메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages

Knowledge matters: Importance of prior information for optimization

Author keywords

Curriculum learning; Deep learning; Evolution of culture; Neural networks; Optimization; Training with hints

Indexed keywords

ARTIFICIAL INTELLIGENCE; CURRICULA; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; OPTIMIZATION;

EID: 84962440920     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (128)

References (54)
  • 1
    • 0037288370 scopus 로고    scopus 로고
    • Recent advances in hierarchical reinforcement learning
    • Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete Event Dynamic Systems, 13(4):341-379, 2003.
    • (2003) Discrete Event Dynamic Systems , vol.13 , Issue.4 , pp. 341-379
    • Barto, A.G.1    Mahadevan, S.2
  • 2
    • 77952766987 scopus 로고    scopus 로고
    • A User's guide to support vector machines
    • Asa Ben-Hur and Jason Weston. A user's guide to support vector machines. Methods in Molecular Biology, 609:223-239, 2010.
    • (2010) Methods in Molecular Biology , vol.609 , pp. 223-239
    • Ben-Hur, A.1    Weston, J.2
  • 3
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Also published as a book. Now Publishers, 2009
    • Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1):1-127, 2009. Also published as a book. Now Publishers, 2009.
    • (2009) Foundations and Trends in Machine Learning , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 4
    • 84883188507 scopus 로고    scopus 로고
    • Evolving culture vs local minima
    • number also as ArXiv 1203.2990v1, T. Kowaliw, N. Bredeche & R. Doursat, eds. Springer-Verlag, March
    • Yoshua Bengio. Evolving culture vs local minima. In Growing Adaptive Machines: Integrating Development and Learning in Artificial Neural Networks, number also as ArXiv 1203.2990v1, pages T. Kowaliw, N. Bredeche & R. Doursat, eds. Springer-Verlag, March 2013a. URL http://arxiv.org/abs/1203.2990.
    • (2013) Growing Adaptive Machines: Integrating Development and Learning in Artificial Neural Networks
    • Bengio, Y.1
  • 5
    • 84872560515 scopus 로고    scopus 로고
    • Practical recommendations for gradient-based training of deep architectures
    • K.-R. Müller, G. Montavon, and G. B. Orr, editors, Springer
    • Yoshua Bengio. Practical recommendations for gradient-based training of deep architectures. In K.-R. Müller, G. Montavon, and G. B. Orr, editors, Neural Networks: Tricks of the Trade. Springer, 2013b.
    • (2013) Neural Networks: Tricks of the Trade
    • Bengio, Y.1
  • 11
    • 84904136037 scopus 로고    scopus 로고
    • Large-scale machine learning with stochastic gradient descent
    • Springer
    • Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT'2010, pages 177-186. Springer, 2010.
    • (2010) Proceedings of COMPSTAT'2010 , pp. 177-186
    • Bottou, L.1
  • 12
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 17
    • 84928534967 scopus 로고    scopus 로고
    • Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
    • Yann Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization. In NIPS'2014, 2014.
    • (2014) NIPS'2014
    • Dauphin, Y.1    Pascanu, R.2    Gulcehre, C.3    Cho, K.4    Ganguli, S.5    Bengio, Y.6
  • 19
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011.
    • (2011) Journal of Machine Learning Research
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 28
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18:1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 34
    • 59649113160 scopus 로고    scopus 로고
    • Flexible shaping: How learning in small steps helps
    • Kai A. Krueger and Peter Dayan. Flexible shaping: how learning in small steps helps. Cognition, 110:380-394, 2009.
    • (2009) Cognition , vol.110 , pp. 380-394
    • Krueger, K.A.1    Dayan, P.2
  • 37
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 38
    • 0003682772 scopus 로고
    • Department of Computer Science, Laboratory for Computer Science Research, Rutgers Univ
    • Tom M. Mitchell. The Need for Biases in Learning Generalizations. Department of Computer Science, Laboratory for Computer Science Research, Rutgers Univ., 1980.
    • (1980) The Need for Biases in Learning Generalizations
    • Mitchell, T.M.1
  • 40
    • 84979128113 scopus 로고
    • Universal grammar
    • Richard Montague. Universal grammar. Theoria, 36(3):373-398, 1970.
    • (1970) Theoria , vol.36 , Issue.3 , pp. 373-398
    • Montague, R.1
  • 43
    • 12344258158 scopus 로고    scopus 로고
    • A day of great illumination: B. F. Skinner's discovery of shaping
    • Gail B. Peterson. A day of great illumination: B. F. Skinner's discovery of shaping. Journal of the Experimental Analysis of Behavior, 82(3):317-328, 2004.
    • (2004) Journal of the Experimental Analysis of Behavior , vol.82 , Issue.3 , pp. 317-328
    • Peterson, G.B.1
  • 47
  • 49
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 50
    • 0028529307 scopus 로고
    • Knowledge-based artificial neural networks
    • Geoffrey G. Towell and Jude W. Shavlik. Knowledge-based Artificial neural networks. Artificial intelligence, 70(1):119-165, 1994.
    • (1994) Artificial Intelligence , vol.70 , Issue.1 , pp. 119-165
    • Towell, G.G.1    Shavlik, J.W.2
  • 51
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • JML (-1)
    • Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. In Journal of Machine Learning Research JML (-1), pages 3371-3408.
    • Journal of Machine Learning Research , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 53
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, New York, NY, USA, ACM
    • Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding. In William W. Cohen, Andrew McCallum, and Sam T. Roweis, editors, Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08), pages 1168-1175, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-205-4. doi: 10.1145/1390156.1390303.
    • (2008) Proceedings of the Twenty-fifth International Conference on Machine Learning (ICML'08) , pp. 1168-1175
    • Weston, J.1    Ratle, F.2    Collobert, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.