vol.27 , pp. 910-917
    • Youssefi, S.1    Emam-Djomeh, Z.2    Mousavi, S.M.3
  • 46
    • 37249027244 scopus 로고    scopus 로고
    • A model predictive control of a grain dryer with four stages based on recurrent fuzzy neural network
    • In (D. Liu, S. Fei, Z.G. Hou, H. Zhang and C. Sun, eds.) Springer Berlin, Heidelberg.
    • Zhao, C., Chi, Q., Wang, L. and Wen, B. 2007. A model predictive control of a grain dryer with four stages based on recurrent fuzzy neural network. In Advances in Neural Networks (D. Liu, S. Fei, Z.G. Hou, H. Zhang and C. Sun, eds.) pp. 29-37, Springer Berlin, Heidelberg.
    • (2007) Advances in Neural Networks , pp. 29-37
    • Zhao, C.1    Chi, Q.2    Wang, L.3    Wen, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.