-
1
-
-
0037288370
-
Recent advances in hierarchical reinforcement learning
-
Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13(4):341-379, 2003.
-
(2003)
Discrete Event Dynamic Systems
, vol.13
, Issue.4
, pp. 341-379
-
-
Barto, A.G.1
Mahadevan, S.2
-
2
-
-
77952766987
-
A User's guide to support vector machines
-
Asa Ben-Hur and Jason Weston. A user's guide to support vector machines. Methods in Molecular Biology, 609:223-239, 2010.
-
(2010)
Methods in Molecular Biology
, vol.609
, pp. 223-239
-
-
Ben-Hur, A.1
Weston, J.2
-
3
-
-
69349090197
-
Learning deep architectures for AI
-
Also published as a book. Now Publishers, 2009
-
Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, 2009. Also published as a book. Now Publishers, 2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
4
-
-
84883188507
-
Evolving culture vs local minima
-
number also as ArXiv 1203.2990v1, T. Kowaliw, N. Bredeche & R. Doursat, eds. Springer-Verlag, March
-
Yoshua Bengio. Evolving culture vs local minima. In Growing Adaptive Machines: Integrating Development and Learning in Artificial Neural Networks, number also as ArXiv 1203.2990v1, pages T. Kowaliw, N. Bredeche & R. Doursat, eds. Springer-Verlag, March 2013a. URL http://arxiv.org/abs/1203.2990.
-
(2013)
Growing Adaptive Machines: Integrating Development and Learning in Artificial Neural Networks
-
-
Bengio, Y.1
-
5
-
-
84872560515
-
Practical recommendations for gradient-based training of deep architectures
-
K.-R. Müller, G. Montavon, and G. B. Orr, editors, Springer
-
Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In K.-R. Müller, G. Montavon, and G. B. Orr, editors, Neural Networks: Tricks of the Trade. Springer, 2013b.
-
(2013)
Neural Networks: Tricks of the Trade
-
-
Bengio, Y.1
-
6
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, MIT Press
-
Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise training of deep networks. In Bernhard Schölkopf, John Platt, and Thomas Hoffman, editors, Ad-vances in Neural Information Processing Systems 19 (NIPS'06), pages 153-160. MIT Press, 2007.
-
(2007)
Ad-vances in Neural Information Processing Systems 19 (NIPS'06)
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
7
-
-
71149116544
-
Curriculum learning
-
Léon Bottou and Michael Littman, editors, ACM
-
Yoshua Bengio, Jerome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Léon Bottou and Michael Littman, editors, Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09). ACM, 2009.
-
(2009)
Proceedings of the Twenty-sixth International Conference on Machine Learning (ICML'09)
-
-
Bengio, Y.1
Louradour, J.2
Collobert, R.3
Weston, J.4
-
10
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing Conference (SciPy), 2010.
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
11
-
-
84904136037
-
Large-scale machine learning with stochastic gradient descent
-
Springer
-
Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177-186. Springer, 2010.
-
(2010)
Proceedings of COMPSTAT'2010
, pp. 177-186
-
-
Bottou, L.1
-
12
-
-
0035478854
-
Random forests
-
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
13
-
-
0003802343
-
Classification and regression trees
-
Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. classification and regression trees. Belmont, Calif.: Wadsworth, 1984.
-
(1984)
Belmont, Calif.: Wadsworth
-
-
Breiman, L.1
Friedman, J.2
Stone, C.J.3
Olshen, R.A.4
-
14
-
-
84954310140
-
The loss surface of multilayer networks
-
Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss surface of multilayer networks. AISTATS 2015, Proceedings of the Eighteenth In-ternational Conference on Artificial Intelligence and Statistics, pages 192-204, 2015.
-
(2015)
AISTATS 2015, Proceedings of the Eighteenth In-ternational Conference on Artificial Intelligence and Statistics
, pp. 192-204
-
-
Choromanska, A.1
Henaff, M.2
Mathieu, M.3
Arous, G.B.4
LeCun, Y.5
-
15
-
-
78649669320
-
Deep big simple neural nets for handwritten digit recognition
-
Dan C. Ciresan, Ueli Meier, Luca M. Gambardella, and Jürgen Schmidhuber. Deep big simple neural nets for handwritten digit recognition. Neural Computation, 22:1-14, 2010.
-
(2010)
Neural Computation
, vol.22
, pp. 1-14
-
-
Ciresan, D.C.1
Meier, U.2
Gambardella, L.M.3
Schmidhuber, J.4
-
17
-
-
84928534967
-
Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
-
Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS'2014, 2014.
-
(2014)
NIPS'2014
-
-
Dauphin, Y.1
Pascanu, R.2
Gulcehre, C.3
Cho, K.4
Ganguli, S.5
Bengio, Y.6
-
20
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
JML (-1)
-
Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning? In Journal of Machine Learning Research JML (-1), pages 625-660.
-
Journal of Machine Learning Research
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courville, A.3
Manzagol, P.-A.4
Vincent, P.5
Bengio, S.6
-
21
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel et al Fabian Pedregosa, Gal Varoquaux. Scikit-learn: Machine learning in python. The Journal of Machine Learning Research, 12:2825-2830, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Gramfort, A.1
Michel, V.2
Thirion, B.3
Grisel, O.4
Blondel, M.5
Pedregosa, F.6
Varoquaux, G.7
-
22
-
-
80055083194
-
Comparing machines and humans on a visual categorization test
-
Franois Fleuret, Ting Li, Charles Dubout, Emma K. Wampler, Steven Yantis, and Donald Geman. Comparing machines and humans on a visual categorization test. Proceedings of the National Academy of Sciences, 108(43):17621-17625, 2011.
-
(2011)
Proceedings of the National Academy of Sciences
, vol.108
, Issue.43
, pp. 17621-17625
-
-
Fleuret, F.1
Li, T.2
Dubout, C.3
Wampler, E.K.4
Yantis, S.5
Geman, D.6
-
25
-
-
84897543523
-
Maxout networks
-
Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua Bengio. Maxout networks. In ICML'2013, 2013.
-
(2013)
ICML'2013
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
27
-
-
0037772374
-
The evolution of cultural evolution
-
Joseph Henrich and Richard McElreath. The evolution of cultural evolution. Evolutionary Anthropology: Issues, News, and Reviews, 12(3):123-135, 2003.
-
(2003)
Evolutionary Anthropology: Issues, News, and Reviews
, vol.12
, Issue.3
, pp. 123-135
-
-
Henrich, J.1
McElreath, R.2
-
28
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
29
-
-
84867720412
-
-
Technical report, arXiv:1207.0580
-
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. Technical report, arXiv:1207.0580, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
-
-
Hinton, G.E.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
31
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
IEEE
-
Kevin Jarrett, Koray Kavukcuoglu, Marc'Aurelio Ranzato, and Yann LeCun. What is the best multi-stage architecture for object recognition? In Proc. International Conference on Computer Vision (ICCV'09), pages 2146-2153. IEEE, 2009.
-
(2009)
Proc. International Conference on Computer Vision (ICCV'09)
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
34
-
-
59649113160
-
Flexible shaping: How learning in small steps helps
-
Kai A. Krueger and Peter Dayan. Flexible shaping: how learning in small steps helps. Cognition, 110:380-394, 2009.
-
(2009)
Cognition
, vol.110
, pp. 380-394
-
-
Krueger, K.A.1
Dayan, P.2
-
36
-
-
59449087310
-
Exploring strategies for training deep neural networks
-
Hugo Larochelle, Yoshua Bengio, Jerome Louradour, and Pascal Lamblin. Exploring strategies for training deep neural networks. Journal of Machine Learning Research, 10:1-40, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 1-40
-
-
Larochelle, H.1
Bengio, Y.2
Louradour, J.3
Lamblin, P.4
-
37
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
38
-
-
0003682772
-
-
Department of Computer Science, Laboratory for Computer Science Research, Rutgers Univ
-
Tom M. Mitchell. The Need for Biases in Learning Generalizations. Department of Computer Science, Laboratory for Computer Science Research, Rutgers Univ., 1980.
-
(1980)
The Need for Biases in Learning Generalizations
-
-
Mitchell, T.M.1
-
40
-
-
84979128113
-
Universal grammar
-
Richard Montague. Universal grammar. Theoria, 36(3):373-398, 1970.
-
(1970)
Theoria
, vol.36
, Issue.3
, pp. 373-398
-
-
Montague, R.1
-
43
-
-
12344258158
-
A day of great illumination: B. F. Skinner's discovery of shaping
-
Gail B. Peterson. A day of great illumination: B. F. Skinner's discovery of shaping. Journal of the Experimental Analysis of Behavior, 82(3):317-328, 2004.
-
(2004)
Journal of the Experimental Analysis of Behavior
, vol.82
, Issue.3
, pp. 317-328
-
-
Peterson, G.B.1
-
44
-
-
80053460450
-
Contractive auto-encoders: Explicit invariance during feature extraction
-
June
-
Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In Proceedings of the Twenty-eight International Conference on Machine Learning (ICML'11), June 2011.
-
(2011)
Proceedings of the Twenty-eight International Conference on Machine Learning (ICML'11)
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
47
-
-
85050787417
-
Reinforcement today
-
Burrhus F. Skinner. Reinforcement today. American Psychologist, 13:94-99, 1958.
-
(1958)
American Psychologist
, vol.13
, pp. 94-99
-
-
Skinner, B.F.1
-
49
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
-
50
-
-
0028529307
-
Knowledge-based artificial neural networks
-
Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based Artificial neural networks. Artificial intelligence, 70(1):119-165, 1994.
-
(1994)
Artificial Intelligence
, vol.70
, Issue.1
, pp. 119-165
-
-
Towell, G.G.1
Shavlik, J.W.2
-
51
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
JML (-1)
-
Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. In Journal of Machine Learning Research JML (-1), pages 3371-3408.
-
Journal of Machine Learning Research
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.-A.5
-
52
-
-
35248831179
-
Captcha: Using hard ai problems for security
-
Springer
-
Luis Von Ahn, Manuel Blum, Nicholas J Hopper, and John Langford. Captcha: Using hard ai problems for security. In Advances in Cryptology EUROCRYPT 2003, pages 294-311. Springer, 2003.
-
(2003)
Advances in Cryptology EUROCRYPT 2003
, pp. 294-311
-
-
Von Ahn, L.1
Blum, M.2
Hopper, N.J.3
Langford, J.4
-
53
-
-
56449119888
-
Deep learning via semi-supervised embedding
-
William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, New York, NY, USA, ACM
-
Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1168-1175, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390303.
-
(2008)
Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08)
, pp. 1168-1175
-
-
Weston, J.1
Ratle, F.2
Collobert, R.3
|