메뉴 건너뛰기




Volumn 365, Issue , 2015, Pages 96-103

Prediction of β-lactamase and its class by Chou's pseudo-amino acid composition and support vector machine

Author keywords

Antibiotic resistance; Leave one out cross validation; Lactamase protein

Indexed keywords

AMINO ACID; BETA LACTAMASE; ANTIINFECTIVE AGENT; BETA LACTAM;

EID: 84908628104     PISSN: 00225193     EISSN: 10958541     Source Type: Journal    
DOI: 10.1016/j.jtbi.2014.10.008     Document Type: Article
Times cited : (118)

References (85)
  • 2
    • 67849122320 scopus 로고    scopus 로고
    • MEME SUITE: tools for motif discovery and searching
    • Bailey T.L., et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009, 37:W202-W208.
    • (2009) Nucleic Acids Res. , vol.37 , pp. W202-W208
    • Bailey, T.L.1
  • 3
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • Bock J.R., Gough D.A. Predicting protein-protein interactions from primary structure. Bioinformatics 2001, 17:455-460.
    • (2001) Bioinformatics , vol.17 , pp. 455-460
    • Bock, J.R.1    Gough, D.A.2
  • 4
    • 15744363403 scopus 로고    scopus 로고
    • Antibiotic resistance as a model for strain engineering
    • Bonomo J., Gill R.T. Antibiotic resistance as a model for strain engineering. Comput. Chem. Eng. 2005, 29:509-517.
    • (2005) Comput. Chem. Eng. , vol.29 , pp. 509-517
    • Bonomo, J.1    Gill, R.T.2
  • 5
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley A.E. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30:1145-1159.
    • (1997) Pattern Recognit. , vol.30 , pp. 1145-1159
    • Bradley, A.E.1
  • 6
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • Brown M.P., et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:262-267.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 262-267
    • Brown, M.P.1
  • 7
    • 84875576158 scopus 로고    scopus 로고
    • Propy: a tool to generate various modes of Chou's PseAAC
    • Cao D.S., et al. Propy: a tool to generate various modes of Chou's PseAAC. Bioinformatics 2013, 29:960-962.
    • (2013) Bioinformatics , vol.29 , pp. 960-962
    • Cao, D.S.1
  • 8
    • 84859732713 scopus 로고    scopus 로고
    • Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities
    • Chen L., et al. Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS One 2012, 7:e35254.
    • (2012) PLoS One , vol.7 , pp. e35254
    • Chen, L.1
  • 9
    • 84921500317 scopus 로고    scopus 로고
    • ITIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition
    • Chen W., et al. iTIS-PseTNC: a sequence-based predictor for identifying translation initiation site in human genes using pseudo trinucleotide composition. Anal. Biochem. 2014, 462:76-83.
    • (2014) Anal. Biochem. , vol.462 , pp. 76-83
    • Chen, W.1
  • 10
    • 84870215870 scopus 로고    scopus 로고
    • Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition
    • Chen Y.K., Li K.B. Predicting membrane protein types by incorporating protein topology, domains, signal peptides, and physicochemical properties into the general form of Chou's pseudo amino acid composition. J. Theor. Biol. 2013, 318:1-12.
    • (2013) J. Theor. Biol. , vol.318 , pp. 1-12
    • Chen, Y.K.1    Li, K.B.2
  • 11
    • 72449203319 scopus 로고    scopus 로고
    • Psedo amino acid composition and its application in bioinformatics, proteomics and system biology
    • Chou K.C. Psedo amino acid composition and its application in bioinformatics, proteomics and system biology. Curr. Proteomics 2009, 6:262-274.
    • (2009) Curr. Proteomics , vol.6 , pp. 262-274
    • Chou, K.C.1
  • 12
    • 0034687538 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by incorporating quasi-sequence-order effect
    • Chou K.C. Prediction of protein subcellular locations by incorporating quasi-sequence-order effect. Biochem. Biophys. Res. Commun. 2000, 278:477-483.
    • (2000) Biochem. Biophys. Res. Commun. , vol.278 , pp. 477-483
    • Chou, K.C.1
  • 13
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudo-amino acid composition
    • Chou K.C. Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 2001, 43:246-255.
    • (2001) Proteins , vol.43 , pp. 246-255
    • Chou, K.C.1
  • 14
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou K.C. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 2005, 21:10-19.
    • (2005) Bioinformatics , vol.21 , pp. 10-19
    • Chou, K.C.1
  • 15
    • 79951518208 scopus 로고    scopus 로고
    • Some remarks on protein attribute prediction and pseudo amino acid composition
    • Chou K.C. Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol. 2011, 273:236-247.
    • (2011) J. Theor. Biol. , vol.273 , pp. 236-247
    • Chou, K.C.1
  • 16
    • 84877758233 scopus 로고    scopus 로고
    • Some remarks on predicting multi-label attributes in molecular biosystems
    • Chou K.C. Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst. 2013, 9:1092-1100.
    • (2013) Mol. Biosyst. , vol.9 , pp. 1092-1100
    • Chou, K.C.1
  • 18
    • 0037195776 scopus 로고    scopus 로고
    • Using functional domain composition and support vector machines for prediction of protein subcellular location
    • Chou K.C., Cai Y.D. Using functional domain composition and support vector machines for prediction of protein subcellular location. J. Biol. Chem. 2002, 277:45765-45769.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45765-45769
    • Chou, K.C.1    Cai, Y.D.2
  • 19
    • 79953316878 scopus 로고    scopus 로고
    • ILoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins
    • Chou K.C., et al. iLoc-Euk: a multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS One 2011, 6:e18258.
    • (2011) PLoS One , vol.6 , pp. e18258
    • Chou, K.C.1
  • 20
    • 84855641685 scopus 로고    scopus 로고
    • ILoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites
    • Chou K.C., et al. iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst. 2012, 8:629-641.
    • (2012) Mol. Biosyst. , vol.8 , pp. 629-641
    • Chou, K.C.1
  • 21
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20:273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 22
    • 77957980707 scopus 로고    scopus 로고
    • Origins and evolution of antibiotic resistance
    • Davies J., Davies D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74:417-433.
    • (2010) Microbiol. Mol. Biol. Rev. , vol.74 , pp. 417-433
    • Davies, J.1    Davies, D.2
  • 23
    • 62449089680 scopus 로고    scopus 로고
    • Microbial drug discovery: 80 years of progress
    • Demain A.L., Sanchez S. Microbial drug discovery: 80 years of progress. J. Antibiot. (Tokyo) 2009, 62:5-16.
    • (2009) J. Antibiot. (Tokyo) , vol.62 , pp. 5-16
    • Demain, A.L.1    Sanchez, S.2
  • 24
    • 84903592187 scopus 로고    scopus 로고
    • ICTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels
    • Ding H., et al. iCTX-type: a sequence-based predictor for identifying the types of conotoxins in targeting ion channels. BioMed Res. Int. 2014, 2014:286419.
    • (2014) BioMed Res. Int. , vol.2014 , pp. 286419
    • Ding, H.1
  • 25
    • 84895429516 scopus 로고    scopus 로고
    • PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets
    • Du P., et al. PseAAC-General: fast building various modes of general form of Chou's pseudo-amino acid composition for large-scale protein datasets. Int. J. Mol. Sci. 2014, 15:3495-3506.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 3495-3506
    • Du, P.1
  • 26
    • 84859932176 scopus 로고    scopus 로고
    • PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions
    • Du P., et al. PseAAC-Builder: a cross-platform stand-alone program for generating various special Chou's pseudo-amino acid compositions. Anal. Biochem. 2012, 425:117-119.
    • (2012) Anal. Biochem. , vol.425 , pp. 117-119
    • Du, P.1
  • 27
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27:861-874.
    • (2006) Pattern Recognit. Lett. , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 28
    • 84878657414 scopus 로고    scopus 로고
    • Naive Bayes classifier with feature selection to identify phage virion proteins
    • Feng P.M., et al. Naive Bayes classifier with feature selection to identify phage virion proteins. Comput. Math. Methods Med. 2013, 2013:530696.
    • (2013) Comput. Math. Methods Med. , vol.2013 , pp. 530696
    • Feng, P.M.1
  • 29
    • 14844362964 scopus 로고    scopus 로고
    • Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity
    • Fisher J.F., et al. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem. Rev. 2005, 105:395-424.
    • (2005) Chem. Rev. , vol.105 , pp. 395-424
    • Fisher, J.F.1
  • 30
    • 77953469042 scopus 로고    scopus 로고
    • The determinants of the antibiotic resistance process
    • Franco B.E., et al. The determinants of the antibiotic resistance process. Infect. Drug Resist. 2009, 2:1-11.
    • (2009) Infect. Drug Resist. , vol.2 , pp. 1-11
    • Franco, B.E.1
  • 31
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., et al. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16:906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1
  • 32
    • 84896463976 scopus 로고    scopus 로고
    • INuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition
    • Guo S.H., et al. iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics 2014, 30:1522-1529.
    • (2014) Bioinformatics , vol.30 , pp. 1522-1529
    • Guo, S.H.1
  • 33
    • 21244488243 scopus 로고    scopus 로고
    • Revised Ambler classification of β-lactamases
    • Hall B.G., Barlow M. Revised Ambler classification of β-lactamases. J. Antimicrob. Chemother. 2005, 55:1050-1051.
    • (2005) J. Antimicrob. Chemother. , vol.55 , pp. 1050-1051
    • Hall, B.G.1    Barlow, M.2
  • 34
    • 84890876239 scopus 로고    scopus 로고
    • A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC
    • Han G.S., et al. A two-stage SVM method to predict membrane protein types by incorporating amino acid classifications and physicochemical properties into a general form of Chou's PseAAC. J. Theor. Biol. 2014, 344:31-39.
    • (2014) J. Theor. Biol. , vol.344 , pp. 31-39
    • Han, G.S.1
  • 35
    • 0033988277 scopus 로고    scopus 로고
    • Aminoglycoside resistance in Mycobacterium kansasii, Mycobacterium avium-M. intracellulare, and Mycobacterium fortuitum: are aminoglycoside-modifying enzymes responsible?
    • Ho I.I.Y., et al. Aminoglycoside resistance in Mycobacterium kansasii, Mycobacterium avium-M. intracellulare, and Mycobacterium fortuitum: are aminoglycoside-modifying enzymes responsible?. Antimicrob. Agents Chemother. 2000, 44:39-42.
    • (2000) Antimicrob. Agents Chemother. , vol.44 , pp. 39-42
    • Ho, I.I.Y.1
  • 36
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach
    • Hua S., Sun Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 2001, 308:397-407.
    • (2001) J. Mol. Biol. , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 37
    • 0025978407 scopus 로고
    • New mechanisms of bacterial resistance to antimicrobial agents
    • Jacoby G.A., Archer G.L. New mechanisms of bacterial resistance to antimicrobial agents. N. Engl. J. Med. 1991, 324:601-612.
    • (1991) N. Engl. J. Med. , vol.324 , pp. 601-612
    • Jacoby, G.A.1    Archer, G.L.2
  • 38
    • 84902299537 scopus 로고    scopus 로고
    • Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition
    • Jia C., et al. Prediction of protein S-nitrosylation sites based on adapted normal distribution bi-profile Bayes and Chou's pseudo amino acid composition. Int. J. Mol. Sci. 2014, 15:10410-10423.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 10410-10423
    • Jia, C.1
  • 39
  • 40
    • 73149120261 scopus 로고    scopus 로고
    • Beta-lactam antibiotics: from antibiosis to resistance and bacteriology
    • Kong K.F., et al. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS 2010, 118:1-36.
    • (2010) APMIS , vol.118 , pp. 1-36
    • Kong, K.F.1
  • 41
    • 62249106701 scopus 로고    scopus 로고
    • Prediction of nuclear proteins using SVM and HMM models
    • Kumar M., Raghava G.P. Prediction of nuclear proteins using SVM and HMM models. BMC Bioinf. 2009, 10:22.
    • (2009) BMC Bioinf. , vol.10 , pp. 22
    • Kumar, M.1    Raghava, G.P.2
  • 42
    • 33646852452 scopus 로고    scopus 로고
    • Prediction of mitochondrial proteins using support vector machine and hidden Markov model
    • Kumar M., et al. Prediction of mitochondrial proteins using support vector machine and hidden Markov model. J. Biol. Chem. 2006, 281:5357-5363.
    • (2006) J. Biol. Chem. , vol.281 , pp. 5357-5363
    • Kumar, M.1
  • 43
    • 38649127567 scopus 로고    scopus 로고
    • Identification of DNA-binding proteins using support vector machines and evolutionary profiles
    • Kumar M., et al. Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC Bioinf. 2007, 8:463.
    • (2007) BMC Bioinf. , vol.8 , pp. 463
    • Kumar, M.1
  • 44
    • 40549105098 scopus 로고    scopus 로고
    • Prediction of RNA binding sites in a protein using SVM and PSSM profile
    • Kumar M., et al. Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins 2008, 71:189-194.
    • (2008) Proteins , vol.71 , pp. 189-194
    • Kumar, M.1
  • 45
    • 78651338874 scopus 로고    scopus 로고
    • SVM based prediction of RNA-binding proteins using binding residues and evolutionary information
    • Kumar M., et al. SVM based prediction of RNA-binding proteins using binding residues and evolutionary information. J. Mol. Recognit. 2010, 24:303-313.
    • (2010) J. Mol. Recognit. , vol.24 , pp. 303-313
    • Kumar, M.1
  • 46
    • 84902477992 scopus 로고    scopus 로고
    • Protein sub-nuclear localization prediction using SVM and Pfam domain information
    • Kumar R., et al. Protein sub-nuclear localization prediction using SVM and Pfam domain information. PLoS One 2014, 9:e98345.
    • (2014) PLoS One , vol.9 , pp. e98345
    • Kumar, R.1
  • 47
    • 84895863095 scopus 로고    scopus 로고
    • PalmPred: an SVM based palmitoylation prediction method using sequence profile information
    • Kumari B., et al. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 2014, 9:e89246.
    • (2014) PLoS One , vol.9 , pp. e89246
    • Kumari, B.1
  • 48
    • 84856347308 scopus 로고    scopus 로고
    • Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches
    • Li B.Q., et al. Predict and analyze S-nitrosylation modification sites with the mRMR and IFS approaches. J. Proteomics 2012, 75:1654-1665.
    • (2012) J. Proteomics , vol.75 , pp. 1654-1665
    • Li, B.Q.1
  • 49
    • 84905513826 scopus 로고    scopus 로고
    • Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach
    • Li L., et al. Prediction of bacterial protein subcellular localization by incorporating various features into Chou's PseAAC and a backward feature selection approach. Biochimie 2014, 104:100-107.
    • (2014) Biochimie , vol.104 , pp. 100-107
    • Li, L.1
  • 50
    • 33745634395 scopus 로고    scopus 로고
    • Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
    • Li W., Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22:1658-1659.
    • (2006) Bioinformatics , vol.22 , pp. 1658-1659
    • Li, W.1    Godzik, A.2
  • 51
    • 84906975785 scopus 로고    scopus 로고
    • IDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition
    • Liu B., et al. iDNA-Prot|dis: identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced alphabet profile into the general pseudo amino acid composition. PLoS One 2014, 9:e106691.
    • (2014) PLoS One , vol.9 , pp. e106691
    • Liu, B.1
  • 52
    • 84892954329 scopus 로고    scopus 로고
    • Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection
    • Liu B., et al. Combining evolutionary information extracted from frequency profiles with sequence-based kernels for protein remote homology detection. Bioinformatics 2014, 30:472-479.
    • (2014) Bioinformatics , vol.30 , pp. 472-479
    • Liu, B.1
  • 54
    • 79960976768 scopus 로고    scopus 로고
    • UniProt Knowledgebase: A Hub of Integrated Protein Data. Database (Oxford) . bar009. 2011
    • Magrane, M. and UniProt Consortium, 2011. UniProt Knowledgebase: A Hub of Integrated Protein Data. Database (Oxford) 2011. bar009.
    • (2011)
    • Magrane, M.1
  • 55
    • 0036791919 scopus 로고    scopus 로고
    • Microbial and viral drug resistance mechanisms
    • McKeegan K.S., et al. Microbial and viral drug resistance mechanisms. Trends Microbiol. 2002, 10:S8-14.
    • (2002) Trends Microbiol. , vol.10 , pp. S8-14
    • McKeegan, K.S.1
  • 56
    • 0030986291 scopus 로고    scopus 로고
    • Mechanisms of bacterial resistance to antimicrobial agents
    • (quiz 1444-6)
    • McManus M.C. Mechanisms of bacterial resistance to antimicrobial agents. Am. J. Health Syst. Pharm. 1997, 54:1420-1433. (quiz 1444-6).
    • (1997) Am. J. Health Syst. Pharm. , vol.54 , pp. 1420-1433
    • McManus, M.C.1
  • 57
    • 80155143429 scopus 로고    scopus 로고
    • Multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization
    • Mei S. Multi-kernel transfer learning based on Chou's PseAAC formulation for protein submitochondria localization. J. Theor. Biol. 2012, 293:121-130.
    • (2012) J. Theor. Biol. , vol.293 , pp. 121-130
    • Mei, S.1
  • 58
    • 34447271237 scopus 로고    scopus 로고
    • Support vector machine based prediction of glutathione S-transferase proteins
    • Mishra N.K., et al. Support vector machine based prediction of glutathione S-transferase proteins. Protein Pept. Lett. 2007, 14:575-580.
    • (2007) Protein Pept. Lett. , vol.14 , pp. 575-580
    • Mishra, N.K.1
  • 59
    • 0031912354 scopus 로고    scopus 로고
    • Morphogenesis of Escherichia coli
    • Nanninga N. Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 1998, 62:110-129.
    • (1998) Microbiol. Mol. Biol. Rev. , vol.62 , pp. 110-129
    • Nanninga, N.1
  • 60
    • 65249146929 scopus 로고    scopus 로고
    • Multidrug resistance in bacteria
    • Nikaido H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 2009, 78:119-146.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 119-146
    • Nikaido, H.1
  • 61
    • 0031670104 scopus 로고    scopus 로고
    • Beta-Lactamases: protein evolution in real time
    • Petrosino J., et al. beta-Lactamases: protein evolution in real time. Trends Microbiol. 1998, 6:323-327.
    • (1998) Trends Microbiol. , vol.6 , pp. 323-327
    • Petrosino, J.1
  • 62
    • 0035139024 scopus 로고    scopus 로고
    • Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes
    • Poirel L., et al. Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob. Agents Chemother. 2001, 45:546-552.
    • (2001) Antimicrob. Agents Chemother. , vol.45 , pp. 546-552
    • Poirel, L.1
  • 63
    • 84892958175 scopus 로고    scopus 로고
    • IRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components
    • Qiu W.R., et al. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components. Int. J. Mol. Sci. 2014, 15:1746-1766.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 1746-1766
    • Qiu, W.R.1
  • 64
    • 79954809840 scopus 로고    scopus 로고
    • On qualitative robustness of support vector machines
    • Robert H., Andreas C. On qualitative robustness of support vector machines. J. Multivariate Anal. 2011, 102:993-1007.
    • (2011) J. Multivariate Anal. , vol.102 , pp. 993-1007
    • Robert, H.1    Andreas, C.2
  • 65
    • 36448952353 scopus 로고    scopus 로고
    • Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM
    • Shen H.B., Chou K.C. Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng. Des. Sel. 2007, 20:561-567.
    • (2007) Protein Eng. Des. Sel. , vol.20 , pp. 561-567
    • Shen, H.B.1    Chou, K.C.2
  • 66
    • 37549004451 scopus 로고    scopus 로고
    • PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition
    • Shen H.B., Chou K.C. PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition. Anal. Biochem. 2008, 373:386-388.
    • (2008) Anal. Biochem. , vol.373 , pp. 386-388
    • Shen, H.B.1    Chou, K.C.2
  • 67
    • 84859816396 scopus 로고    scopus 로고
    • PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features
    • Shi S.P., et al. PLMLA: prediction of lysine methylation and lysine acetylation by combining multiple features. Mol. Biosyst. 2012, 8:1520-1527.
    • (2012) Mol. Biosyst. , vol.8 , pp. 1520-1527
    • Shi, S.P.1
  • 68
    • 67650178345 scopus 로고    scopus 로고
    • Incorporating structural characteristics for identification of protein methylation sites
    • Shien D.M., et al. Incorporating structural characteristics for identification of protein methylation sites. J. Comput. Chem. 2009, 30:1532-1543.
    • (2009) J. Comput. Chem. , vol.30 , pp. 1532-1543
    • Shien, D.M.1
  • 69
    • 27544491192 scopus 로고    scopus 로고
    • ROCR: visualizing classifier performance in R
    • Sing T., et al. ROCR: visualizing classifier performance in R. Bioinformatics 2005, 21:3940-3941.
    • (2005) Bioinformatics , vol.21 , pp. 3940-3941
    • Sing, T.1
  • 70
    • 85017637518 scopus 로고    scopus 로고
    • Identification of family specific fingerprints in β-lactamase families
    • Srivastava A., et al. Identification of family specific fingerprints in β-lactamase families. Sci. World J. 2014, 2014(2014):7.
    • (2014) Sci. World J. , vol.2014 , Issue.2014 , pp. 7
    • Srivastava, A.1
  • 71
    • 34447539760 scopus 로고    scopus 로고
    • Composition profiler: a tool for discovery and visualization of amino acid composition differences
    • Vacic V., et al. Composition profiler: a tool for discovery and visualization of amino acid composition differences. BMC Bioinf. 2007, 8:211.
    • (2007) BMC Bioinf. , vol.8 , pp. 211
    • Vacic, V.1
  • 73
    • 84862933431 scopus 로고    scopus 로고
    • Linear and nonlinear support vector machine for the classification of human 5-HT1A ligand functionality
    • Wang L., et al. Linear and nonlinear support vector machine for the classification of human 5-HT1A ligand functionality. Mol. Inf. 2012, 31:85-95.
    • (2012) Mol. Inf. , vol.31 , pp. 85-95
    • Wang, L.1
  • 74
    • 8444248846 scopus 로고    scopus 로고
    • Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition
    • Wang M., et al. Weighted-support vector machines for predicting membrane protein types based on pseudo-amino acid composition. Protein Eng. Des. Sel. 2004, 17:509-516.
    • (2004) Protein Eng. Des. Sel. , vol.17 , pp. 509-516
    • Wang, M.1
  • 75
    • 80051676719 scopus 로고    scopus 로고
    • NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features
    • Wang P., et al. NR-2L: a two-level predictor for identifying nuclear receptor subfamilies based on sequence-derived features. PLoS One 2011, 6:e23505.
    • (2011) PLoS One , vol.6 , pp. e23505
    • Wang, P.1
  • 76
    • 84875074764 scopus 로고    scopus 로고
    • IAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types
    • Xiao X., et al. iAMP-2L: a two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal. Biochem. 2013, 436:168-177.
    • (2013) Anal. Biochem. , vol.436 , pp. 168-177
    • Xiao, X.1
  • 77
    • 84890539710 scopus 로고    scopus 로고
    • Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC
    • Xie H.L., et al. Using ensemble SVM to identify human GPCRs N-linked glycosylation sites based on the general form of Chou's PseAAC. Protein Eng. Des. Sel. 2013, 26:735-742.
    • (2013) Protein Eng. Des. Sel. , vol.26 , pp. 735-742
    • Xie, H.L.1
  • 78
    • 84873575437 scopus 로고    scopus 로고
    • ISNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition
    • Xu Y., et al. iSNO-PseAAC: predict cysteine S-nitrosylation sites in proteins by incorporating position specific amino acid propensity into pseudo amino acid composition. PLoS One 2013, 8:e55844.
    • (2013) PLoS One , vol.8 , pp. e55844
    • Xu, Y.1
  • 79
    • 84899856397 scopus 로고    scopus 로고
    • IHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition
    • Xu Y., et al. iHyd-PseAAC: predicting hydroxyproline and hydroxylysine in proteins by incorporating dipeptide position-specific propensity into pseudo amino acid composition. Int. J. Mol. Sci. 2014, 15:7594-7610.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 7594-7610
    • Xu, Y.1
  • 80
    • 84905982402 scopus 로고    scopus 로고
    • INitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition
    • Xu Y., et al. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One 2014, 9:e105018.
    • (2014) PLoS One , vol.9 , pp. e105018
    • Xu, Y.1
  • 81
    • 84870218839 scopus 로고    scopus 로고
    • Development of new drugs for an old target: the penicillin binding proteins
    • Zervosen A., et al. Development of new drugs for an old target: the penicillin binding proteins. Molecules 2012, 17:12478-12505.
    • (2012) Molecules , vol.17 , pp. 12478-12505
    • Zervosen, A.1
  • 82
    • 84903398779 scopus 로고    scopus 로고
    • PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC
    • Zhang J., et al. PSNO: predicting cysteine S-nitrosylation sites by incorporating various sequence-derived features into the general form of Chou's PseAAC. Int. J. Mol. Sci. 2014, 15:11204-11219.
    • (2014) Int. J. Mol. Sci. , vol.15 , pp. 11204-11219
    • Zhang, J.1
  • 83
    • 84899031689 scopus 로고    scopus 로고
    • Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou's pseudo amino acid composition
    • Zhang L., et al. Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou's pseudo amino acid composition. J. Theor. Biol. 2014, 355:105-110.
    • (2014) J. Theor. Biol. , vol.355 , pp. 105-110
    • Zhang, L.1
  • 84
    • 0035400226 scopus 로고    scopus 로고
    • Some insights into protein structural class prediction
    • Zhou G.P., Assa-Munt N. Some insights into protein structural class prediction. Proteins 2001, 44:57-59.
    • (2001) Proteins , vol.44 , pp. 57-59
    • Zhou, G.P.1    Assa-Munt, N.2
  • 85
    • 0033670134 scopus 로고    scopus 로고
    • Engineering support vector machine kernels that recognize translation initiation sites
    • Zien A., et al. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics 2000, 16:799-807.
    • (2000) Bioinformatics , vol.16 , pp. 799-807
    • Zien, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.