메뉴 건너뛰기




Volumn 7, Issue 13, 2016, Pages 16895-16909

iACP: A sequence-based tool for identifying anticancer peptides

Author keywords

Anticancer peptides; g gap dipeptide mode; iACP webserver; Incremental feature selection; pseAAC

Indexed keywords

ANTINEOPLASTIC AGENT; PEPTIDE;

EID: 84962865637     PISSN: None     EISSN: 19492553     Source Type: Journal    
DOI: 10.18632/oncotarget.7815     Document Type: Article
Times cited : (387)

References (148)
  • 4
    • 84871050291 scopus 로고    scopus 로고
    • On the selectivity and efficacy of defense peptides with respect to cancer cells
    • Harris F, Dennison SR, Singh J, Phoenix DA. On the selectivity and efficacy of defense peptides with respect to cancer cells. Medicinal research reviews. 2013; 33:190-234.
    • (2013) Medicinal research reviews. , vol.33 , pp. 190-234
    • Harris, F.1    Dennison, S.R.2    Singh, J.3    Phoenix, D.A.4
  • 6
    • 84924993833 scopus 로고    scopus 로고
    • Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs
    • Huang Y, Feng Q, Yan Q, Hao X, Chen Y. Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini reviews in medicinal chemistry. 2015; 15:73-81.
    • (2015) Mini reviews in medicinal chemistry. , vol.15 , pp. 73-81
    • Huang, Y.1    Feng, Q.2    Yan, Q.3    Hao, X.4    Chen, Y.5
  • 7
    • 3242792729 scopus 로고    scopus 로고
    • Review: Structural bioinformatics and its impact to biomedical science
    • Chou KC. Review: Structural bioinformatics and its impact to biomedical science. Current Medicinal Chemistry. 2004; 11:2105-2134.
    • (2004) Current Medicinal Chemistry. , vol.11 , pp. 2105-2134
    • Chou, K.C.1
  • 8
    • 33746172585 scopus 로고    scopus 로고
    • Molecular modeling studies of peptide drug candidates against SARS
    • Zhang R, Wei DQ, Du QS. Molecular modeling studies of peptide drug candidates against SARS. Medicinal Chemistry. 2006; 2:309-314.
    • (2006) Medicinal Chemistry. , vol.2 , pp. 309-314
    • Zhang, R.1    Wei, D.Q.2    Du, Q.S.3
  • 9
    • 33750554701 scopus 로고    scopus 로고
    • Review: Progress in computational approach to drug development against SARS
    • Wei DQ, Du QS, Sirois S, Zhong WZ. Review: Progress in computational approach to drug development against SARS. Current Medicinal Chemistry. 2006; 13:3263-3270.
    • (2006) Current Medicinal Chemistry. , vol.13 , pp. 3263-3270
    • Wei, D.Q.1    Du, Q.S.2    Sirois, S.3    Zhong, W.Z.4
  • 10
    • 33746842648 scopus 로고    scopus 로고
    • Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment
    • Mader J, Hoskin D. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs. 2006; 15:933-946.
    • (2006) Expert Opin Investig Drugs. , vol.15 , pp. 933-946
    • Mader, J.1    Hoskin, D.2
  • 11
    • 38349009178 scopus 로고    scopus 로고
    • Studies on anticancer activities of antimicrobial peptides
    • Hoskin DW, Ramamoorthy A. Studies on anticancer activities of antimicrobial peptides. Biochimica et biophysica acta. 2008; 1778:357-375.
    • (2008) Biochimica et biophysica acta. , vol.1778 , pp. 357-375
    • Hoskin, D.W.1    Ramamoorthy, A.2
  • 14
    • 84885390747 scopus 로고    scopus 로고
    • Cancer treatment using peptides: current therapies and future prospects
    • 967347
    • Thundimadathil J. Cancer treatment using peptides: current therapies and future prospects. Journal of amino acids. 2012; 2012:967347.
    • (2012) Journal of amino acids. , vol.2012
    • Thundimadathil, J.1
  • 16
    • 84886433492 scopus 로고    scopus 로고
    • Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test
    • Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H. Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test. Journal of theoretical biology. 2014; 341:34-40.
    • (2014) Journal of theoretical biology. , vol.341 , pp. 34-40
    • Hajisharifi, Z.1    Piryaiee, M.2    Mohammad Beigi, M.3    Behbahani, M.4    Mohabatkar, H.5
  • 17
    • 84876053736 scopus 로고    scopus 로고
    • iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition
    • Chen W, Feng PM, Lin H, Chou KC. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition Nucleic Acids Res. 2013; 41:e68.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e68
    • Chen, W.1    Feng, P.M.2    Lin, H.3    Chou, K.C.4
  • 18
    • 84902162941 scopus 로고    scopus 로고
    • iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach
    • 947416
    • Qiu WR, Xiao X, Lin WZ. iMethyl-PseAAC: Identification of Protein Methylation Sites via a Pseudo Amino Acid Composition Approach. Biomed Res Int (BMRI). 2014; 2014:947416.
    • (2014) Biomed Res Int (BMRI). , vol.2014
    • Qiu, W.R.1    Xiao, X.2    Lin, W.Z.3
  • 19
    • 84905982402 scopus 로고    scopus 로고
    • iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y, Wen X, Wen LS, Wu LY. iNitro-Tyr: Prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS ONE. 2014; 9:e105018.
    • (2014) PLoS ONE. , vol.9
    • Xu, Y.1    Wen, X.2    Wen, L.S.3    Wu, L.Y.4
  • 20
    • 84921500317 scopus 로고    scopus 로고
    • iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • Chen W, Feng PM, Deng EZ, Lin H. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal Biochem. 2014; 462:76-83.
    • (2014) Anal Biochem. , vol.462 , pp. 76-83
    • Chen, W.1    Feng, P.M.2    Deng, E.Z.3    Lin, H.4
  • 21
    • 84896463976 scopus 로고    scopus 로고
    • iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • Guo SH, Deng EZ, Xu LQ, Ding H, Lin H, Chen W. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics. 2014; 30:1522-1529.
    • (2014) Bioinformatics. , vol.30 , pp. 1522-1529
    • Guo, S.H.1    Deng, E.Z.2    Xu, L.Q.3    Ding, H.4    Lin, H.5    Chen, W.6
  • 22
    • 84892958175 scopus 로고    scopus 로고
    • iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components
    • Qiu WR, Xiao X. iRSpot-TNCPseAAC: Identify recombination spots with trinucleotide composition and pseudo amino acid components. Int J Mol Sci (IJMS). 2014; 15:1746-1766.
    • (2014) Int J Mol Sci (IJMS). , vol.15 , pp. 1746-1766
    • Qiu, W.R.1    Xiao, X.2
  • 24
    • 84930570742 scopus 로고    scopus 로고
    • iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model
    • Qiu WR, Xiao X, Lin WZ. iUbiq-Lys: Prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a grey system model Journal of Biomolecular Structure and Dynamics (JBSD) 2015; 33:1731-1742.
    • (2015) Journal of Biomolecular Structure and Dynamics (JBSD) , vol.33 , pp. 1731-1742
    • Qiu, W.R.1    Xiao, X.2    Lin, W.Z.3
  • 25
    • 84928722799 scopus 로고    scopus 로고
    • iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC
    • Jia J, Liu Z, Xiao X. iPPI-Esml: an ensemble classifier for identifying the interactions of proteins by incorporating their physicochemical properties and wavelet transforms into PseAAC. J Theor Biol. 2015; 377:47-56.
    • (2015) J Theor Biol. , vol.377 , pp. 47-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3
  • 26
    • 84926631457 scopus 로고    scopus 로고
    • Identification of real microRNA precursors with a pseudo structure status composition approach
    • Liu B, Fang L, Liu F, Wang X. Identification of real microRNA precursors with a pseudo structure status composition approach. PLoS ONE. 2015; 10:e0121501.
    • (2015) PLoS ONE. , vol.10
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4
  • 27
    • 84942246769 scopus 로고    scopus 로고
    • iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition
    • Analytical Biochemistry (also, Data in Brief, 2015, 5:376-378)
    • Chen W, Feng P, Ding H. iRNA-Methyl: Identifying N6-methyladenosine sites using pseudo nucleotide composition Analytical Biochemistry (also, Data in Brief, 2015, 5:376-378). 2015; 490:26-33.
    • (2015) , vol.490 , pp. 26-33
    • Chen, W.1    Feng, P.2    Ding, H.3
  • 28
    • 84942244470 scopus 로고    scopus 로고
    • Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy
    • Liu B, Fang L, Wang S, Wang X. Identification of microRNA precursor with the degenerate K-tuple or Kmer strategy Journal of Theoretical Biology. 2015; 385:153-159.
    • (2015) Journal of Theoretical Biology. , vol.385 , pp. 153-159
    • Liu, B.1    Fang, L.2    Wang, S.3    Wang, X.4
  • 29
    • 84962263478 scopus 로고    scopus 로고
    • iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition
    • Liu B, Fang L, Long R, Lan X. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition Bioinformatics. 2016; 32:362-389.
    • (2016) Bioinformatics , vol.32 , pp. 362-389
    • Liu, B.1    Fang, L.2    Long, R.3    Lan, X.4
  • 30
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review)
    • Chou KC. Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). J Theor Biol. 2011; 273:236-247.
    • (2011) J Theor Biol. , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 31
    • 34548606295 scopus 로고    scopus 로고
    • Review: Recent progresses in protein subcellular location prediction
    • Chou KC, Shen HB. Review: Recent progresses in protein subcellular location prediction. Anal Biochem. 2007; 370:1-16.
    • (2007) Anal Biochem. , vol.370 , pp. 1-16
    • Chou, K.C.1    Shen, H.B.2
  • 34
    • 0019021450 scopus 로고
    • Graphical rules for enzyme-catalyzed rate laws
    • Forsen S. Graphical rules for enzyme-catalyzed rate laws. Biochem J. 1980; 187:829-835.
    • (1980) Biochem J. , vol.187 , pp. 829-835
    • Forsen, S.1
  • 35
    • 0019250029 scopus 로고
    • A new schematic method in enzyme kinetics
    • Chou KC. A new schematic method in enzyme kinetics. Eur J Biochem. 1980; 113:195-198.
    • (1980) Eur J Biochem. , vol.113 , pp. 195-198
    • Chou, K.C.1
  • 36
    • 0019413602 scopus 로고
    • Graphical rules for non-steady state enzyme kinetics
    • Liu WM. Graphical rules for non-steady state enzyme kinetics. J Theor Biol. 1981; 91:637-654.
    • (1981) J Theor Biol. , vol.91 , pp. 637-654
    • Liu, W.M.1
  • 37
    • 0021764092 scopus 로고
    • An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways
    • Zhou GP, Deng MH. An extension of Chou's graphic rules for deriving enzyme kinetic equations to systems involving parallel reaction pathways. Biochem J. 1984; 222:169-176.
    • (1984) Biochem J. , vol.222 , pp. 169-176
    • Zhou, G.P.1    Deng, M.H.2
  • 38
    • 0024971003 scopus 로고
    • Graphic rules in steady and non-steady enzyme kinetics
    • Chou KC. Graphic rules in steady and non-steady enzyme kinetics. J Biol Chem. 1989; 264:12074-12079.
    • (1989) J Biol Chem. , vol.264 , pp. 12074-12079
    • Chou, K.C.1
  • 39
    • 0025021607 scopus 로고
    • Review: Applications of graph theory to enzyme kinetics and protein folding kinetics
    • Chou KC. Review: Applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophysical Chemistry. 1990; 35:1-24.
    • (1990) Steady and non-steady state systems. Biophysical Chemistry. , vol.35 , pp. 1-24
    • Chou, K.C.1
  • 40
    • 70349613231 scopus 로고    scopus 로고
    • FoldRate: A web-server for predicting protein folding rates from primary sequence
    • Shen HB. FoldRate: A web-server for predicting protein folding rates from primary sequence. The Open Bioinformatics Journal. 2009; 3:31-50.
    • (2009) The Open Bioinformatics Journal. , vol.3 , pp. 31-50
    • Shen, H.B.1
  • 41
    • 69949110263 scopus 로고    scopus 로고
    • Prediction of protein folding rates from primary sequence by fusing multiple sequential features
    • Shen HB, Song JN. Prediction of protein folding rates from primary sequence by fusing multiple sequential features Journal of Biomedical Science and Engineering (JBiSE). 2009; 2: 136-143.
    • (2009) Journal of Biomedical Science and Engineering (JBiSE) , vol.2 , pp. 136-143
    • Shen, H.B.1    Song, J.N.2
  • 42
    • 77649339280 scopus 로고    scopus 로고
    • Review: recent advances in developing web-servers for predicting protein attributes
    • Chou KC, Shen HB. Review: recent advances in developing web-servers for predicting protein attributes. Natural Science. 2009; 1:63-92.
    • (2009) Natural Science. , vol.1 , pp. 63-92
    • Chou, K.C.1    Shen, H.B.2
  • 47
    • 0028071544 scopus 로고
    • Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases
    • Kezdy FJ, Reusser F. Review: Steady-state inhibition kinetics of processive nucleic acid polymerases and nucleases. Anal Biochem. 1994; 221:217-230.
    • (1994) Anal Biochem. , vol.221 , pp. 217-230
    • Kezdy, F.J.1    Reusser, F.2
  • 48
    • 0343751815 scopus 로고
    • Graphical rules of steady-state reaction systems
    • Forsen S. Graphical rules of steady-state reaction systems. Can J Chem. 1981; 59:737-755.
    • (1981) Can J Chem. , vol.59 , pp. 737-755
    • Forsen, S.1
  • 49
    • 77952868004 scopus 로고    scopus 로고
    • Graphic rule for drug metabolism systems
    • Chou KC. Graphic rule for drug metabolism systems. Current Drug Metabolism. 2010; 11:369-378.
    • (2010) Current Drug Metabolism. , vol.11 , pp. 369-378
    • Chou, K.C.1
  • 50
    • 0027054450 scopus 로고
    • Diagrammatization of codon usage in 339 HIV proteins and its biological implication
    • Chou KC, Zhang CT. Diagrammatization of codon usage in 339 HIV proteins and its biological implication. AIDS Research and Human Retroviruses. 1992; 8:1967-1976.
    • (1992) AIDS Research and Human Retroviruses. , vol.8 , pp. 1967-1976
    • Chou, K.C.1    Zhang, C.T.2
  • 51
    • 0027312593 scopus 로고
    • Graphic analysis of codon usage strategy in 1490 human proteins
    • Zhang CT. Graphic analysis of codon usage strategy in 1490 human proteins. J Protein Chem. 1993; 12:329-335.
    • (1993) J Protein Chem. , vol.12 , pp. 329-335
    • Zhang, C.T.1
  • 52
    • 0028237028 scopus 로고
    • Analysis of codon usage in 1562 E. Coli protein coding sequences
    • Zhang CT, Chou KC. Analysis of codon usage in 1562 E. Coli protein coding sequences. J Mol Biol. 1994; 238:1-8.
    • (1994) J Mol Biol. , vol.238 , pp. 1-8
    • Zhang, C.T.1    Chou, K.C.2
  • 54
    • 77955673069 scopus 로고    scopus 로고
    • 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids
    • Wu ZC, Xiao X. 2D-MH: A web-server for generating graphic representation of protein sequences based on the physicochemical properties of their constituent amino acids. J Theor Biol. 2010; 267:29-34.
    • (2010) J Theor Biol. , vol.267 , pp. 29-34
    • Wu, Z.C.1    Xiao, X.2
  • 55
    • 84859342767 scopus 로고    scopus 로고
    • Wenxiang: a web-server for drawing wenxiang diagrams
    • Chou KC, Lin WZ, Xiao X. Wenxiang: a web-server for drawing wenxiang diagrams Natural Science. 2011; 3:862-865.
    • (2011) Natural Science , vol.3 , pp. 862-865
    • Chou, K.C.1    Lin, W.Z.2    Xiao, X.3
  • 56
    • 79960604768 scopus 로고    scopus 로고
    • The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism
    • Zhou GP. The disposition of the LZCC protein residues in wenxiang diagram provides new insights into the protein-protein interaction mechanism. J Theor Biol. 2011; 284:142-148.
    • (2011) J Theor Biol. , vol.284 , pp. 142-148
    • Zhou, G.P.1
  • 57
    • 84878778648 scopus 로고    scopus 로고
    • The pH-Triggered Conversion of the PrP(c) to PrP(sc.)
    • Zhou GP, Huang RB. The pH-Triggered Conversion of the PrP(c) to PrP(sc.). Curr Top Med Chem. 2013; 13:1152-1163.
    • (2013) Curr Top Med Chem. , vol.13 , pp. 1152-1163
    • Zhou, G.P.1    Huang, R.B.2
  • 60
    • 0025743796 scopus 로고
    • Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes
    • Utsugi T, Schroit AJ, Connor J, Bucana CD, Fidler IJ. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer research. 1991; 51:3062-3066.
    • (1991) Cancer research. , vol.51 , pp. 3062-3066
    • Utsugi, T.1    Schroit, A.J.2    Connor, J.3    Bucana, C.D.4    Fidler, I.J.5
  • 61
    • 79955748813 scopus 로고    scopus 로고
    • Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework
    • Huang YB, Wang XF, Wang HY, Liu Y, Chen Y. Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework. Molecular cancer therapeutics. 2011; 10:416-426.
    • (2011) Molecular cancer therapeutics. , vol.10 , pp. 416-426
    • Huang, Y.B.1    Wang, X.F.2    Wang, H.Y.3    Liu, Y.4    Chen, Y.5
  • 62
    • 58149187882 scopus 로고    scopus 로고
    • APD2: the updated antimicrobial peptide database and its application in peptide design
    • Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic acids research. 2009; 37:D933-937.
    • (2009) Nucleic acids research. , vol.37 , pp. D933-937
    • Wang, G.1    Li, X.2    Wang, Z.3
  • 63
    • 0001216086 scopus 로고    scopus 로고
    • Epithelial antimicrobial peptides in host defense against infection
    • Bals R. Epithelial antimicrobial peptides in host defense against infection. Respiratory research. 2000; 1:141-150.
    • (2000) Respiratory research. , vol.1 , pp. 141-150
    • Bals, R.1
  • 64
    • 84870431038 scopus 로고    scopus 로고
    • CD-HIT: accelerated for clustering the next-generation sequencing data
    • Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012; 28:3150-3152.
    • (2012) Bioinformatics. , vol.28 , pp. 3150-3152
    • Fu, L.1    Niu, B.2    Zhu, Z.3    Wu, S.4    Li, W.5
  • 65
    • 84855641685 scopus 로고    scopus 로고
    • iLoc-Hum: Using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou KC, Wu ZC, Xiao X. iLoc-Hum: Using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Molecular Biosystems. 2012; 8:629-641.
    • (2012) Molecular Biosystems. , vol.8 , pp. 629-641
    • Chou, K.C.1    Wu, Z.C.2    Xiao, X.3
  • 67
    • 0001514262 scopus 로고
    • Statistics of local complexity in amino acid sequences and sequence databases
    • Wootton JC, Federhen S. Statistics of local complexity in amino acid sequences and sequence databases. Comput Chem. 1993; 17:149-163.
    • (1993) Comput Chem. , vol.17 , pp. 149-163
    • Wootton, J.C.1    Federhen, S.2
  • 69
    • 0027080161 scopus 로고
    • An optimization approach to predicting protein structural class from amino acid composition
    • Zhang CT. An optimization approach to predicting protein structural class from amino acid composition. Protein Science. 1992; 1:401-408.
    • (1992) Protein Science. , vol.1 , pp. 401-408
    • Zhang, C.T.1
  • 70
    • 0026636320 scopus 로고
    • A correlation coefficient method to predicting protein structural classes from amino acid compositions
    • Chou KC, Zhang CT. A correlation coefficient method to predicting protein structural classes from amino acid compositions. Eur J Biochem. 1992; 207:429-433.
    • (1992) Eur J Biochem. , vol.207 , pp. 429-433
    • Chou, K.C.1    Zhang, C.T.2
  • 71
    • 0027170793 scopus 로고
    • A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins
    • Chou JJ. A formulation for correlating properties of peptides and its application to predicting human immunodeficiency virus protease-cleavable sites in proteins. Biopolymers. 1993; 33:1405-1414.
    • (1993) Biopolymers. , vol.33 , pp. 1405-1414
    • Chou, J.J.1
  • 72
    • 0029595415 scopus 로고
    • Neural network prediction of the HIV-1 protease cleavage sites
    • Thompson TB, Zheng C. Neural network prediction of the HIV-1 protease cleavage sites. Journal of Theoretical Biology 177. 1995:369-379.
    • (1995) Journal of Theoretical Biology , vol.177 , pp. 369-379
    • Thompson, T.B.1    Zheng, C.2
  • 73
    • 0037233515 scopus 로고    scopus 로고
    • Subcellular location prediction of apoptosis proteins
    • Zhou GP, Doctor K. Subcellular location prediction of apoptosis proteins. Proteins: Struct, Funct, Genet. 2003; 50:44-48.
    • (2003) Proteins: Struct, Funct, Genet. , vol.50 , pp. 44-48
    • Zhou, G.P.1    Doctor, K.2
  • 74
    • 23944438427 scopus 로고    scopus 로고
    • Prediction of G-protein-coupled receptor classes
    • Chou KC. Prediction of G-protein-coupled receptor classes. Journal of Proteome Research. 2005; 4:1413-1418.
    • (2005) Journal of Proteome Research. , vol.4 , pp. 1413-1418
    • Chou, K.C.1
  • 75
    • 6344231856 scopus 로고    scopus 로고
    • SLLE for predicting membrane protein types
    • Wang M, Yang J, Xu ZJ. SLLE for predicting membrane protein types. J Theor Biol. 2005; 232:7-15.
    • (2005) J Theor Biol. , vol.232 , pp. 7-15
    • Wang, M.1    Yang, J.2    Xu, Z.J.3
  • 76
    • 22144487766 scopus 로고    scopus 로고
    • Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types
    • Shen HB. Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types. Biochemical & Biophysical Research Communications. 2005; 334:288-292.
    • (2005) Biochemical & Biophysical Research Communications. , vol.334 , pp. 288-292
    • Shen, H.B.1
  • 77
    • 34249318001 scopus 로고    scopus 로고
    • Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites
    • Chou KC, Shen HB. Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. Journal of Proteome Research. 2007; 6:1728-1734.
    • (2007) Journal of Proteome Research. , vol.6 , pp. 1728-1734
    • Chou, K.C.1    Shen, H.B.2
  • 78
    • 79951606205 scopus 로고    scopus 로고
    • GPCR-2L: Predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions
    • Xiao X, Wang P. GPCR-2L: Predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions. Molecular Biosystems. 2011; 7:911-919.
    • (2011) Molecular Biosystems. , vol.7 , pp. 911-919
    • Xiao, X.1    Wang, P.2
  • 79
    • 80051676719 scopus 로고    scopus 로고
    • NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features
    • Wang P, Xiao X. NR-2L: A Two-Level Predictor for Identifying Nuclear Receptor Subfamilies Based on Sequence-Derived Features. PLoS ONE. 2011; 6:e23505.
    • (2011) PLoS ONE. , vol.6
    • Wang, P.1    Xiao, X.2
  • 80
    • 78649326452 scopus 로고    scopus 로고
    • AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties
    • Kandaswamy KK, Moller S, Suganthan PN, Sridharan S, Pugalenthi G. AFP-Pred: A random forest approach for predicting antifreeze proteins from sequence-derived properties. J Theor Biol. 2011; 270:56-62.
    • (2011) J Theor Biol. , vol.270 , pp. 56-62
    • Kandaswamy, K.K.1    Moller, S.2    Suganthan, P.N.3    Sridharan, S.4    Pugalenthi, G.5
  • 81
    • 84873575437 scopus 로고    scopus 로고
    • iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • Xu Y, Ding J, Wu LY. iSNO-PseAAC: Predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition PLoS ONE. 2013; 8:e55844.
    • (2013) PLoS ONE. , vol.8
    • Xu, Y.1    Ding, J.2    Wu, L.Y.3
  • 82
    • 84877758233 scopus 로고    scopus 로고
    • Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems
    • Chou KC. Some Remarks on Predicting Multi-Label Attributes in Molecular Biosystems. Molecular Biosystems. 2013; 9:1092-1100.
    • (2013) Molecular Biosystems. , vol.9 , pp. 1092-1100
    • Chou, K.C.1
  • 83
    • 84892954329 scopus 로고    scopus 로고
    • Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection
    • Liu B, Zhang D, Xu R, Xu J, Wang X. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics. 2014; 30:472-479.
    • (2014) Bioinformatics. , vol.30 , pp. 472-479
    • Liu, B.1    Zhang, D.2    Xu, R.3    Xu, J.4    Wang, X.5
  • 84
    • 0022631926 scopus 로고
    • The folding type of a protein is relevant to the amino acid composition
    • Nakashima H, Nishikawa K, Ooi T. The folding type of a protein is relevant to the amino acid composition. J Biochem. 1986; 99:152-162.
    • (1986) J Biochem. , vol.99 , pp. 152-162
    • Nakashima, H.1    Nishikawa, K.2    Ooi, T.3
  • 85
    • 0022777472 scopus 로고
    • Prediction of protein structural class from amino acid sequence
    • Klein P, Delisi C. Prediction of protein structural class from amino acid sequence. Biopolymers. 1986; 25:1659-1672.
    • (1986) Biopolymers. , vol.25 , pp. 1659-1672
    • Klein, P.1    Delisi, C.2
  • 86
    • 0031588694 scopus 로고    scopus 로고
    • Relation between amino acid composition and cellular location of proteins
    • Cedano J, Aloy P, Perez-Pons JA, Querol E. Relation between amino acid composition and cellular location of proteins. J Mol Biol. 1997; 266:594-600.
    • (1997) J Mol Biol. , vol.266 , pp. 594-600
    • Cedano, J.1    Aloy, P.2    Perez-Pons, J.A.3    Querol, E.4
  • 87
    • 54749084166 scopus 로고    scopus 로고
    • An intriguing controversy over protein structural class prediction
    • Zhou GP. An intriguing controversy over protein structural class prediction. J Protein Chem. 1998; 17:729-738.
    • (1998) J Protein Chem. , vol.17 , pp. 729-738
    • Zhou, G.P.1
  • 89
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou KC. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005; 21:10-19.
    • (2005) Bioinformatics. , vol.21 , pp. 10-19
    • Chou, K.C.1
  • 90
    • 84883658706 scopus 로고    scopus 로고
    • Theoretical and experimental biology in one -A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers
    • Lin SX, Lapointe J. Theoretical and experimental biology in one -A symposium in honour of Professor Kuo-Chen Chou's 50th anniversary and Professor Richard Giegé's 40th anniversary of their scientific careers. J Biomedical Science and Engineering (JBiSE). 2013; 6:435-442.
    • (2013) J Biomedical Science and Engineering (JBiSE). , vol.6 , pp. 435-442
    • Lin, S.X.1    Lapointe, J.2
  • 91
    • 84875576158 scopus 로고    scopus 로고
    • propy: a tool to generate various modes of Chou's PseAAC
    • Cao DS, Xu QS, Liang YZ. propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics. 2013; 29:960-962.
    • (2013) Bioinformatics. , vol.29 , pp. 960-962
    • Cao, D.S.1    Xu, Q.S.2    Liang, Y.Z.3
  • 92
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
    • Du P, Gu S, Jiao Y. PseAAC-General: Fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. International Journal of Molecular Sciences. 2014; 15:3495-3506.
    • (2014) International Journal of Molecular Sciences. , vol.15 , pp. 3495-3506
    • Du, P.1    Gu, S.2    Jiao, Y.3
  • 93
    • 34548439881 scopus 로고    scopus 로고
    • Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes
    • Zhou XB, Chen C, Li ZC, Zou XY. Using Chou's amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol. 2007; 248:546-551.
    • (2007) J Theor Biol. , vol.248 , pp. 546-551
    • Zhou, X.B.1    Chen, C.2    Li, Z.C.3    Zou, X.Y.4
  • 94
    • 77649337793 scopus 로고    scopus 로고
    • Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses
    • Esmaeili M, Mohabatkar H, Mohsenzadeh S. Using the concept of Chou's pseudo amino acid composition for risk type prediction of human papillomaviruses. J Theor Biol. 2010; 263:203-209.
    • (2010) J Theor Biol. , vol.263 , pp. 203-209
    • Esmaeili, M.1    Mohabatkar, H.2    Mohsenzadeh, S.3
  • 95
    • 78649324596 scopus 로고    scopus 로고
    • A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction
    • Sahu SS, Panda G. A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction. Computational Biology and Chemistry. 2010; 34:320-327.
    • (2010) Computational Biology and Chemistry. , vol.34 , pp. 320-327
    • Sahu, S.S.1    Panda, G.2
  • 96
    • 79955564229 scopus 로고    scopus 로고
    • Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
    • Mohabatkar H, Mohammad Beigi M, Esmaeili A. Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine. J Theor Biol. 2011; 281:18-23.
    • (2011) J Theor Biol. , vol.281 , pp. 18-23
    • Mohabatkar, H.1    Mohammad Beigi, M.2    Esmaeili, A.3
  • 97
    • 84855690179 scopus 로고    scopus 로고
    • Prediction of metalloproteinase family based on the concept of Chou's pseudo amino acid composition using a machine learning approach
    • Mohammad Beigi M, Behjati M, Mohabatkar H. Prediction of metalloproteinase family based on the concept of Chou's pseudo amino acid composition using a machine learning approach. Journal of Structural and Functional Genomics. 2011; 12:191-197.
    • (2011) Journal of Structural and Functional Genomics. , vol.12 , pp. 191-197
    • Mohammad Beigi, M.1    Behjati, M.2    Mohabatkar, H.3
  • 98
    • 84856475734 scopus 로고    scopus 로고
    • Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information
    • Nanni L, Lumini A, Gupta D, Garg A. Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou's pseudo amino acid composition and on evolutionary information. IEEE-ACM Transaction on Computational Biolology and Bioinformatics. 2012; 9:467-475.
    • (2012) IEEE-ACM Transaction on Computational Biolology and Bioinformatics. , vol.9 , pp. 467-475
    • Nanni, L.1    Lumini, A.2    Gupta, D.3    Garg, A.4
  • 99
    • 84888000439 scopus 로고    scopus 로고
    • An alignment-free method to find similarity among protein sequences via the general form of Chou's pseudo amino acid composition
    • Gupta MK, Niyogi R, Misra M. An alignment-free method to find similarity among protein sequences via the general form of Chou's pseudo amino acid composition. SAR QSAR Environ Res. 2013; 24:597-609.
    • (2013) SAR QSAR Environ Res. , vol.24 , pp. 597-609
    • Gupta, M.K.1    Niyogi, R.2    Misra, M.3
  • 100
    • 84886433492 scopus 로고    scopus 로고
    • Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test
    • Hajisharifi Z, Piryaiee M, Mohammad Beigi M, Behbahani M, Mohabatkar H. Predicting anticancer peptides with Chou's pseudo amino acid composition and investigating their mutagenicity via Ames test. J Theor Biol. 2014; 341:34-40.
    • (2014) J Theor Biol. , vol.341 , pp. 34-40
    • Hajisharifi, Z.1    Piryaiee, M.2    Mohammad Beigi, M.3    Behbahani, M.4    Mohabatkar, H.5
  • 101
    • 84880994178 scopus 로고    scopus 로고
    • Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou's pseudo amino acid compositions
    • Huang C, Yuan JQ. Predicting protein subchloroplast locations with both single and multiple sites via three different modes of Chou's pseudo amino acid compositions. J Theor Biol. 2013; 335:205-212.
    • (2013) J Theor Biol. , vol.335 , pp. 205-212
    • Huang, C.1    Yuan, J.Q.2
  • 102
    • 84873572573 scopus 로고    scopus 로고
    • Prediction of Allergenic Proteins by Means of the Concept of Chou's Pseudo Amino Acid Composition and a Machine Learning Approach
    • Mohabatkar H, Beigi MM, Abdolahi K, Mohsenzadeh S. Prediction of Allergenic Proteins by Means of the Concept of Chou's Pseudo Amino Acid Composition and a Machine Learning Approach. Medicinal Chemistry. 2013; 9:133-137.
    • (2013) Medicinal Chemistry. , vol.9 , pp. 133-137
    • Mohabatkar, H.1    Beigi, M.M.2    Abdolahi, K.3    Mohsenzadeh, S.4
  • 103
    • 84911416290 scopus 로고    scopus 로고
    • Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model
    • Khan ZU, Hayat M, Khan MA. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model. J Theor Biol. 2015; 365:197-203.
    • (2015) J Theor Biol. , vol.365 , pp. 197-203
    • Khan, Z.U.1    Hayat, M.2    Khan, M.A.3
  • 104
    • 84908072570 scopus 로고    scopus 로고
    • Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC
    • Dehzangi A, Heffernan R, Sharma A, Lyons J, Paliwal K, Sattar A. Gram-positive and Gram-negative protein subcellular localization by incorporating evolutionary-based descriptors into Chou's general PseAAC. J Theor Biol. 2015; 364:284-294.
    • (2015) J Theor Biol. , vol.364 , pp. 284-294
    • Dehzangi, A.1    Heffernan, R.2    Sharma, A.3    Lyons, J.4    Paliwal, K.5    Sattar, A.6
  • 105
    • 84908628104 scopus 로고    scopus 로고
    • Prediction of beta-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine
    • Kumar R, Srivastava A, Kumari B, Kumar M. Prediction of beta-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine. J Theor Biol. 2015; 365:96-103.
    • (2015) J Theor Biol. , vol.365 , pp. 96-103
    • Kumar, R.1    Srivastava, A.2    Kumari, B.3    Kumar, M.4
  • 106
    • 84939476364 scopus 로고    scopus 로고
    • MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier
    • Wang X, Zhang W, Zhang Q, Li GZ. MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou's pseudo amino acid composition and a novel multi-label classifier. Bioinformatics. 2015; 31:2639-2645.
    • (2015) Bioinformatics. , vol.31 , pp. 2639-2645
    • Wang, X.1    Zhang, W.2    Zhang, Q.3    Li, G.Z.4
  • 107
    • 84925498137 scopus 로고    scopus 로고
    • Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou's PseAAC
    • Mandal M, Mukhopadhyay A, Maulik U. Prediction of protein subcellular localization by incorporating multiobjective PSO-based feature subset selection into the general form of Chou's PseAAC. Medical & biological engineering & computing. 2015; 53:331-344.
    • (2015) Medical & biological engineering & computing. , vol.53 , pp. 331-344
    • Mandal, M.1    Mukhopadhyay, A.2    Maulik, U.3
  • 109
    • 84941783146 scopus 로고    scopus 로고
    • Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences
    • Chen W, Lin H, Chou KC. Pseudo nucleotide composition or PseKNC: an effective formulation for analyzing genomic sequences. Mol BioSyst. 2015; 11:2620-2634.
    • (2015) Mol BioSyst. , vol.11 , pp. 2620-2634
    • Chen, W.1    Lin, H.2    Chou, K.C.3
  • 111
    • 84926619444 scopus 로고    scopus 로고
    • Impacts of bioinformatics to medicinal chemistry
    • Chou KC. Impacts of bioinformatics to medicinal chemistry. Medicinal Chemistry. 2015; 11:218-234.
    • (2015) Medicinal Chemistry. , vol.11 , pp. 218-234
    • Chou, K.C.1
  • 112
    • 84962586763 scopus 로고    scopus 로고
    • Recent progress in predicting posttranslational modification sites in proteins
    • Xu Y. Recent progress in predicting posttranslational modification sites in proteins. Curr Top Med Chem. 2016; 16:591-603.
    • (2016) Curr Top Med Chem. , vol.16 , pp. 591-603
    • Xu, Y.1
  • 113
    • 84862831800 scopus 로고    scopus 로고
    • Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine
    • Chen W, Lin H. Identification of voltage-gated potassium channel subfamilies from sequence information using support vector machine. Computers in biology and medicine. 2012; 42:504-507.
    • (2012) Computers in biology and medicine. , vol.42 , pp. 504-507
    • Chen, W.1    Lin, H.2
  • 114
    • 78650209947 scopus 로고    scopus 로고
    • Prediction of thermophilic proteins using feature selection technique
    • Lin H, Chen W. Prediction of thermophilic proteins using feature selection technique. Journal of microbiological methods. 2011; 84:67-70.
    • (2011) Journal of microbiological methods. , vol.84 , pp. 67-70
    • Lin, H.1    Chen, W.2
  • 115
    • 84903592187 scopus 로고    scopus 로고
    • iCTX-Type: A Sequence-Based Predictor for Identifying the Types of Conotoxins in Targeting Ion Channels
    • 286419
    • Ding H, Deng EZ, Yuan LF, Liu L. iCTX-Type: A Sequence-Based Predictor for Identifying the Types of Conotoxins in Targeting Ion Channels. BioMed research international. 2014; 2014:286419.
    • (2014) BioMed research international. , vol.2014
    • Ding, H.1    Deng, E.Z.2    Yuan, L.F.3    Liu, L.4
  • 116
    • 84903784979 scopus 로고    scopus 로고
    • Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis
    • Ding H, Feng PM, Chen W, Lin H. Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis. Molecular bioSystems. 2014; 10:2229-2235.
    • (2014) Molecular bioSystems. , vol.10 , pp. 2229-2235
    • Ding, H.1    Feng, P.M.2    Chen, W.3    Lin, H.4
  • 117
    • 84885112194 scopus 로고    scopus 로고
    • AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes
    • Lin H, Chen W, Ding H. AcalPred: a sequence-based tool for discriminating between acidic and alkaline enzymes. PloS one. 2013; 8:e75726.
    • (2013) PloS one. , vol.8
    • Lin, H.1    Chen, W.2    Ding, H.3
  • 118
    • 0033406884 scopus 로고    scopus 로고
    • Protein secondary structural content prediction
    • Liu W. Protein secondary structural content prediction. Protein Eng. 1999; 12:1041-1050.
    • (1999) Protein Eng. , vol.12 , pp. 1041-1050
    • Liu, W.1
  • 119
    • 84899856397 scopus 로고    scopus 로고
    • iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
    • Xu Y, Wen X, Shao XJ. iHyd-PseAAC: Predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int J Mol Sci. 2014; 15:7594-7610.
    • (2014) Int J Mol Sci. , vol.15 , pp. 7594-7610
    • Xu, Y.1    Wen, X.2    Shao, X.J.3
  • 120
    • 84885156363 scopus 로고    scopus 로고
    • iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
    • Xu Y, Shao XJ, Wu LY, Deng NY. iSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins. PeerJ. 2013; 1:e171.
    • (2013) PeerJ. , vol.1 , pp. e171
    • Xu, Y.1    Shao, X.J.2    Wu, L.Y.3    Deng, N.Y.4
  • 121
    • 84890876239 scopus 로고    scopus 로고
    • A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC
    • Han GS, Yu ZG, Anh V. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. J Theor Biol. 2014; 344:31-39.
    • (2014) J Theor Biol. , vol.344 , pp. 31-39
    • Han, G.S.1    Yu, Z.G.2    Anh, V.3
  • 122
    • 84941040066 scopus 로고    scopus 로고
    • iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition
    • Lin H, Deng EZ, Ding H, Chen W, Chou KC. iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res. 2014; 42:12961-12972.
    • (2014) Nucleic Acids Res. , vol.42 , pp. 12961-12972
    • Lin, H.1    Deng, E.Z.2    Ding, H.3    Chen, W.4    Chou, K.C.5
  • 123
    • 84938953300 scopus 로고    scopus 로고
    • iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach
    • Xiao X, Min JL, Lin WZ, Liu Z. iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach. Journal of Biomolecular Structure & Dynamics (JBSD). 2015; 33:2221-2233.
    • (2015) Journal of Biomolecular Structure & Dynamics (JBSD). , vol.33 , pp. 2221-2233
    • Xiao, X.1    Min, J.L.2    Lin, W.Z.3    Liu, Z.4
  • 124
    • 84954388556 scopus 로고    scopus 로고
    • iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach
    • Liu B, Fang L, Liu F, Wang X. iMiRNA-PseDPC: microRNA precursor identification with a pseudo distance-pair composition approach. Journal of Biomolecular Structure & Dynamics (JBSD). 2016; 34:223-235.
    • (2016) Journal of Biomolecular Structure & Dynamics (JBSD). , vol.34 , pp. 223-235
    • Liu, B.1    Fang, L.2    Liu, F.3    Wang, X.4
  • 125
    • 0037195776 scopus 로고    scopus 로고
    • Using functional domain composition and support vector machines for prediction of protein subcellular location
    • Chou KC, Cai YD. Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem. 2002; 277:45765-45769.
    • (2002) J Biol Chem. , vol.277 , pp. 45765-45769
    • Chou, K.C.1    Cai, Y.D.2
  • 126
    • 0038636605 scopus 로고    scopus 로고
    • Support vector machines for predicting membrane protein types by using functional domain composition
    • Cai YD, Zhou GP. Support vector machines for predicting membrane protein types by using functional domain composition. Biophys J. 2003; 84:3257-3263.
    • (2003) Biophys J. , vol.84 , pp. 3257-3263
    • Cai, Y.D.1    Zhou, G.P.2
  • 127
    • 0003798635 scopus 로고    scopus 로고
    • An introduction of Support Vector Machines and other kernel-based learning methodds
    • Cambridge, UK: Cambridge University Press
    • Cristianini N, Shawe-Taylor J. An introduction of Support Vector Machines and other kernel-based learning methodds. (Cambridge, UK: Cambridge University Press). 2000.
    • (2000)
    • Cristianini, N.1    Shawe-Taylor, J.2
  • 128
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Chang C, Lin J. LIBSVM: a library for support vector machines. http://www.csientuedutw/~cjlin/libsvm/. 2001.
    • (2001)
    • Chang, C.1    Lin, J.2
  • 129
    • 0029157083 scopus 로고
    • Review: Prediction of protein structural classes
    • Chou KC, Zhang CT. Review: Prediction of protein structural classes. Crit Rev Biochem Mol Biol. 1995; 30:275-349.
    • (1995) Crit Rev Biochem Mol Biol. , vol.30 , pp. 275-349
    • Chou, K.C.1    Zhang, C.T.2
  • 130
    • 18344391868 scopus 로고    scopus 로고
    • Prediction of membrane protein types by incorporating amphipathic effects
    • Chou KC, Cai YD. Prediction of membrane protein types by incorporating amphipathic effects. Journal of Chemical Information and Modeling. 2005; 45:407-413.
    • (2005) Journal of Chemical Information and Modeling. , vol.45 , pp. 407-413
    • Chou, K.C.1    Cai, Y.D.2
  • 131
    • 33847260136 scopus 로고    scopus 로고
    • Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells
    • Shen HB. Virus-PLoc: A fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers. 2007; 85:233-240.
    • (2007) Biopolymers. , vol.85 , pp. 233-240
    • Shen, H.B.1
  • 132
    • 84868128310 scopus 로고    scopus 로고
    • iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties
    • Chen W, Lin H, Feng PM, Ding C. iNuc-PhysChem: A Sequence-Based Predictor for Identifying Nucleosomes via Physicochemical Properties. PLoS ONE. 2012; 7:e47843.
    • (2012) PLoS ONE. , vol.7
    • Chen, W.1    Lin, H.2    Feng, P.M.3    Ding, C.4
  • 133
    • 84868109035 scopus 로고    scopus 로고
    • Identifying protein quaternary structural attributes by incorporating physicochemical properties into the general form of Chou's PseAAC via discrete wavelet transform
    • Sun XY, Shi SP, Qiu JD, Suo SB, Huang SY, Liang RP. Identifying protein quaternary structural attributes by incorporating physicochemical properties into the general form of Chou's PseAAC via discrete wavelet transform. Molecular BioSystems. 2012; 8:3178-3184.
    • (2012) Molecular BioSystems. , vol.8 , pp. 3178-3184
    • Sun, X.Y.1    Shi, S.P.2    Qiu, J.D.3    Suo, S.B.4    Huang, S.Y.5    Liang, R.P.6
  • 134
    • 84955690130 scopus 로고    scopus 로고
    • iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples
    • Kabir M, Hayat M. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples. Molecular genetics and genomics. 2016; 291:285-296.
    • (2016) Molecular genetics and genomics. , vol.291 , pp. 285-296
    • Kabir, M.1    Hayat, M.2
  • 135
    • 0035030201 scopus 로고    scopus 로고
    • Using subsite coupling to predict signal peptides
    • Chou KC. Using subsite coupling to predict signal peptides. Protein Eng. 2001; 14:75-79.
    • (2001) Protein Eng. , vol.14 , pp. 75-79
    • Chou, K.C.1
  • 136
    • 85000869394 scopus 로고    scopus 로고
    • iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets
    • Jia J, Liu Z, Xiao X, Liu B. iPPBS-Opt: A Sequence-Based Ensemble Classifier for Identifying Protein-Protein Binding Sites by Optimizing Imbalanced Training Datasets. Molecules. 2016; 21:95.
    • (2016) Molecules. , vol.21 , pp. 95
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 137
    • 84961384421 scopus 로고    scopus 로고
    • iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
    • Jia J, Liu Z, Xiao X, Liu B. iSuc-PseOpt: Identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset Anal Biochem. 2016; 497:48-56.
    • (2016) Anal Biochem. , vol.497 , pp. 48-56
    • Jia, J.1    Liu, Z.2    Xiao, X.3    Liu, B.4
  • 138
    • 84956829573 scopus 로고    scopus 로고
    • pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties
    • Liu Z, Xiao X, Yu DJ, Jia J, Qiu WR. pRNAm-PC: Predicting N-methyladenosine sites in RNA sequences via physical-chemical properties Anal Biochem. 2016; 497:60-67.
    • (2016) Anal Biochem. , vol.497 , pp. 60-67
    • Liu, Z.1    Xiao, X.2    Yu, D.J.3    Jia, J.4    Qiu, W.R.5
  • 139
    • 84958059324 scopus 로고    scopus 로고
    • Using deformation energy to analyze nucleosome positioning in genomes
    • Chen W, Feng P, Ding H, Lin H. Using deformation energy to analyze nucleosome positioning in genomes. Genomics. 2016; 107:69-75.
    • (2016) Genomics. , vol.107 , pp. 69-75
    • Chen, W.1    Feng, P.2    Ding, H.3    Lin, H.4
  • 140
    • 0027219970 scopus 로고
    • A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins
    • Chou KC. A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem. 1993; 268:16938-16948.
    • (1993) J Biol Chem. , vol.268 , pp. 16938-16948
    • Chou, K.C.1
  • 141
    • 84874928986 scopus 로고    scopus 로고
    • iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins
    • Lin WZ, Fang JA, Xiao X. iLoc-Animal: A multi-label learning classifier for predicting subcellular localization of animal proteins Molecular BioSystems. 2013; 9:634-644.
    • (2013) Molecular BioSystems , vol.9 , pp. 634-644
    • Lin, W.Z.1    Fang, J.A.2    Xiao, X.3
  • 142
    • 79959667141 scopus 로고    scopus 로고
    • iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites
    • Xiao X, Wu ZC. iLoc-Virus: A multi-label learning classifier for identifying the subcellular localization of virus proteins with both single and multiple sites. J Theor Biol. 2011; 284:42-51.
    • (2011) J Theor Biol. , vol.284 , pp. 42-51
    • Xiao, X.1    Wu, Z.C.2
  • 143
    • 84875074764 scopus 로고    scopus 로고
    • iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types
    • Xiao X, Wang P, Lin WZ. iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem. 2013; 436:168-177.
    • (2013) Anal Biochem. , vol.436 , pp. 168-177
    • Xiao, X.1    Wang, P.2    Lin, W.Z.3
  • 144
    • 77958586156 scopus 로고    scopus 로고
    • Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition
    • Lin H, Ding H. Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol. 2011; 269:64-69.
    • (2011) J Theor Biol. , vol.269 , pp. 64-69
    • Lin, H.1    Ding, H.2
  • 145
    • 84862499641 scopus 로고    scopus 로고
    • Prediction of Protein Domain with mRMR Feature Selection and Analysis
    • Li BQ, Hu LL, Chen L, Feng KY. Prediction of Protein Domain with mRMR Feature Selection and Analysis. PLoS One. 2012; 7:e39308.
    • (2012) PLoS One. , vol.7
    • Li, B.Q.1    Hu, L.L.2    Chen, L.3    Feng, K.Y.4
  • 147
    • 84859298511 scopus 로고    scopus 로고
    • Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network
    • Li BQ, Huang T, Liu L. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. PLoS ONE. 2012; 7:e33393.
    • (2012) PLoS ONE. , vol.7
    • Li, B.Q.1    Huang, T.2    Liu, L.3
  • 148
    • 84859499974 scopus 로고    scopus 로고
    • Hepatitis C virus network based classification of hepatocellular cirrhosis and carcinoma
    • Huang T, Wang J, Cai YD. Hepatitis C virus network based classification of hepatocellular cirrhosis and carcinoma. PLoS ONE. 2012; 7:e34460.
    • (2012) PLoS ONE. , vol.7
    • Huang, T.1    Wang, J.2    Cai, Y.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.