메뉴 건너뛰기




Volumn 16, Issue , 2015, Pages 2859-2900

Linear dimensionality reduction: Survey, insights, and generalizations

Author keywords

Dimensionality reduction; Eigenvector problems; Matrix manifolds

Indexed keywords

CLUSTERING ALGORITHMS; DATA REDUCTION; DISCRIMINANT ANALYSIS; EIGENVALUES AND EIGENFUNCTIONS; FACE RECOGNITION; INDEPENDENT COMPONENT ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; SURVEYS;

EID: 84961575191     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (565)

References (133)
  • 1
    • 40749116008 scopus 로고    scopus 로고
    • Steepest descent algorithms for optimization under unitary matrix constraint
    • T. E. Abrudan, J. Eriksson, and V. Koivunen. Steepest descent algorithms for optimization under unitary matrix constraint. IEEE Transactions on Signal Processing, 56:1134-1147, 2008.
    • (2008) IEEE Transactions on Signal Processing , vol.56 , pp. 1134-1147
    • Abrudan, T.E.1    Eriksson, J.2    Koivunen, V.3
  • 2
    • 84861639358 scopus 로고    scopus 로고
    • Projection-like retractions on matrix manifolds
    • P. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM Journal on Optimization, 22(1):135-158, 2012.
    • (2012) SIAM Journal on Optimization , vol.22 , Issue.1 , pp. 135-158
    • Absil, P.1    Malick, J.2
  • 5
    • 0033570817 scopus 로고    scopus 로고
    • Natural gradient learning for over and under complete bases in ICA
    • S. Amari. Natural gradient learning for over and under complete bases in ICA. Neural Computation, 11:1875-1883, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1875-1883
    • Amari, S.1
  • 8
    • 35048885164 scopus 로고    scopus 로고
    • Multivariate regression via Stiefel manifold constraints
    • Springer
    • G. H. Bakir, A. Gretton, M. Franz, and B. Schölkopf. Multivariate regression via Stiefel manifold constraints. In Pattern Recognition, pages 262-269. Springer, 2004.
    • (2004) Pattern Recognition , pp. 262-269
    • Bakir, G.H.1    Gretton, A.2    Franz, M.3    Schölkopf, B.4
  • 10
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 11
    • 0016948909 scopus 로고
    • On the goldstein-levitin-polyak gradient projection method
    • D. P. Bertsekas. On the goldstein-levitin-polyak gradient projection method. IEEE Transactions on Automatic Control, 21(2):174-184, 1976.
    • (1976) IEEE Transactions on Automatic Control , vol.21 , Issue.2 , pp. 174-184
    • Bertsekas, D.P.1
  • 16
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 3(1):1-122, 2011.
    • (2011) Foundations & Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 17
    • 85156213773 scopus 로고    scopus 로고
    • Kernel-based extraction of slow features: Complex cells learn disparity and translation invariance from natural images
    • A. Bray and D. Martinez. Kernel-based extraction of slow features: Complex cells learn disparity and translation invariance from natural images. In Advances in Neural Information Processing Systems, pages 253-260, 2002.
    • (2002) Advances in Neural Information Processing Systems , pp. 253-260
    • Bray, A.1    Martinez, D.2
  • 21
    • 79960675858 scopus 로고    scopus 로고
    • Robust principal component analysis?
    • E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(3):11:1-11:37, 2011.
    • (2011) Journal of the ACM , vol.58 , Issue.3 , pp. 111-1137
    • Candes, E.J.1    Li, X.2    Ma, Y.3    Wright, J.4
  • 23
    • 27744568756 scopus 로고    scopus 로고
    • L1-norm projection pursuit principal component analysis
    • V. Choulakian. L1-norm projection pursuit principal component analysis. Computational Statistics and Data Analysis, 50(6):1441-1451, 2006.
    • (2006) Computational Statistics and Data Analysis , vol.50 , Issue.6 , pp. 1441-1451
    • Choulakian, V.1
  • 28
    • 84908555723 scopus 로고    scopus 로고
    • Dimensionality reduction for large-scale neural recordings
    • J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 17:1500-1509, 2014.
    • (2014) Nature Neuroscience , vol.17 , pp. 1500-1509
    • Cunningham, J.P.1    Yu, B.M.2
  • 29
    • 34548514458 scopus 로고    scopus 로고
    • A direct formulation for sparse PCA using semidefinite programming
    • A d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49:434-448, 2007.
    • (2007) SIAM Review , vol.49 , pp. 434-448
    • D'Aspremont, A.1    El Ghaoui, L.2    Jordan, M.I.3    Lanckriet, G.R.4
  • 33
    • 84989525001 scopus 로고
    • Indexing by latent semantic analysis. Journal of the American Society for Information
    • S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407, 1990.
    • (1990) Science , vol.41 , Issue.6 , pp. 391-407
    • Deerwester, S.C.1    Dumais, S.T.2    Landauer, T.K.3    Furnas, G.W.4    Harshman, R.A.5
  • 35
    • 84877760772 scopus 로고    scopus 로고
    • Latent coincidence analysis: A hidden variable model for distance metric learning
    • M. der and L. K. Saul. Latent coincidence analysis: a hidden variable model for distance metric learning. In Advances in Neural Information Processing Systems, pages 3230-3238, 2012.
    • (2012) Advances in Neural Information Processing Systems , pp. 3230-3238
    • Der, M.1    Saul, L.K.2
  • 36
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. The Annals of Statistics, pages 793-815, 1984.
    • (1984) The Annals of Statistics , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 37
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of lower rank
    • C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211-218, 1936.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 40
    • 21844443579 scopus 로고    scopus 로고
    • Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial
    • S. Fiori. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. Journal of Machine Learning Research, 6:743-781, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 743-781
    • Fiori, S.1
  • 41
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 43
    • 4544371135 scopus 로고    scopus 로고
    • Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
    • K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 73-99
    • Fukumizu, K.1    Bach, F.R.2    Jordan, M.I.3
  • 46
    • 0020145445 scopus 로고
    • Minimizing a differentiable function over a differentiable manifold
    • D. Gabay. Minimizing a differentiable function over a differentiable manifold. The Journal of Optimization Theory and Applications, 37(2):177-219, 1982.
    • (1982) The Journal of Optimization Theory and Applications , vol.37 , Issue.2 , pp. 177-219
    • Gabay, D.1
  • 50
  • 53
    • 58149193404 scopus 로고    scopus 로고
    • Convergence analysis of kernel canonical correlation analysis: Theory and practice
    • D. R. Hardoon and J. Shawe-Taylor. Convergence analysis of kernel canonical correlation analysis: theory and practice. Machine Learning, 74(1):23-38, 2009.
    • (2009) Machine Learning , vol.74 , Issue.1 , pp. 23-38
    • Hardoon, D.R.1    Shawe-Taylor, J.2
  • 54
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • D. R. Hardoon, S. Szedmak, and J Shawe-Taylor. Canonical correlation analysis: an overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
    • (2004) Neural Computation , vol.16 , Issue.12 , pp. 2639-2664
    • Hardoon, D.R.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 58
    • 0001930482 scopus 로고
    • Matrix nearness problems and applications
    • Oxford University Press
    • N. J. Higham. Matrix nearness problems and applications. In Applications of Matrix Theory, pages 1-27. Oxford University Press, 1989.
    • (1989) Applications of Matrix Theory , pp. 1-27
    • Higham, N.J.1
  • 59
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28:321-377, 1936.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 64
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • R. E. Kalman. A new approach to linear filtering and prediction problems. The Journal of Basic Engineering, 82:35-45, 1960.
    • (1960) The Journal of Basic Engineering , vol.82 , pp. 35-45
    • Kalman, R.E.1
  • 65
    • 84873280616 scopus 로고    scopus 로고
    • Empirical arithmetic averaging over the compact stiefel manifold
    • T. Kaneko, S. Fiori, and T. Tanaka. Empirical arithmetic averaging over the compact stiefel manifold. IEEE Transactions on Signal Processing, 61(4):883-894, 2013.
    • (2013) IEEE Transactions on Signal Processing , vol.61 , Issue.4 , pp. 883-894
    • Kaneko, T.1    Fiori, S.2    Tanaka, T.3
  • 66
    • 84878742325 scopus 로고    scopus 로고
    • Learning a factor model via regularized PCA
    • Y. H. Kao and B. Van Roy. Learning a factor model via regularized PCA. Machine Learning, 91(279-303), 2013.
    • (2013) Machine Learning , vol.91 , Issue.279-303
    • Kao, Y.H.1    Van Roy, B.2
  • 68
    • 0036684142 scopus 로고    scopus 로고
    • Decomposition using maximum autocorrelation factors
    • R. Larsen. Decomposition using maximum autocorrelation factors. Journal of Chemometrics, 16:427-435, 2002.
    • (2002) Journal of Chemometrics , vol.16 , pp. 427-435
    • Larsen, R.1
  • 69
    • 84862001101 scopus 로고    scopus 로고
    • A unifying probabilistic perspective for spectral dimensionality reduction: Insights and new models
    • N. D. Lawrence. A unifying probabilistic perspective for spectral dimensionality reduction: insights and new models. Journal of Machine Learning Research, 13(1):1609-1638, 2012.
    • (2012) Journal of Machine Learning Research , vol.13 , Issue.1 , pp. 1609-1638
    • Lawrence, N.D.1
  • 70
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 71
    • 78649446531 scopus 로고    scopus 로고
    • Procrustes problems and associated approximation problems for matrices with k-involutory symmetries
    • J. F. Li and X. Y. Hu. Procrustes problems and associated approximation problems for matrices with k-involutory symmetries. Linear Algebra and its Applications, 434:820-829, 2011.
    • (2011) Linear Algebra and its Applications , vol.434 , pp. 820-829
    • Li, J.F.1    Hu, X.Y.2
  • 72
    • 84945116550 scopus 로고
    • Sliced inverse regression for dimension reduction
    • K. C. Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):316-327, 1991.
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.414 , pp. 316-327
    • Li, K.C.1
  • 73
    • 33748333622 scopus 로고    scopus 로고
    • The gradient projection method along geodesics
    • D. Luenberger. The gradient projection method along geodesics. Management Science, 18(11), 1972.
    • Management Science , vol.18 , Issue.11 , pp. 1972
    • Luenberger, D.1
  • 74
    • 0036503069 scopus 로고    scopus 로고
    • Optimization algorithms exploiting unitary constraints
    • J. H. Manton. Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing, 50:635-650, 2002.
    • (2002) IEEE Transactions on Signal Processing , vol.50 , pp. 635-650
    • Manton, J.H.1
  • 78
    • 0002824680 scopus 로고
    • Symmetric gauge functions and unitarily invariant norms
    • L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quarterly Journal of Mathematics, 11:80-89, 1960.
    • (1960) Quarterly Journal of Mathematics , vol.11 , pp. 80-89
    • Mirsky, L.1
  • 83
    • 21744442796 scopus 로고    scopus 로고
    • Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold
    • Y. Nishimori and S. Akaho. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing, 67:106-135, 2005.
    • (2005) Neurocomputing , vol.67 , pp. 106-135
    • Nishimori, Y.1    Akaho, S.2
  • 84
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559-572, 1901.
    • (1901) Philosophical Magazine , vol.2 , pp. 559-572
    • Pearson, K.1
  • 86
    • 0001565436 scopus 로고
    • The utilization of multiple measurements in problems of biological classification
    • C. R. Rao. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society, Series B, 10(2):159-203, 1948.
    • (1948) Journal of the Royal Statistical Society, Series B , vol.10 , Issue.2 , pp. 159-203
    • Rao, C.R.1
  • 90
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • December
    • S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 91
    • 77953479796 scopus 로고    scopus 로고
    • Optimal linear projections for enhancing desired data statistics
    • E. Rubinshtein and A. Srivastava. Optimal linear projections for enhancing desired data statistics. Statistical Computing, 20:267-282, 2010.
    • (2010) Statistical Computing , vol.20 , pp. 267-282
    • Rubinshtein, E.1    Srivastava, A.2
  • 94
    • 0000988974 scopus 로고
    • A generalized solution of the orthogonal Procrustes problem
    • P. H. Schonemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31:1-10, 1966.
    • (1966) Psychometrika , vol.31 , pp. 1-10
    • Schonemann, P.H.1
  • 96
    • 0000600340 scopus 로고
    • General intelligence, objectively determined and measured
    • C. Spearman. General intelligence, objectively determined and measured. American Journal of Psychology, 15:201-293, 1904.
    • (1904) American Journal of Psychology , vol.15 , pp. 201-293
    • Spearman, C.1
  • 99
    • 21744461510 scopus 로고    scopus 로고
    • Tools for application-driven linear dimension reduction
    • A. Srivastava and X. Liu. Tools for application-driven linear dimension reduction. Neurocomputing, 67:136-160, 2005.
    • (2005) Neurocomputing , vol.67 , pp. 136-160
    • Srivastava, A.1    Liu, X.2
  • 101
    • 0000818474 scopus 로고
    • Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression
    • M. Stone and R. J. Brooks. Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. Journal of the Royal Statistical Society, Series B, pages 237-269, 1990.
    • (1990) Journal of the Royal Statistical Society, Series B , pp. 237-269
    • Stone, M.1    Brooks, R.J.2
  • 102
    • 71149101160 scopus 로고    scopus 로고
    • A least squares formulation for a class of generalized eigenvalue problems in machine learning
    • ACM
    • L. Sun, S. Ji, and J. Ye. A least squares formulation for a class of generalized eigenvalue problems in machine learning. In Proceedings of the International Conference on Machine Learning, pages 977-984. ACM, 2009.
    • (2009) Proceedings of the International Conference on Machine Learning , pp. 977-984
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 104
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • December
    • J. B. Tenenbaum, V. deSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.B.1    DeSilva, V.2    Langford, J.C.3
  • 105
    • 0016772932 scopus 로고
    • An inequality with application to multivariate analysis
    • C. M. Theobald. An inequality with application to multivariate analysis. Biometrika, 62(2):461-466, 1975.
    • (1975) Biometrika , vol.62 , Issue.2 , pp. 461-466
    • Theobald, C.M.1
  • 109
    • 84950351930 scopus 로고
    • Multidimensional scaling: I. Theory and method
    • W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401-419, 1952.
    • (1952) Psychometrika , vol.17 , Issue.4 , pp. 401-419
    • Torgerson, W.S.1
  • 111
    • 34247248843 scopus 로고    scopus 로고
    • A maximum-likelihood interpretation for slow feature analysis
    • R. Turner and M. Sahani. A maximum-likelihood interpretation for slow feature analysis. Neural Computation, 19(4):1022-1038, 2007.
    • (2007) Neural Computation , vol.19 , Issue.4 , pp. 1022-1038
    • Turner, R.1    Sahani, M.2
  • 115
    • 79957463944 scopus 로고    scopus 로고
    • Linear dimensionality reduction for margin-based classification: High-dimensional data and sensor networks
    • K. R. Varshney and A. S. Willsky. Linear dimensionality reduction for margin-based classification: high-dimensional data and sensor networks. IEEE Transactions on Signal Processing, 59:2496-2512, 2011.
    • (2011) IEEE Transactions on Signal Processing , vol.59 , pp. 2496-2512
    • Varshney, K.R.1    Willsky, A.S.2
  • 117
    • 33744949513 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming
    • K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision, 70(1):77-90, 2006.
    • (2006) International Journal of Computer Vision , vol.70 , Issue.1 , pp. 77-90
    • Weinberger, K.Q.1    Saul, L.K.2
  • 118
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10:207-244, 2009.
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 122
    • 0036165146 scopus 로고    scopus 로고
    • On a connection between kernel PCA and metric multidimensional scaling
    • C. K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. Machine Learning, 46(1-3):11-19, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 11-19
    • Williams, C.K.I.1
  • 123
    • 0036581055 scopus 로고    scopus 로고
    • Products of Gaussians and probabilistic minor component analysis
    • C. K. I. Williams and F. Agakov. Products of Gaussians and probabilistic minor component analysis. Neural Computation, 14(5):1169-1182, 2002.
    • (2002) Neural Computation , vol.14 , Issue.5 , pp. 1169-1182
    • Williams, C.K.I.1    Agakov, F.2
  • 124
    • 0041324871 scopus 로고    scopus 로고
    • Slow feature analysis: A theoretical analysis of optimal free responses
    • L. Wiskott. Slow feature analysis: A theoretical analysis of optimal free responses. Neural Computation, 15(9):2147-2177, 2003.
    • (2003) Neural Computation , vol.15 , Issue.9 , pp. 2147-2177
    • Wiskott, L.1
  • 125
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural Computation, 14(4):715-770, 2002.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.2
  • 131
    • 0033309417 scopus 로고    scopus 로고
    • Natural gradient algorithm for blind separation of overdetermined mixture with additive noise
    • L. Zhang, A. Cichocki, and S. Amari. Natural gradient algorithm for blind separation of overdetermined mixture with additive noise. IEEE Signal Processing Letters, 6(11):293-295, 1999.
    • (1999) IEEE Signal Processing Letters , vol.6 , Issue.11 , pp. 293-295
    • Zhang, L.1    Cichocki, A.2    Amari, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.