-
1
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifcally regulate the activity of Atg4
-
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifcally regulate the activity of Atg4. EMBO J. 2007;26:1749-1760. doi: 10.1038/sj.emboj.7601623.
-
(2007)
EMBO J.
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
2
-
-
84900295547
-
Mitohormesis
-
Yun J, Finkel T. Mitohormesis. Cell Metab. 2014;19:757-766. doi: 10.1016/j.cmet.2014.01.011.
-
(2014)
Cell Metab.
, vol.19
, pp. 757-766
-
-
Yun, J.1
Finkel, T.2
-
3
-
-
84942601209
-
Reactive oxygen species and mitochondria: A nexus of cellular homeostasis
-
Dan Dunn J, Alvarez LA, Zhang X, Soldati T. Reactive oxygen species and mitochondria: a nexus of cellular homeostasis. Redox Biol. 2015;6:472-485. doi: 10.1016/j.redox.2015.09.005.
-
(2015)
Redox Biol.
, vol.6
, pp. 472-485
-
-
Dan Dunn, J.1
Alvarez, L.A.2
Zhang, X.3
Soldati, T.4
-
4
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1-13. doi: 10.1042/BJ20081386.
-
(2009)
Biochem J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
5
-
-
0033951915
-
Mitochondrial oxidative stress in heart failure: "oxygen wastage" revisited
-
Sawyer DB, Colucci WS. Mitochondrial oxidative stress in heart failure: "oxygen wastage" revisited. Circ Res. 2000;86:119-120. doi: 10.1161/01. RES.86.2.119.
-
(2000)
Circ Res.
, vol.86
, pp. 119-120
-
-
Sawyer, D.B.1
Colucci, W.S.2
-
6
-
-
53249096016
-
Reactive oxygen species: Fnding the right balance
-
Morrell CN. Reactive oxygen species: fnding the right balance. Circ Res. 2008;103:571-572. doi: 10.1161/CIRCRESAHA.108.184325.
-
(2008)
Circ Res.
, vol.103
, pp. 571-572
-
-
Morrell, C.N.1
-
7
-
-
84873848690
-
Myocardial ischemia-reperfusion injury: A neglected therapeutic target
-
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123:92-100. doi: 10.1172/JCI62874.
-
(2013)
J Clin Invest.
, vol.123
, pp. 92-100
-
-
Hausenloy, D.J.1
Yellon, D.M.2
-
8
-
-
80051666038
-
Reactive oxygen species in cardiovascular disease
-
Sugamura K, Keaney JF, Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51:978-992. doi: 10.1016/j. freeradbiomed.2011.05.004.
-
(2011)
Free Radic Biol Med.
, vol.51
, pp. 978-992
-
-
Sugamura, K.1
Keaney, J.F.2
-
9
-
-
84941308478
-
Cyclosporine before PCI in patients with acute myocardial infarction
-
Cung TT, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373:1021-1031. doi: 10.1056/NEJMoa1505489.
-
(2015)
N Engl J Med.
, vol.373
, pp. 1021-1031
-
-
Cung, T.T.1
Morel, O.2
Cayla, G.3
-
10
-
-
33646060099
-
Mitochondria and ischemia-reperfusion injury of the heart: Fxing a hole
-
Di Lisa F, Bernardi P. Mitochondria and ischemia-reperfusion injury of the heart: fxing a hole. Cardiovasc Res. 2006;70:191-199. doi: 10.1016/j. cardiores.2006.01.016.
-
(2006)
Cardiovasc Res.
, vol.70
, pp. 191-199
-
-
Di Lisa, F.1
Bernardi, P.2
-
11
-
-
0031902064
-
The myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury
-
Karmazyn M. The myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio J Med. 1998;47:65-72.
-
(1998)
Keio J Med.
, vol.47
, pp. 65-72
-
-
Karmazyn, M.1
-
12
-
-
0018117909
-
Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles
-
Taegtmeyer H. Metabolic responses to cardiac hypoxia. Increased production of succinate by rabbit papillary muscles. Circ Res. 1978;43:808-815. doi: 10.1161/01.RES.43.5.808.
-
(1978)
Circ Res.
, vol.43
, pp. 808-815
-
-
Taegtmeyer, H.1
-
13
-
-
0023904443
-
An assessment of anaerobic metabolism during ischemia and reperfusion in isolated Guinea pig heart
-
Pisarenko O, Studneva I, Khlopkov V, Solomatina E, Ruuge E. An assessment of anaerobic metabolism during ischemia and reperfusion in isolated guinea pig heart. Biochim Biophys Acta. 1988;934:55-63.
-
(1988)
Biochim Biophys Acta.
, vol.934
, pp. 55-63
-
-
Pisarenko, O.1
Studneva, I.2
Khlopkov, V.3
Solomatina, E.4
Ruuge, E.5
-
14
-
-
84911466192
-
Ischaemic accumulation of suc-cinate controls reperfusion injury through mitochondrial ROS
-
Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of suc-cinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431-435. doi: 10.1038/nature13909.
-
(2014)
Nature.
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
Pell, V.R.2
Gaude, E.3
-
15
-
-
0000098037
-
Direct measurement of free radical generation following reperfusion of ischemic myocardium
-
Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA. 1987;84:1404-1407.
-
(1987)
Proc Natl Acad Sci USA.
, vol.84
, pp. 1404-1407
-
-
Zweier, J.L.1
Flaherty, J.T.2
Weisfeldt, M.L.3
-
16
-
-
0029684022
-
The pH paradox in ischemia-reper-fusion injury to cardiac myocytes
-
Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Ohata H, Trollinger DR, Herman B, Cascio WE. The pH paradox in ischemia-reper-fusion injury to cardiac myocytes. EXS. 1996;76:99-114.
-
(1996)
EXS.
, vol.76
, pp. 99-114
-
-
Lemasters, J.J.1
Bond, J.M.2
Chacon, E.3
Harper, I.S.4
Kaplan, S.H.5
Ohata, H.6
Trollinger, D.R.7
Herman, B.8
Cascio, W.E.9
-
17
-
-
0028968606
-
Mitochondrial non-specifc pores remain closed during cardiac ischaemia, but open upon reperfusion
-
Griffths EJ, Halestrap AP. Mitochondrial non-specifc pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995;307(pt 1):93-98. doi: 10.1042/bj3070093.
-
(1995)
Biochem J.
, vol.307
, pp. 93-98
-
-
Griffths, E.J.1
Halestrap, A.P.2
-
18
-
-
84876031864
-
Dimers of mitochondrial ATP synthase form the permeability transition pore
-
Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P. Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA. 2013;110:5887-5892. doi: 10.1073/pnas.1217823110.
-
(2013)
Proc Natl Acad Sci USA.
, vol.110
, pp. 5887-5892
-
-
Giorgio, V.1
Von Stockum, S.2
Antoniel, M.3
Fabbro, A.4
Fogolari, F.5
Forte, M.6
Glick, G.D.7
Petronilli, V.8
Zoratti, M.9
Szabó, I.10
Lippe, G.11
Bernardi, P.12
-
19
-
-
84904646147
-
An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore
-
Alavian KN, Beutner G, Lazrove E, Sacchetti S, Park HA, Licznerski P, Li H, Nabili P, Hockensmith K, Graham M, Porter GA, Jr, Jonas EA. An uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the mitochondrial permeability transition pore. Proc Natl Acad Sci USA. 2014;111:10580-10585. doi: 10.1073/pnas.1401591111.
-
(2014)
Proc Natl Acad Sci USA.
, vol.111
, pp. 10580-10585
-
-
Alavian, K.N.1
Beutner, G.2
Lazrove, E.3
Sacchetti, S.4
Park, H.A.5
Licznerski, P.6
Li, H.7
Nabili, P.8
Hockensmith, K.9
Graham, M.10
Porter, G.A.11
Jonas, E.A.12
-
20
-
-
0033565557
-
The mitochondrial permeability transition pore and its role in cell death
-
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341(pt 2):233-249.
-
(1999)
Biochem J.
, vol.341
, pp. 233-249
-
-
Crompton, M.1
-
21
-
-
1142273368
-
Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection
-
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res. 2004;61:372-385. doi: 10.1016/S0008-6363(03)00533-9.
-
(2004)
Cardiovasc Res.
, vol.61
, pp. 372-385
-
-
Halestrap, A.P.1
Clarke, S.J.2
Javadov, S.A.3
-
22
-
-
79957936379
-
Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfu-sion injury
-
Kaludercic N, Carpi A, Menabò R, Di Lisa F, Paolocci N. Monoamine oxidases (MAO) in the pathogenesis of heart failure and ischemia/reperfu-sion injury. Biochim Biophys Acta. 2011;1813:1323-1332. doi: 10.1016/j. bbamcr.2010.09.010.
-
(2011)
Biochim Biophys Acta.
, vol.1813
, pp. 1323-1332
-
-
Kaludercic, N.1
Carpi, A.2
Menabò, R.3
Di Lisa, F.4
Paolocci, N.5
-
23
-
-
84861062943
-
Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system
-
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364-1390. doi: 10.1161/CIRCRESAHA.111.243972.
-
(2012)
Circ Res.
, vol.110
, pp. 1364-1390
-
-
Lassègue, B.1
San Martín, A.2
Griendling, K.K.3
-
24
-
-
84944683146
-
Reperfusion injury and reactive oxygen species: The evolution of a concept
-
Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524-551. doi: 10.1016/j. redox.2015.08.020.
-
(2015)
Redox Biol.
, vol.6
, pp. 524-551
-
-
Granger, D.N.1
Kvietys, P.R.2
-
25
-
-
84861212393
-
Mitochondria and cell signalling
-
Tait SW, Green DR. Mitochondria and cell signalling. J Cell Sci. 2012;125:807-815. doi: 10.1242/jcs.099234.
-
(2012)
J Cell Sci.
, vol.125
, pp. 807-815
-
-
Tait, S.W.1
Green, D.R.2
-
26
-
-
0142150051
-
Mitochondrial formation of reactive oxygen species
-
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335-344. doi: 10.1113/jphysiol.2003.049478.
-
(2003)
J Physiol.
, vol.552
, pp. 335-344
-
-
Turrens, J.F.1
-
27
-
-
38849156952
-
Heart mitochondria: Gates of life and death
-
Gustafsson AB, Gottlieb RA. Heart mitochondria: gates of life and death. Cardiovasc Res. 2008;77:334-343. doi: 10.1093/cvr/cvm005.
-
(2008)
Cardiovasc Res.
, vol.77
, pp. 334-343
-
-
Gustafsson, A.B.1
Gottlieb, R.A.2
-
28
-
-
84875719244
-
The role of mitochondrial dehydrogenases in the generation of oxidative stress
-
Adam-Vizi V, Tretter L. The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem Int. 2013;62:757-763. doi: 10.1016/j.neuint.2013.01.012.
-
(2013)
Neurochem Int.
, vol.62
, pp. 757-763
-
-
Adam-Vizi, V.1
Tretter, L.2
-
29
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD. Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 2013;1:304-312. doi: 10.1016/j. redox.2013.04.005.
-
(2013)
Redox Biol.
, vol.1
, pp. 304-312
-
-
Quinlan, C.L.1
Perevoshchikova, I.V.2
Hey-Mogensen, M.3
Orr, A.L.4
Brand, M.D.5
-
30
-
-
33846335174
-
Modulation of electron transport protects cardiac mitochondria and decreases myocar-dial injury during ischemia and reperfusion
-
Chen Q, Camara AK, Stowe DF, Hoppel CL, Lesnefsky EJ. Modulation of electron transport protects cardiac mitochondria and decreases myocar-dial injury during ischemia and reperfusion. Am J Physiol Cell Physiol. 2007;292:C137-C147. doi: 10.1152/ajpcell.00270.2006.
-
(2007)
Am J Physiol Cell Physiol.
, vol.292
, pp. C137-C147
-
-
Chen, Q.1
Camara, A.K.2
Stowe, D.F.3
Hoppel, C.L.4
Lesnefsky, E.J.5
-
31
-
-
9144227549
-
Blockade of electron transport during ischemia protects cardiac mitochondria
-
Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL. Blockade of electron transport during ischemia protects cardiac mitochondria. J Biol Chem. 2004;279:47961-47967. doi: 10.1074/jbc. M409720200.
-
(2004)
J Biol Chem.
, vol.279
, pp. 47961-47967
-
-
Lesnefsky, E.J.1
Chen, Q.2
Moghaddas, S.3
Hassan, M.O.4
Tandler, B.5
Hoppel, C.L.6
-
32
-
-
84880253528
-
Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex i
-
Chouchani ET, Methner C, Nadtochiy SM, et al. Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat Med. 2013;19:753-759. doi: 10.1038/nm.3212.
-
(2013)
Nat Med.
, vol.19
, pp. 753-759
-
-
Chouchani, E.T.1
Methner, C.2
Nadtochiy, S.M.3
-
34
-
-
0030890196
-
Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium
-
Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29:207-216. doi: 10.1006/jmcc.1996.0265.
-
(1997)
J Mol Cell Cardiol.
, vol.29
, pp. 207-216
-
-
Baines, C.P.1
Goto, M.2
Downey, J.M.3
-
35
-
-
0022970945
-
Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium
-
Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124-1136. doi: 10.1161/01.CIR.74.5.1124.
-
(1986)
Circulation.
, vol.74
, pp. 1124-1136
-
-
Murry, C.E.1
Jennings, R.B.2
Reimer, K.A.3
-
36
-
-
0032541173
-
Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes
-
Vanden Hoek TL, Becker LB, Shao Z, Li C, Schumacker PT. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092-18098. doi: 10.1074/jbc.273.29.18092.
-
(1998)
J Biol Chem.
, vol.273
, pp. 18092-18098
-
-
Vanden Hoek, T.L.1
Becker, L.B.2
Shao, Z.3
Li, C.4
Schumacker, P.T.5
-
37
-
-
0030888801
-
Oxygen radicals can induce preconditioning in rabbit hearts
-
Tritto I, D'Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A, Esposito A, Chiariello M, Ambrosio G. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res. 1997;80:743-748. doi: 10.1161/01.RES.80.5.743.
-
(1997)
Circ Res.
, vol.80
, pp. 743-748
-
-
Tritto, I.1
D'Andrea, D.2
Eramo, N.3
Scognamiglio, A.4
De Simone, C.5
Violante, A.6
Esposito, A.7
Chiariello, M.8
Ambrosio, G.9
-
38
-
-
4043087772
-
Transient mitochon-drial permeability transition pore opening mediates preconditioning-induced protection
-
Hausenloy D, Wynne A, Duchen M, Yellon D. Transient mitochon-drial permeability transition pore opening mediates preconditioning-induced protection. Circulation. 2004;109:1714-1717. doi: 10.1161/01. CIR.0000126294.81407.7D.
-
(2004)
Circulation.
, vol.109
, pp. 1714-1717
-
-
Hausenloy, D.1
Wynne, A.2
Duchen, M.3
Yellon, D.4
-
39
-
-
84911917373
-
Interaction of risk factors, comorbidities, and comedications with ischemia/reperfu-sion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning
-
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfu-sion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev. 2014;66:1142-1174. doi: 10.1124/pr.113.008300.
-
(2014)
Pharmacol Rev.
, vol.66
, pp. 1142-1174
-
-
Ferdinandy, P.1
Hausenloy, D.J.2
Heusch, G.3
Baxter, G.F.4
Schulz, R.5
-
40
-
-
84898962124
-
Regulation of endothelial nitric oxide syn-thase and high-density lipoprotein quality by estradiol in cardiovascular pathology
-
Kypreos KE, Zafrovic S, Petropoulou PI, Bjelogrlic P, Resanovic I, Traish A, Isenovic ER. Regulation of endothelial nitric oxide syn-thase and high-density lipoprotein quality by estradiol in cardiovascular pathology. J Cardiovasc Pharmacol Ther. 2014;19:256-268. doi: 10.1177/1074248413513499.
-
(2014)
J Cardiovasc Pharmacol Ther.
, vol.19
, pp. 256-268
-
-
Kypreos, K.E.1
Zafrovic, S.2
Petropoulou, P.I.3
Bjelogrlic, P.4
Resanovic, I.5
Traish, A.6
Isenovic, E.R.7
-
41
-
-
0040951645
-
Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release
-
Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM, Anderson PG. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem. 2000;275:20474-20479. doi: 10.1074/jbc. M001077200.
-
(2000)
J Biol Chem.
, vol.275
, pp. 20474-20479
-
-
Brookes, P.S.1
Salinas, E.P.2
Darley-Usmar, K.3
Eiserich, J.P.4
Freeman, B.A.5
Darley-Usmar, V.M.6
Anderson, P.G.7
-
42
-
-
37749024370
-
Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila
-
Sykiotis GP, Bohmann D. Keap1/Nrf2 signaling regulates oxidative stress tolerance and lifespan in Drosophila. Dev Cell. 2008;14:76-85. doi: 10.1016/j.devcel.2007.12.002.
-
(2008)
Dev Cell.
, vol.14
, pp. 76-85
-
-
Sykiotis, G.P.1
Bohmann, D.2
-
43
-
-
33749665081
-
Compartmentation of cyclic nucleotide signaling in the heart: The role of cyclic nucleotide phosphodiesterases
-
Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G. Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res. 2006;99:816-828. doi: 10.1161/01.RES.0000246118.98832.04.
-
(2006)
Circ Res.
, vol.99
, pp. 816-828
-
-
Fischmeister, R.1
Castro, L.R.2
Abi-Gerges, A.3
Rochais, F.4
Jurevicius, J.5
Leroy, J.6
Vandecasteele, G.7
-
44
-
-
62249090215
-
Presence of connexin 43 in subsarco-lemmal, but not in interfbrillar cardiomyocyte mitochondria
-
Boengler K, Stahlhofen S, van de Sand A, Gres P, Ruiz-Meana M, Garcia-Dorado D, Heusch G, Schulz R. Presence of connexin 43 in subsarco-lemmal, but not in interfbrillar cardiomyocyte mitochondria. Basic Res Cardiol. 2009;104:141-147. doi: 10.1007/s00395-009-0007-5.
-
(2009)
Basic Res Cardiol.
, vol.104
, pp. 141-147
-
-
Boengler, K.1
Stahlhofen, S.2
Van De Sand, A.3
Gres, P.4
Ruiz-Meana, M.5
Garcia-Dorado, D.6
Heusch, G.7
Schulz, R.8
-
45
-
-
84929071944
-
Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria
-
Sun J, Nguyen T, Aponte AM, Menazza S, Kohr MJ, Roth DM, Patel HH, Murphy E, Steenbergen C. Ischaemic preconditioning preferentially increases protein S-nitrosylation in subsarcolemmal mitochondria. Cardiovasc Res. 2015;106:227-236. doi: 10.1093/cvr/cvv044.
-
(2015)
Cardiovasc Res.
, vol.106
, pp. 227-236
-
-
Sun, J.1
Nguyen, T.2
Aponte, A.M.3
Menazza, S.4
Kohr, M.J.5
Roth, D.M.6
Patel, H.H.7
Murphy, E.8
Steenbergen, C.9
-
46
-
-
84897061048
-
Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: A systematic review
-
Ekeløf S, Jensen SE, Rosenberg J, Gögenur I. Reduced oxidative stress in STEMI patients treated by primary percutaneous coronary intervention and with antioxidant therapy: a systematic review. Cardiovasc Drugs Ther. 2014;28:173-181. doi: 10.1007/s10557-014-6511-3.
-
(2014)
Cardiovasc Drugs Ther.
, vol.28
, pp. 173-181
-
-
Ekeløf, S.1
Jensen, S.E.2
Rosenberg, J.3
Gögenur, I.4
-
47
-
-
54049144185
-
Limitation of myocardial infarct size in the clinical setting: Current status and challenges in translating animal experiments into clinical therapy
-
Miura T, Miki T. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res Cardiol. 2008;103:501-513. doi: 10.1007/s00395-008-0743-y.
-
(2008)
Basic Res Cardiol.
, vol.103
, pp. 501-513
-
-
Miura, T.1
Miki, T.2
-
48
-
-
68149098562
-
Why do we still not have cardioprotective drugs?
-
Downey JM, Cohen MV. Why do we still not have cardioprotective drugs? Circ J. 2009;73:1171-1177. doi: 10.1253/circj.cj-09-0338.
-
(2009)
Circ J.
, vol.73
, pp. 1171-1177
-
-
Downey, J.M.1
Cohen, M.V.2
-
49
-
-
33847071146
-
Targeting antioxidants to mitochondria by conjugation to lipophilic cations
-
Murphy MP, Smith RA. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol. 2007;47:629-656. doi: 10.1146/annurev.pharmtox.47.120505.105110.
-
(2007)
Annu Rev Pharmacol Toxicol.
, vol.47
, pp. 629-656
-
-
Murphy, M.P.1
Smith, R.A.2
-
50
-
-
21744450416
-
Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury
-
Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J. 2005;19:1088-1095. doi: 10.1096/fj.05-3718com.
-
(2005)
FASEB J.
, vol.19
, pp. 1088-1095
-
-
Adlam, V.J.1
Harrison, J.C.2
Porteous, C.M.3
James, A.M.4
Smith, R.A.5
Murphy, M.P.6
Sammut, I.A.7
-
51
-
-
84930939650
-
Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ
-
Dare AJ, Bolton EA, Pettigrew GJ, Bradley JA, Saeb-Parsy K, Murphy MP. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015;5:163-168. doi: 10.1016/j.redox.2015.04.008.
-
(2015)
Redox Biol.
, vol.5
, pp. 163-168
-
-
Dare, A.J.1
Bolton, E.A.2
Pettigrew, G.J.3
Bradley, J.A.4
Saeb-Parsy, K.5
Murphy, M.P.6
-
52
-
-
84946487152
-
The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syn-geneic heart transplant model
-
Dare AJ, Logan A, Prime TA, Rogatti S, Goddard M, Bolton EM, Bradley JA, Pettigrew GJ, Murphy MP, Saeb-Parsy K. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syn-geneic heart transplant model. J Heart Lung Transplant. 2015;34:1471-1480. doi: 10.1016/j.healun.2015.05.007.
-
(2015)
J Heart Lung Transplant.
, vol.34
, pp. 1471-1480
-
-
Dare, A.J.1
Logan, A.2
Prime, T.A.3
Rogatti, S.4
Goddard, M.5
Bolton, E.M.6
Bradley, J.A.7
Pettigrew, G.J.8
Murphy, M.P.9
Saeb-Parsy, K.10
-
53
-
-
64549084087
-
Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury
-
Stewart S, Lesnefsky EJ, Chen Q. Reversible blockade of electron transport with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res. 2009;153:224-231. doi: 10.1016/j.trsl.2009.02.003.
-
(2009)
Transl Res.
, vol.153
, pp. 224-231
-
-
Stewart, S.1
Lesnefsky, E.J.2
Chen, Q.3
-
54
-
-
67349179644
-
In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine
-
Nadtochiy SM, Burwell LS, Ingraham CA, Spencer CM, Friedman AE, Pinkert CA, Brookes PS. In vivo cardioprotection by S-nitroso-2-mercaptopropionyl glycine. J Mol Cell Cardiol. 2009;46:960-968. doi: 10.1016/j.yjmcc.2009.01.012.
-
(2009)
J Mol Cell Cardiol.
, vol.46
, pp. 960-968
-
-
Nadtochiy, S.M.1
Burwell, L.S.2
Ingraham, C.A.3
Spencer, C.M.4
Friedman, A.E.5
Pinkert, C.A.6
Brookes, P.S.7
-
55
-
-
67649757115
-
A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury
-
Prime TA, Blaikie FH, Evans C, et al. A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci USA. 2009;106:10764-10769. doi: 10.1073/pnas.0903250106.
-
(2009)
Proc Natl Acad Sci USA.
, vol.106
, pp. 10764-10769
-
-
Prime, T.A.1
Blaikie, F.H.2
Evans, C.3
-
56
-
-
33644992047
-
Direct evidence for S-nitrosation of mitochondrial complex i
-
Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J. 2006;394:627-634. doi: 10.1042/BJ20051435.
-
(2006)
Biochem J.
, vol.394
, pp. 627-634
-
-
Burwell, L.S.1
Nadtochiy, S.M.2
Tompkins, A.J.3
Young, S.4
Brookes, P.S.5
-
57
-
-
34047142614
-
Cardioprotection and mito-chondrial S-nitrosation: Effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury
-
Nadtochiy SM, Burwell LS, Brookes PS. Cardioprotection and mito-chondrial S-nitrosation: effects of S-nitroso-2-mercaptopropionyl glycine (SNO-MPG) in cardiac ischemia-reperfusion injury. J Mol Cell Cardiol. 2007;42:812-825. doi: 10.1016/j.yjmcc.2007.01.010.
-
(2007)
J Mol Cell Cardiol.
, vol.42
, pp. 812-825
-
-
Nadtochiy, S.M.1
Burwell, L.S.2
Brookes, P.S.3
-
58
-
-
34548412578
-
Nitrite augments tolerance to ischemia/reperfu-sion injury via the modulation of mitochondrial electron transfer
-
Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfu-sion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007;204:2089-2102. doi: 10.1084/jem.20070198.
-
(2007)
J Exp Med.
, vol.204
, pp. 2089-2102
-
-
Shiva, S.1
Sack, M.N.2
Greer, J.J.3
Duranski, M.4
Ringwood, L.A.5
Burwell, L.6
Wang, X.7
MacArthur, P.H.8
Shoja, A.9
Raghavachari, N.10
Calvert, J.W.11
Brookes, P.S.12
Lefer, D.J.13
Gladwin, M.T.14
-
59
-
-
70349767154
-
Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex i
-
Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT. Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation. 2009;120:897-905. doi: 10.1161/CIRCULATIONAHA.109.853267.
-
(2009)
Circulation.
, vol.120
, pp. 897-905
-
-
Dezfulian, C.1
Shiva, S.2
Alekseyenko, A.3
Pendyal, A.4
Beiser, D.G.5
Munasinghe, J.P.6
Anderson, S.A.7
Chesley, C.F.8
Vanden Hoek, T.L.9
Gladwin, M.T.10
-
60
-
-
0034659785
-
Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain
-
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(pt 3):607-614.
-
(2000)
Biochem J.
, vol.348
, pp. 607-614
-
-
Owen, M.R.1
Doran, E.2
Halestrap, A.P.3
-
61
-
-
0036106040
-
Metformin improves cardiac functional recovery after ischemia in rats
-
Legtenberg RJ, Houston RJ, Oeseburg B, Smits P. Metformin improves cardiac functional recovery after ischemia in rats. Horm Metab Res. 2002;34:182-185. doi: 10.1055/s-2002-26705.
-
(2002)
Horm Metab Res.
, vol.34
, pp. 182-185
-
-
Legtenberg, R.J.1
Houston, R.J.2
Oeseburg, B.3
Smits, P.4
-
62
-
-
42249101542
-
Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening
-
Bhamra GS, Hausenloy DJ, Davidson SM, Carr RD, Paiva M, Wynne AM, Mocanu MM, Yellon DM. Metformin protects the ischemic heart by the Akt-mediated inhibition of mitochondrial permeability transition pore opening. Basic Res Cardiol. 2008;103:274-284. doi: 10.1007/s00395-007-0691-y.
-
(2008)
Basic Res Cardiol.
, vol.103
, pp. 274-284
-
-
Bhamra, G.S.1
Hausenloy, D.J.2
Davidson, S.M.3
Carr, R.D.4
Paiva, M.5
Wynne, A.M.6
Mocanu, M.M.7
Yellon, D.M.8
-
63
-
-
84925432968
-
Selective inhibition of deactivated mito-chondrial complex i by biguanides
-
Matsuzaki S, Humphries KM. Selective inhibition of deactivated mito-chondrial complex I by biguanides. Biochemistry. 2015;54:2011-2021. doi: 10.1021/bi501473h.
-
(2015)
Biochemistry.
, vol.54
, pp. 2011-2021
-
-
Matsuzaki, S.1
Humphries, K.M.2
-
64
-
-
0028979451
-
In vitro effects of capsaicin: Antiarrhythmic and antiischemic activity
-
D'Alonzo AJ, Grover GJ, Darbenzio RB, Hess TA, Sleph PG, Dzwonczyk S, Zhu JL, Sewter JC. In vitro effects of capsaicin: antiarrhythmic and antiischemic activity. Eur J Pharmacol. 1995;272:269-278.
-
(1995)
Eur J Pharmacol.
, vol.272
, pp. 269-278
-
-
D'Alonzo, A.J.1
Grover, G.J.2
Darbenzio, R.B.3
Hess, T.A.4
Sleph, P.G.5
Dzwonczyk, S.6
Zhu, J.L.7
Sewter, J.C.8
-
65
-
-
0030070202
-
Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases
-
Satoh T, Miyoshi H, Sakamoto K, Iwamura H. Comparison of the inhibitory action of synthetic capsaicin analogues with various NADH-ubiquinone oxidoreductases. Biochim Biophys Acta. 1996;1273:21-30.
-
(1996)
Biochim Biophys Acta.
, vol.1273
, pp. 21-30
-
-
Satoh, T.1
Miyoshi, H.2
Sakamoto, K.3
Iwamura, H.4
-
66
-
-
0036848476
-
Halothane, isofurane and sevofurane inhibit NADH: Ubiquinone oxidoreductase (complex I) of cardiac mitochondria
-
Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isofurane and sevofurane inhibit NADH: ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687-693.
-
(2002)
J Physiol.
, vol.544
, pp. 687-693
-
-
Hanley, P.J.1
Ray, J.2
Brandt, U.3
Daut, J.4
-
67
-
-
0030894055
-
Volatile anesthetics protect the ischemic rabbit myocardium from infarction
-
Cope DK, Impastato WK, Cohen MV, Downey JM. Volatile anesthetics protect the ischemic rabbit myocardium from infarction. Anesthesiology. 1997;86:699-709.
-
(1997)
Anesthesiology.
, vol.86
, pp. 699-709
-
-
Cope, D.K.1
Impastato, W.K.2
Cohen, M.V.3
Downey, J.M.4
-
68
-
-
0028841015
-
The anti-anginal agent ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria
-
Wyatt KM, Skene C, Veitch K, Hue L, McCormack JG. The anti-anginal agent ranolazine is a weak inhibitor of the respiratory complex I, but with greater potency in broken or uncoupled than in coupled mitochondria. Biochem Pharmacol. 1995;50:1599-1606. doi: 10.1016/0006-2952(95)02042-X.
-
(1995)
Biochem Pharmacol.
, vol.50
, pp. 1599-1606
-
-
Wyatt, K.M.1
Skene, C.2
Veitch, K.3
Hue, L.4
McCormack, J.G.5
-
69
-
-
62249098383
-
The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondri-al KATP channels
-
Wojtovich AP, Brookes PS. The complex II inhibitor atpenin A5 protects against cardiac ischemia-reperfusion injury via activation of mitochondri-al KATP channels. Basic Res Cardiol. 2009;104:121-129. doi: 10.1007/s00395-009-0001-y.
-
(2009)
Basic Res Cardiol.
, vol.104
, pp. 121-129
-
-
Wojtovich, A.P.1
Brookes, P.S.2
-
70
-
-
84878221412
-
Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase
-
Anastacio MM, Kanter EM, Makepeace C, Keith AD, Zhang H, Schuessler RB, Nichols CG, Lawton JS. Cardioprotective mechanism of diazoxide involves the inhibition of succinate dehydrogenase. Ann Thorac Surg. 2013;95:2042-2050. doi: 10.1016/j.athoracsur.2013.03.035.
-
(2013)
Ann Thorac Surg.
, vol.95
, pp. 2042-2050
-
-
Anastacio, M.M.1
Kanter, E.M.2
Makepeace, C.3
Keith, A.D.4
Zhang, H.5
Schuessler, R.B.6
Nichols, C.G.7
Lawton, J.S.8
-
71
-
-
0344825057
-
Novel pharmacological preconditioning with diazoxide attenuates myocardial stunning in coronary artery bypass grafting
-
Wang X, Wei M, Kuukasjärvi P, Laurikka J, Järvinen O, Rinne T, Honkonen EL, Tarkka M. Novel pharmacological preconditioning with diazoxide attenuates myocardial stunning in coronary artery bypass grafting. Eur J Cardiothorac Surg. 2003;24:967-973.
-
(2003)
Eur J Cardiothorac Surg.
, vol.24
, pp. 967-973
-
-
Wang, X.1
Wei, M.2
Kuukasjärvi, P.3
Laurikka, J.4
Järvinen, O.5
Rinne, T.6
Honkonen, E.L.7
Tarkka, M.8
-
72
-
-
84942514336
-
Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury
-
Boylston JA, Sun J, Chen Y, Gucek M, Sack MN, Murphy E. Characterization of the cardiac succinylome and its role in ischemia-reperfusion injury. J Mol Cell Cardiol. 2015;88:73-81. doi: 10.1016/j. yjmcc.2015.09.005.
-
(2015)
J Mol Cell Cardiol.
, vol.88
, pp. 73-81
-
-
Boylston, J.A.1
Sun, J.2
Chen, Y.3
Gucek, M.4
Sack, M.N.5
Murphy, E.6
-
73
-
-
46349106237
-
The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: Implications for ischemic preconditioning
-
Wojtovich AP, Brookes PS. The endogenous mitochondrial complex II inhibitor malonate regulates mitochondrial ATP-sensitive potassium channels: implications for ischemic preconditioning. Biochim Biophys Acta. 2008;1777:882-889. doi: 10.1016/j.bbabio.2008.03.025.
-
(2008)
Biochim Biophys Acta.
, vol.1777
, pp. 882-889
-
-
Wojtovich, A.P.1
Brookes, P.S.2
-
74
-
-
12244282420
-
Nitroxyl affords thiol-sen-sitive myocardial protective effects akin to early preconditioning
-
Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, Feelisch M, Wink DA, Kass DA, Paolocci N. Nitroxyl affords thiol-sen-sitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med. 2003;34:33-43.
-
(2003)
Free Radic Biol Med.
, vol.34
, pp. 33-43
-
-
Pagliaro, P.1
Mancardi, D.2
Rastaldo, R.3
Penna, C.4
Gattullo, D.5
Miranda, K.M.6
Feelisch, M.7
Wink, D.A.8
Kass, D.A.9
Paolocci, N.10
-
75
-
-
2342614194
-
Mechanisms of the interaction of nitroxyl with mitochondria
-
Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, Patel RP, Darley-Usmar VM. Mechanisms of the interaction of nitroxyl with mitochondria. Biochem J. 2004;379:359-366. doi: 10.1042/BJ20031758.
-
(2004)
Biochem J.
, vol.379
, pp. 359-366
-
-
Shiva, S.1
Crawford, J.H.2
Ramachandran, A.3
Ceaser, E.K.4
Hillson, T.5
Brookes, P.S.6
Patel, R.P.7
Darley-Usmar, V.M.8
-
76
-
-
0030894345
-
Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: "chemical preconditioning"
-
Riepe MW, Esclaire F, Kasischke K, Schreiber S, Nakase H, Kempski O, Ludolph AC, Dirnagl U, Hugon J. Increased hypoxic tolerance by chemical inhibition of oxidative phosphorylation: "chemical preconditioning". J Cereb Blood Flow Metab. 1997;17:257-264. doi: 10.1097/00004647-199703000-00002.
-
(1997)
J Cereb Blood Flow Metab.
, vol.17
, pp. 257-264
-
-
Riepe, M.W.1
Esclaire, F.2
Kasischke, K.3
Schreiber, S.4
Nakase, H.5
Kempski, O.6
Ludolph, A.C.7
Dirnagl, U.8
Hugon, J.9
-
77
-
-
67449149911
-
Mitochondrial ni-troalkene formation and mild uncoupling in ischaemic preconditioning: Implications for cardioprotection
-
Nadtochiy SM, Baker PR, Freeman BA, Brookes PS. Mitochondrial ni-troalkene formation and mild uncoupling in ischaemic preconditioning: implications for cardioprotection. Cardiovasc Res. 2009;82:333-340. doi: 10.1093/cvr/cvn323.
-
(2009)
Cardiovasc Res.
, vol.82
, pp. 333-340
-
-
Nadtochiy, S.M.1
Baker, P.R.2
Freeman, B.A.3
Brookes, P.S.4
-
78
-
-
24944498878
-
Antimycin A induced cardioprotection is dependent on pre-ischemic p38-MAPK activation but independent of MKK3
-
Kabir AM, Cao X, Gorog DA, Tanno M, Bassi R, Bellahcene M, Quinlan RA, Davis RJ, Flavell RA, Shattock MJ, Marber MS. Antimycin A induced cardioprotection is dependent on pre-ischemic p38-MAPK activation but independent of MKK3. J Mol Cell Cardiol. 2005;39:709-717. doi: 10.1016/j.yjmcc.2005.07.012.
-
(2005)
J Mol Cell Cardiol.
, vol.39
, pp. 709-717
-
-
Kabir, A.M.1
Cao, X.2
Gorog, D.A.3
Tanno, M.4
Bassi, R.5
Bellahcene, M.6
Quinlan, R.A.7
Davis, R.J.8
Flavell, R.A.9
Shattock, M.J.10
Marber, M.S.11
-
79
-
-
20444494969
-
Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport
-
Zhao X, He G, Chen YR, Pandian RP, Kuppusamy P, Zweier JL. Endothelium-derived nitric oxide regulates postischemic myocardial oxygenation and oxygen consumption by modulation of mitochondrial electron transport. Circulation. 2005;111:2966-2972. doi: 10.1161/CIRCULATIONAHA.104.527226.
-
(2005)
Circulation.
, vol.111
, pp. 2966-2972
-
-
Zhao, X.1
He, G.2
Chen, Y.R.3
Pandian, R.P.4
Kuppusamy, P.5
Zweier, J.L.6
-
80
-
-
0041733077
-
Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule
-
Clark JE, Naughton P, Shurey S, Green CJ, Johnson TR, Mann BE, Foresti R, Motterlini R. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res. 2003;93:e2-e8. doi: 10.1161/01. RES.0000084381.86567.08.
-
(2003)
Circ Res.
, vol.93
, pp. e2-e8
-
-
Clark, J.E.1
Naughton, P.2
Shurey, S.3
Green, C.J.4
Johnson, T.R.5
Mann, B.E.6
Foresti, R.7
Motterlini, R.8
-
81
-
-
0025218713
-
Effects of hydrogen sulfde exposure on lung mito-chondrial respiratory chain enzymes in rats
-
Khan AA, Schuler MM, Prior MG, Yong S, Coppock RW, Florence LZ, Lillie LE. Effects of hydrogen sulfde exposure on lung mito-chondrial respiratory chain enzymes in rats. Toxicol Appl Pharmacol. 1990;103:482-490.
-
(1990)
Toxicol Appl Pharmacol.
, vol.103
, pp. 482-490
-
-
Khan, A.A.1
Schuler, M.M.2
Prior, M.G.3
Yong, S.4
Coppock, R.W.5
Florence, L.Z.6
Lillie, L.E.7
-
82
-
-
29444460346
-
Endogenous hydrogen sulfde contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes
-
Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS. Endogenous hydrogen sulfde contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol. 2006;40:119-130. doi: 10.1016/j.yjmcc.2005.10.003.
-
(2006)
J Mol Cell Cardiol.
, vol.40
, pp. 119-130
-
-
Pan, T.T.1
Feng, Z.N.2
Lee, S.W.3
Moore, P.K.4
Bian, J.S.5
-
83
-
-
34848828558
-
Hydrogen sulfde attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function
-
Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ. Hydrogen sulfde attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA. 2007;104:15560-15565. doi: 10.1073/pnas.0705891104.
-
(2007)
Proc Natl Acad Sci USA.
, vol.104
, pp. 15560-15565
-
-
Elrod, J.W.1
Calvert, J.W.2
Morrison, J.3
Doeller, J.E.4
Kraus, D.W.5
Tao, L.6
Jiao, X.7
Scalia, R.8
Kiss, L.9
Szabo, C.10
Kimura, H.11
Chow, C.W.12
Lefer, D.J.13
-
84
-
-
67349236041
-
Cardioprotection by metabolic shut-down and gradual wake-up
-
Burwell LS, Nadtochiy SM, Brookes PS. Cardioprotection by metabolic shut-down and gradual wake-up. J Mol Cell Cardiol. 2009;46:804-810. doi: 10.1016/j.yjmcc.2009.02.026.
-
(2009)
J Mol Cell Cardiol.
, vol.46
, pp. 804-810
-
-
Burwell, L.S.1
Nadtochiy, S.M.2
Brookes, P.S.3
-
85
-
-
78651117288
-
The interaction of energy and electron transfer reactions in mitochondria. V. the energy transfer pathway
-
Chance B. The interaction of energy and electron transfer reactions in mitochondria. V. The energy transfer pathway. J Biol Chem. 1961;236:1569-1576.
-
(1961)
J Biol Chem.
, vol.236
, pp. 1569-1576
-
-
Chance, B.1
-
86
-
-
33751072935
-
Bioenergetics and the formation of mito-chondrial reactive oxygen species
-
Adam-Vizi V, Chinopoulos C. Bioenergetics and the formation of mito-chondrial reactive oxygen species. Trends Pharmacol Sci. 2006;27:639-645. doi: 10.1016/j.tips.2006.10.005.
-
(2006)
Trends Pharmacol Sci.
, vol.27
, pp. 639-645
-
-
Adam-Vizi, V.1
Chinopoulos, C.2
-
87
-
-
0025072729
-
Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase
-
Kotlyar AB, Vinogradov AD. Slow active/inactive transition of the mitochondrial NADH-ubiquinone reductase. Biochim Biophys Acta. 1990;1019:151-158.
-
(1990)
Biochim Biophys Acta.
, vol.1019
, pp. 151-158
-
-
Kotlyar, A.B.1
Vinogradov, A.D.2
-
88
-
-
38049136885
-
S-nitrosation of mitochondrial complex i depends on its structural conformation
-
Galkin A, Moncada S. S-nitrosation of mitochondrial complex I depends on its structural conformation. J Biol Chem. 2007;282:37448-37453. doi: 10.1074/jbc.M707543200.
-
(2007)
J Biol Chem.
, vol.282
, pp. 37448-37453
-
-
Galkin, A.1
Moncada, S.2
-
89
-
-
79952070504
-
Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture
-
Kohr MJ, Sun J, Aponte A, Wang G, Gucek M, Murphy E, Steenbergen C. Simultaneous measurement of protein oxidation and S-nitrosylation during preconditioning and ischemia/reperfusion injury with resin-assisted capture. Circ Res. 2011;108:418-426. doi: 10.1161/CIRCRESAHA.110.232173.
-
(2011)
Circ Res.
, vol.108
, pp. 418-426
-
-
Kohr, M.J.1
Sun, J.2
Aponte, A.3
Wang, G.4
Gucek, M.5
Murphy, E.6
Steenbergen, C.7
-
90
-
-
84856945096
-
S-nitrosylation: A radical way to protect the heart
-
Murphy E, Kohr M, Sun J, Nguyen T, Steenbergen C. S-nitrosylation: a radical way to protect the heart. J Mol Cell Cardiol. 2012;52:568-577. doi: 10.1016/j.yjmcc.2011.08.021.
-
(2012)
J Mol Cell Cardiol.
, vol.52
, pp. 568-577
-
-
Murphy, E.1
Kohr, M.2
Sun, J.3
Nguyen, T.4
Steenbergen, C.5
-
91
-
-
85047687502
-
Postconditioning leads to an increase in protein S-nitrosylation
-
Tong G, Aponte AM, Kohr MJ, Steenbergen C, Murphy E, Sun J. Postconditioning leads to an increase in protein S-nitrosylation. Am J Physiol Heart Circ Physiol. 2014;306:H825-H832. doi: 10.1152/ajpheart.00660.2013.
-
(2014)
Am J Physiol Heart Circ Physiol.
, vol.306
, pp. H825-H832
-
-
Tong, G.1
Aponte, A.M.2
Kohr, M.J.3
Steenbergen, C.4
Murphy, E.5
Sun, J.6
-
92
-
-
77955266918
-
Rapid uptake of lipophilic tri-phenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specifc therapies and probes
-
Porteous CM, Logan A, Evans C, Ledgerwood EC, Menon DK, Aigbirhio F, Smith RA, Murphy MP. Rapid uptake of lipophilic tri-phenylphosphonium cations by mitochondria in vivo following intravenous injection: implications for mitochondria-specifc therapies and probes. Biochim Biophys Acta. 2010;1800:1009-1017. doi: 10.1016/j. bbagen.2010.06.001.
-
(2010)
Biochim Biophys Acta.
, vol.1800
, pp. 1009-1017
-
-
Porteous, C.M.1
Logan, A.2
Evans, C.3
Ledgerwood, E.C.4
Menon, D.K.5
Aigbirhio, F.6
Smith, R.A.7
Murphy, M.P.8
-
93
-
-
84903751373
-
Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts
-
Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy M P, Krieg T. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail. 2014;16:712-717. doi: 10.1002/ejhf.100.
-
(2014)
Eur J Heart Fail.
, vol.16
, pp. 712-717
-
-
Methner, C.1
Chouchani, E.T.2
Buonincontri, G.3
Pell, V.R.4
Sawiak, S.J.5
Murphy, M.P.6
Krieg, T.7
-
94
-
-
84875704850
-
Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel
-
Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim Biophys Acta. 2013;1827:598-611. doi: 10.1016/j.bbabio.2012.12.007.
-
(2013)
Biochim Biophys Acta.
, vol.1827
, pp. 598-611
-
-
Wojtovich, A.P.1
Smith, C.O.2
Haynes, C.M.3
Nehrke, K.W.4
Brookes, P.S.5
-
95
-
-
84884593391
-
Q-site inhibitor induced ROS production of mi-tochondrial complex II is attenuated by TCA cycle dicarboxyl-ates
-
Siebels I, Dröse S. Q-site inhibitor induced ROS production of mi-tochondrial complex II is attenuated by TCA cycle dicarboxyl-ates. Biochim Biophys Acta. 2013;1827:1156-1164. doi: 10.1016/j. bbabio.2013.06.005.
-
(2013)
Biochim Biophys Acta.
, vol.1827
, pp. 1156-1164
-
-
Siebels, I.1
Dröse, S.2
-
96
-
-
4143097031
-
Multiprotein complex containing succinate dehydrogenase confers mitochon-drial ATP-sensitive K+ channel activity
-
Ardehali H, Chen Z, Ko Y, Mejía-Alvarez R, Marbán E. Multiprotein complex containing succinate dehydrogenase confers mitochon-drial ATP-sensitive K+ channel activity. Proc Natl Acad Sci USA. 2004;101:11880-11885. doi: 10.1073/pnas.0401703101.
-
(2004)
Proc Natl Acad Sci USA.
, vol.101
, pp. 11880-11885
-
-
Ardehali, H.1
Chen, Z.2
Ko, Y.3
Mejía-Alvarez, R.4
Marbán, E.5
-
97
-
-
78649930470
-
Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart
-
Quarrie R, Cramer BM, Lee DS, Steinbaugh GE, Erdahl W, Pfeiffer DR, Zweier JL, Crestanello JA. Ischemic preconditioning decreases mitochondrial proton leak and reactive oxygen species production in the postischemic heart. J Surg Res. 2011;165:5-14. doi: 10.1016/j. jss.2010.09.018.
-
(2011)
J Surg Res.
, vol.165
, pp. 5-14
-
-
Quarrie, R.1
Cramer, B.M.2
Lee, D.S.3
Steinbaugh, G.E.4
Erdahl, W.5
Pfeiffer, D.R.6
Zweier, J.L.7
Crestanello, J.A.8
-
98
-
-
84962548731
-
Succinate dehydrogenase inhibition with malonate during reperfuion reduces infarct size by preventing mitochondrial permeability transition [published online ahead of print December 23, 2015]
-
Valls-Lacalle L, Barba I, Miró-Casas E, Alburquerque-Béjar JJ, Ruiz-Meana M, Fuertes-Agudo M, Rodríguez-Sinovas A, García-Dorado D. Succinate dehydrogenase inhibition with malonate during reperfuion reduces infarct size by preventing mitochondrial permeability transition [published online ahead of print December 23, 2015]. Cardiovasc Res. 2015.
-
(2015)
Cardiovasc Res.
-
-
Valls-Lacalle, L.1
Barba, I.2
Miró-Casas, E.3
Alburquerque-Béjar, J.J.4
Ruiz-Meana, M.5
Fuertes-Agudo, M.6
Rodríguez-Sinovas, A.7
García-Dorado, D.8
-
99
-
-
0018801043
-
Inactivation of succinate dehydro-genase by 3-nitropropionate
-
Coles CJ, Edmondson DE, Singer TP. Inactivation of succinate dehydro-genase by 3-nitropropionate. J Biol Chem. 1979;254:5161-5167.
-
(1979)
J Biol Chem.
, vol.254
, pp. 5161-5167
-
-
Coles, C.J.1
Edmondson, D.E.2
Singer, T.P.3
-
100
-
-
84878224232
-
Mitochondrial diseases of the brain
-
Chaturvedi RK, Flint Beal M. Mitochondrial diseases of the brain. Free Radic Biol Med. 2013;63:1-29. doi: 10.1016/j. freeradbiomed.2013.03.018.
-
(2013)
Free Radic Biol Med.
, vol.63
, pp. 1-29
-
-
Chaturvedi, R.K.1
Flint Beal, M.2
-
101
-
-
84875703869
-
The role of complex II in disease
-
Hoekstra AS, Bayley JP. The role of complex II in disease. Biochim Biophys Acta. 2013;1827:543-551. doi: 10.1016/j.bbabio.2012.11.005.
-
(2013)
Biochim Biophys Acta.
, vol.1827
, pp. 543-551
-
-
Hoekstra, A.S.1
Bayley, J.P.2
-
102
-
-
84862284064
-
Cardioprotection by clopidogrel in acute ST-elevated myocardial infarction patients: A retrospective analysis
-
Roubille F, Lairez O, Mewton N, Rioufol G, Ranc S, Sanchez I, Cung TT, Elbaz M, Piot C, Ovize M. Cardioprotection by clopidogrel in acute ST-elevated myocardial infarction patients: a retrospective analysis. Basic Res Cardiol. 2012;107:275. doi: 10.1007/s00395-012-0275-3.
-
(2012)
Basic Res Cardiol.
, vol.107
, pp. 275
-
-
Roubille, F.1
Lairez, O.2
Mewton, N.3
Rioufol, G.4
Ranc, S.5
Sanchez, I.6
Cung, T.T.7
Elbaz, M.8
Piot, C.9
Ovize, M.10
-
103
-
-
84878317288
-
12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts
-
12 blockers confer direct postconditioning-like protection in reperfused rabbit hearts. J Cardiovasc Pharmacol Ther. 2013;18:251-262. doi: 10.1177/1074248412467692.
-
(2013)
J Cardiovasc Pharmacol Ther.
, vol.18
, pp. 251-262
-
-
Yang, X.M.1
Liu, Y.2
Cui, L.3
Yang, X.4
Liu, Y.5
Tandon, N.6
Kambayashi, J.7
Downey, J.M.8
Cohen, M.V.9
-
104
-
-
84894428436
-
Combined cardioprotectant and antithrom-botic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: Just what the doctor ordered
-
Cohen MV, Downey JM. Combined cardioprotectant and antithrom-botic actions of platelet P2Y12 receptor antagonists in acute coronary syndrome: just what the doctor ordered. J Cardiovasc Pharmacol Ther. 2014;19:179-190. doi: 10.1177/1074248413508465.
-
(2014)
J Cardiovasc Pharmacol Ther.
, vol.19
, pp. 179-190
-
-
Cohen, M.V.1
Downey, J.M.2
-
105
-
-
84964292651
-
Reducing myocardial in-farct size: Challenges and future opportunities [published online ahead of print December 16, 2015]
-
Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial in-farct size: challenges and future opportunities [published online ahead of print December 16, 2015]. Heart. 2015. doi: 10.1136/heartjnl-2015-307855.
-
(2015)
Heart.
-
-
Bulluck, H.1
Yellon, D.M.2
Hausenloy, D.J.3
|