-
2
-
-
84861639358
-
Projection-like retractions on matrix manifolds
-
P. Absil and J. Malick. Projection-like retractions on matrix manifolds. SIAM Journal on Optimization, 22(1):135-158, 2012.
-
(2012)
SIAM Journal on Optimization
, vol.22
, Issue.1
, pp. 135-158
-
-
Absil, P.1
Malick, J.2
-
5
-
-
0033570817
-
Natural gradient learning for over and under complete bases in ICA
-
S. Amari. Natural gradient learning for over and under complete bases in ICA. Neural Computation, 11:1875-1883, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 1875-1883
-
-
Amari, S.1
-
7
-
-
80052253522
-
Convex optimization with sparsityinducing norms
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex optimization with sparsityinducing norms. Optimization for Machine Learning, pages 19-53, 2011.
-
(2011)
Optimization for Machine Learning
, pp. 19-53
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
8
-
-
35048885164
-
Multivariate regression via Stiefel manifold constraints
-
Springer
-
G. H. Bakir, A. Gretton, M. Franz, and B. Schölkopf. Multivariate regression via Stiefel manifold constraints. In Pattern Recognition, pages 262-269. Springer, 2004.
-
(2004)
Pattern Recognition
, pp. 262-269
-
-
Bakir, G.H.1
Gretton, A.2
Franz, M.3
Schölkopf, B.4
-
9
-
-
1942517347
-
Learning distance functions using equivalence relations
-
A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall. Learning distance functions using equivalence relations. In Proceedings of the International Conference on Machine Learning, volume 3, pages 11-18, 2003.
-
(2003)
Proceedings of the International Conference on Machine Learning
, vol.3
, pp. 11-18
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
10
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
11
-
-
0016948909
-
On the goldstein-levitin-polyak gradient projection method
-
D. P. Bertsekas. On the goldstein-levitin-polyak gradient projection method. IEEE Transactions on Automatic Control, 21(2):174-184, 1976.
-
(1976)
IEEE Transactions on Automatic Control
, vol.21
, Issue.2
, pp. 174-184
-
-
Bertsekas, D.P.1
-
14
-
-
34047168538
-
-
Technical Report
-
M. Borga, T. Landelius, and H. Knutsson. A unified approach to PCA, PLS, MLR, and CCA. Technical Report, 1997.
-
(1997)
A Unified Approach to PCA, PLS, MLR, and CCA
-
-
Borga, M.1
Landelius, T.2
Knutsson, H.3
-
15
-
-
84901625709
-
Manopt, a matlab toolbox for optimization on manifolds
-
N. Boumal, B. Mishra, P. Absil, and R. Sepulchre. Manopt, a matlab toolbox for optimization on manifolds. Journal of Machine Learning Research, 15:1455-1459, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1455-1459
-
-
Boumal, N.1
Mishra, B.2
Absil, P.3
Sepulchre, R.4
-
16
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 3(1):1-122, 2011.
-
(2011)
Foundations & Trends in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
17
-
-
85156213773
-
Kernel-based extraction of slow features: Complex cells learn disparity and translation invariance from natural images
-
A. Bray and D. Martinez. Kernel-based extraction of slow features: Complex cells learn disparity and translation invariance from natural images. In Advances in Neural Information Processing Systems, pages 253-260, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 253-260
-
-
Bray, A.1
Martinez, D.2
-
21
-
-
79960675858
-
Robust principal component analysis?
-
E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM, 58(3):11:1-11:37, 2011.
-
(2011)
Journal of the ACM
, vol.58
, Issue.3
, pp. 111-1137
-
-
Candes, E.J.1
Li, X.2
Ma, Y.3
Wright, J.4
-
22
-
-
77951458444
-
An online algorithm for large scale image similarity learning
-
G. Chechik, U. Shalit, V. Sharma, and S. Bengio. An online algorithm for large scale image similarity learning. In Advances in Neural Information Processing Systems, pages 306-314, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 306-314
-
-
Chechik, G.1
Shalit, U.2
Sharma, V.3
Bengio, S.4
-
23
-
-
27744568756
-
L1-norm projection pursuit principal component analysis
-
V. Choulakian. L1-norm projection pursuit principal component analysis. Computational Statistics and Data Analysis, 50(6):1441-1451, 2006.
-
(2006)
Computational Statistics and Data Analysis
, vol.50
, Issue.6
, pp. 1441-1451
-
-
Choulakian, V.1
-
24
-
-
84863499572
-
Neural population dynamics during reaching
-
M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I. Ryu, and K. V. Shenoy. Neural population dynamics during reaching. Nature, 487:51-56, 2012.
-
(2012)
Nature
, vol.487
, pp. 51-56
-
-
Churchland, M.M.1
Cunningham, J.P.2
Kaufman, M.T.3
Foster, J.D.4
Nuyujukian, P.5
Ryu, S.I.6
Shenoy, K.V.7
-
28
-
-
84908555723
-
Dimensionality reduction for large-scale neural recordings
-
J. P. Cunningham and B. M. Yu. Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 17:1500-1509, 2014.
-
(2014)
Nature Neuroscience
, vol.17
, pp. 1500-1509
-
-
Cunningham, J.P.1
Yu, B.M.2
-
29
-
-
34548514458
-
A direct formulation for sparse PCA using semidefinite programming
-
A d'Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct formulation for sparse PCA using semidefinite programming. SIAM Review, 49:434-448, 2007.
-
(2007)
SIAM Review
, vol.49
, pp. 434-448
-
-
D'Aspremont, A.1
El Ghaoui, L.2
Jordan, M.I.3
Lanckriet, G.R.4
-
32
-
-
84951776714
-
Texture description by independent components
-
Springer
-
D. De Ridder, R. P. W. Duin, and J. Kittler. Texture description by independent components. In Structural, Syntactic, and Statistical Pattern Recognition, pages 587-596. Springer, 2002.
-
(2002)
Structural, Syntactic, and Statistical Pattern Recognition
, pp. 587-596
-
-
De Ridder, D.1
Duin, R.P.W.2
Kittler, J.3
-
33
-
-
84989525001
-
Indexing by latent semantic analysis. Journal of the American Society for Information
-
S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. Journal of the American Society for Information Science, 41(6):391-407, 1990.
-
(1990)
Science
, vol.41
, Issue.6
, pp. 391-407
-
-
Deerwester, S.C.1
Dumais, S.T.2
Landauer, T.K.3
Furnas, G.W.4
Harshman, R.A.5
-
34
-
-
84961587890
-
Maximum likelihood from incomplete data via the EM algorithm (with discussion)
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39:1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
35
-
-
84877760772
-
Latent coincidence analysis: A hidden variable model for distance metric learning
-
M. der and L. K. Saul. Latent coincidence analysis: a hidden variable model for distance metric learning. In Advances in Neural Information Processing Systems, pages 3230-3238, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 3230-3238
-
-
Der, M.1
Saul, L.K.2
-
37
-
-
0000802374
-
The approximation of one matrix by another of lower rank
-
C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1:211-218, 1936.
-
(1936)
Psychometrika
, vol.1
, pp. 211-218
-
-
Eckart, C.1
Young, G.2
-
40
-
-
21844443579
-
Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial
-
S. Fiori. Quasi-geodesic neural learning algorithms over the orthogonal group: a tutorial. Journal of Machine Learning Research, 6:743-781, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 743-781
-
-
Fiori, S.1
-
41
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.A.1
-
43
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces
-
K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
46
-
-
0020145445
-
Minimizing a differentiable function over a differentiable manifold
-
D. Gabay. Minimizing a differentiable function over a differentiable manifold. The Journal of Optimization Theory and Applications, 37(2):177-219, 1982.
-
(1982)
The Journal of Optimization Theory and Applications
, vol.37
, Issue.2
, pp. 177-219
-
-
Gabay, D.1
-
51
-
-
33646528415
-
Measuring statistical dependence with Hilbert-Schmidt norms
-
Springer
-
A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. In Algorithmic Learning Theory, pages 63-77. Springer, 2005.
-
(2005)
Algorithmic Learning Theory
, pp. 63-77
-
-
Gretton, A.1
Bousquet, O.2
Smola, A.3
Schölkopf, B.4
-
52
-
-
84859477054
-
A kernel twosample test
-
A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel twosample test. Journal of Machine Learning Research, 13(1):723-773, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 723-773
-
-
Gretton, A.1
Borgwardt, K.M.2
Rasch, M.J.3
Schölkopf, B.4
Smola, A.5
-
53
-
-
58149193404
-
Convergence analysis of kernel canonical correlation analysis: Theory and practice
-
D. R. Hardoon and J. Shawe-Taylor. Convergence analysis of kernel canonical correlation analysis: theory and practice. Machine Learning, 74(1):23-38, 2009.
-
(2009)
Machine Learning
, vol.74
, Issue.1
, pp. 23-38
-
-
Hardoon, D.R.1
Shawe-Taylor, J.2
-
54
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
D. R. Hardoon, S. Szedmak, and J Shawe-Taylor. Canonical correlation analysis: an overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.2
Shawe-Taylor, J.3
-
55
-
-
84863165439
-
-
2nd Edition. Cambridge University Press, Cambridge, UK
-
T. Hastie, R. Tibshirani, and J. Friedman. Elements of Statistical Learning, 2nd Edition. Cambridge University Press, Cambridge, UK, 2008.
-
(2008)
Elements of Statistical Learning
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
57
-
-
33745881038
-
Neighborhood preserving embedding
-
X. He, D. Cai, S. Yan, and H. Zhang. Neighborhood preserving embedding. In IEEE International Conference on Computer Vision, volume 2, pages 1208-1213, 2005.
-
(2005)
IEEE International Conference on Computer Vision
, vol.2
, pp. 1208-1213
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.4
-
58
-
-
0001930482
-
Matrix nearness problems and applications
-
Oxford University Press
-
N. J. Higham. Matrix nearness problems and applications. In Applications of Matrix Theory, pages 1-27. Oxford University Press, 1989.
-
(1989)
Applications of Matrix Theory
, pp. 1-27
-
-
Higham, N.J.1
-
59
-
-
0000107975
-
Relations between two sets of variates
-
H. Hotelling. Relations between two sets of variates. Biometrika, 28:321-377, 1936.
-
(1936)
Biometrika
, vol.28
, pp. 321-377
-
-
Hotelling, H.1
-
63
-
-
77949527718
-
Generalized power method for sparse principal component analysis
-
M. Journee, Y. Nesterov, P. Richtarik, and R. Sepulchre. Generalized power method for sparse principal component analysis. Journal of Machine Learning Research, 11:517-553, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 517-553
-
-
Journee, M.1
Nesterov, Y.2
Richtarik, P.3
Sepulchre, R.4
-
64
-
-
85024429815
-
A new approach to linear filtering and prediction problems
-
R. E. Kalman. A new approach to linear filtering and prediction problems. The Journal of Basic Engineering, 82:35-45, 1960.
-
(1960)
The Journal of Basic Engineering
, vol.82
, pp. 35-45
-
-
Kalman, R.E.1
-
65
-
-
84873280616
-
Empirical arithmetic averaging over the compact stiefel manifold
-
T. Kaneko, S. Fiori, and T. Tanaka. Empirical arithmetic averaging over the compact stiefel manifold. IEEE Transactions on Signal Processing, 61(4):883-894, 2013.
-
(2013)
IEEE Transactions on Signal Processing
, vol.61
, Issue.4
, pp. 883-894
-
-
Kaneko, T.1
Fiori, S.2
Tanaka, T.3
-
66
-
-
84878742325
-
Learning a factor model via regularized PCA
-
Y. H. Kao and B. Van Roy. Learning a factor model via regularized PCA. Machine Learning, 91(279-303), 2013.
-
(2013)
Machine Learning
, vol.91
, Issue.279-303
-
-
Kao, Y.H.1
Van Roy, B.2
-
68
-
-
0036684142
-
Decomposition using maximum autocorrelation factors
-
R. Larsen. Decomposition using maximum autocorrelation factors. Journal of Chemometrics, 16:427-435, 2002.
-
(2002)
Journal of Chemometrics
, vol.16
, pp. 427-435
-
-
Larsen, R.1
-
69
-
-
84862001101
-
A unifying probabilistic perspective for spectral dimensionality reduction: Insights and new models
-
N. D. Lawrence. A unifying probabilistic perspective for spectral dimensionality reduction: insights and new models. Journal of Machine Learning Research, 13(1):1609-1638, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, Issue.1
, pp. 1609-1638
-
-
Lawrence, N.D.1
-
70
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401:788-791, 1999.
-
(1999)
Nature
, vol.401
, pp. 788-791
-
-
Lee, D.D.1
Seung, H.S.2
-
71
-
-
78649446531
-
Procrustes problems and associated approximation problems for matrices with k-involutory symmetries
-
J. F. Li and X. Y. Hu. Procrustes problems and associated approximation problems for matrices with k-involutory symmetries. Linear Algebra and its Applications, 434:820-829, 2011.
-
(2011)
Linear Algebra and its Applications
, vol.434
, pp. 820-829
-
-
Li, J.F.1
Hu, X.Y.2
-
72
-
-
84945116550
-
Sliced inverse regression for dimension reduction
-
K. C. Li. Sliced inverse regression for dimension reduction. Journal of the American Statistical Association, 86(414):316-327, 1991.
-
(1991)
Journal of the American Statistical Association
, vol.86
, Issue.414
, pp. 316-327
-
-
Li, K.C.1
-
73
-
-
33748333622
-
The gradient projection method along geodesics
-
D. Luenberger. The gradient projection method along geodesics. Management Science, 18(11), 1972.
-
Management Science
, vol.18
, Issue.11
, pp. 1972
-
-
Luenberger, D.1
-
74
-
-
0036503069
-
Optimization algorithms exploiting unitary constraints
-
J. H. Manton. Optimization algorithms exploiting unitary constraints. IEEE Transactions on Signal Processing, 50:635-650, 2002.
-
(2002)
IEEE Transactions on Signal Processing
, vol.50
, pp. 635-650
-
-
Manton, J.H.1
-
77
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. R. Müller. Fisher discriminant analysis with kernels. In Proceedings of the IEEE Signal Processing Society, pages 41-48, 1999.
-
(1999)
Proceedings of the IEEE Signal Processing Society
, pp. 41-48
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.R.5
-
78
-
-
0002824680
-
Symmetric gauge functions and unitarily invariant norms
-
L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quarterly Journal of Mathematics, 11:80-89, 1960.
-
(1960)
Quarterly Journal of Mathematics
, vol.11
, pp. 80-89
-
-
Mirsky, L.1
-
83
-
-
21744442796
-
Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold
-
Y. Nishimori and S. Akaho. Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing, 67:106-135, 2005.
-
(2005)
Neurocomputing
, vol.67
, pp. 106-135
-
-
Nishimori, Y.1
Akaho, S.2
-
84
-
-
0000325341
-
On lines and planes of closest fit to systems of points in space
-
K. Pearson. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 2:559-572, 1901.
-
(1901)
Philosophical Magazine
, vol.2
, pp. 559-572
-
-
Pearson, K.1
-
86
-
-
0001565436
-
The utilization of multiple measurements in problems of biological classification
-
C. R. Rao. The utilization of multiple measurements in problems of biological classification. Journal of the Royal Statistical Society, Series B, 10(2):159-203, 1948.
-
(1948)
Journal of the Royal Statistical Society, Series B
, vol.10
, Issue.2
, pp. 159-203
-
-
Rao, C.R.1
-
90
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
December
-
S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, December 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
91
-
-
77953479796
-
Optimal linear projections for enhancing desired data statistics
-
E. Rubinshtein and A. Srivastava. Optimal linear projections for enhancing desired data statistics. Statistical Computing, 20:267-282, 2010.
-
(2010)
Statistical Computing
, vol.20
, pp. 267-282
-
-
Rubinshtein, E.1
Srivastava, A.2
-
94
-
-
0000988974
-
A generalized solution of the orthogonal Procrustes problem
-
P. H. Schonemann. A generalized solution of the orthogonal Procrustes problem. Psychometrika, 31:1-10, 1966.
-
(1966)
Psychometrika
, vol.31
, pp. 1-10
-
-
Schonemann, P.H.1
-
96
-
-
0000600340
-
General intelligence, objectively determined and measured
-
C. Spearman. General intelligence, objectively determined and measured. American Journal of Psychology, 15:201-293, 1904.
-
(1904)
American Journal of Psychology
, vol.15
, pp. 201-293
-
-
Spearman, C.1
-
99
-
-
21744461510
-
Tools for application-driven linear dimension reduction
-
A. Srivastava and X. Liu. Tools for application-driven linear dimension reduction. Neurocomputing, 67:136-160, 2005.
-
(2005)
Neurocomputing
, vol.67
, pp. 136-160
-
-
Srivastava, A.1
Liu, X.2
-
101
-
-
0000818474
-
Continuum regression: Cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression
-
M. Stone and R. J. Brooks. Continuum regression: cross-validated sequentially constructed prediction embracing ordinary least squares, partial least squares and principal components regression. Journal of the Royal Statistical Society, Series B, pages 237-269, 1990.
-
(1990)
Journal of the Royal Statistical Society, Series B
, pp. 237-269
-
-
Stone, M.1
Brooks, R.J.2
-
102
-
-
71149101160
-
A least squares formulation for a class of generalized eigenvalue problems in machine learning
-
ACM
-
L. Sun, S. Ji, and J. Ye. A least squares formulation for a class of generalized eigenvalue problems in machine learning. In Proceedings of the International Conference on Machine Learning, pages 977-984. ACM, 2009.
-
(2009)
Proceedings of the International Conference on Machine Learning
, pp. 977-984
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
104
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
December
-
J. B. Tenenbaum, V. deSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, December 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
DeSilva, V.2
Langford, J.C.3
-
105
-
-
0016772932
-
An inequality with application to multivariate analysis
-
C. M. Theobald. An inequality with application to multivariate analysis. Biometrika, 62(2):461-466, 1975.
-
(1975)
Biometrika
, vol.62
, Issue.2
, pp. 461-466
-
-
Theobald, C.M.1
-
109
-
-
84950351930
-
Multidimensional scaling: I. Theory and method
-
W. S. Torgerson. Multidimensional scaling: I. theory and method. Psychometrika, 17(4):401-419, 1952.
-
(1952)
Psychometrika
, vol.17
, Issue.4
, pp. 401-419
-
-
Torgerson, W.S.1
-
111
-
-
34247248843
-
A maximum-likelihood interpretation for slow feature analysis
-
R. Turner and M. Sahani. A maximum-likelihood interpretation for slow feature analysis. Neural Computation, 19(4):1022-1038, 2007.
-
(2007)
Neural Computation
, vol.19
, Issue.4
, pp. 1022-1038
-
-
Turner, R.1
Sahani, M.2
-
115
-
-
79957463944
-
Linear dimensionality reduction for margin-based classification: High-dimensional data and sensor networks
-
K. R. Varshney and A. S. Willsky. Linear dimensionality reduction for margin-based classification: high-dimensional data and sensor networks. IEEE Transactions on Signal Processing, 59:2496-2512, 2011.
-
(2011)
IEEE Transactions on Signal Processing
, vol.59
, pp. 2496-2512
-
-
Varshney, K.R.1
Willsky, A.S.2
-
117
-
-
33744949513
-
Unsupervised learning of image manifolds by semidefinite programming
-
K. Q. Weinberger and L. K. Saul. Unsupervised learning of image manifolds by semidefinite programming. International Journal of Computer Vision, 70(1):77-90, 2006.
-
(2006)
International Journal of Computer Vision
, vol.70
, Issue.1
, pp. 77-90
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
118
-
-
61749090884
-
Distance metric learning for large margin nearest neighbor classification
-
K. Q. Weinberger and L. K. Saul. Distance metric learning for large margin nearest neighbor classification. Journal of Machine Learning Research, 10:207-244, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 207-244
-
-
Weinberger, K.Q.1
Saul, L.K.2
-
122
-
-
0036165146
-
On a connection between kernel PCA and metric multidimensional scaling
-
C. K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. Machine Learning, 46(1-3):11-19, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 11-19
-
-
Williams, C.K.I.1
-
123
-
-
0036581055
-
Products of Gaussians and probabilistic minor component analysis
-
C. K. I. Williams and F. Agakov. Products of Gaussians and probabilistic minor component analysis. Neural Computation, 14(5):1169-1182, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.5
, pp. 1169-1182
-
-
Williams, C.K.I.1
Agakov, F.2
-
124
-
-
0041324871
-
Slow feature analysis: A theoretical analysis of optimal free responses
-
L. Wiskott. Slow feature analysis: A theoretical analysis of optimal free responses. Neural Computation, 15(9):2147-2177, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.9
, pp. 2147-2177
-
-
Wiskott, L.1
-
125
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L. Wiskott and T. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural Computation, 14(4):715-770, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 715-770
-
-
Wiskott, L.1
Sejnowski, T.2
-
126
-
-
85133386144
-
Distance metric learning with application to clustering with side-information
-
E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning with application to clustering with side-information. In Advances in Neural Information Processing Systems, pages 505-512, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 505-512
-
-
Xing, E.P.1
Jordan, M.I.2
Russell, S.3
Ng, A.Y.4
-
130
-
-
33749566317
-
Supervised probabilistic principal component analysis
-
S. Yu, K. Yu, V. Tresp, H. P. Kriegel, and M. Wu. Supervised probabilistic principal component analysis. In Proceedings of the International Conference on Knowledge Discovery and Data Mining, pages 464-473, 2006.
-
(2006)
Proceedings of the International Conference on Knowledge Discovery and Data Mining
, pp. 464-473
-
-
Yu, S.1
Yu, K.2
Tresp, V.3
Kriegel, H.P.4
Wu, M.5
-
131
-
-
0033309417
-
Natural gradient algorithm for blind separation of overdetermined mixture with additive noise
-
L. Zhang, A. Cichocki, and S. Amari. Natural gradient algorithm for blind separation of overdetermined mixture with additive noise. IEEE Signal Processing Letters, 6(11):293-295, 1999.
-
(1999)
IEEE Signal Processing Letters
, vol.6
, Issue.11
, pp. 293-295
-
-
Zhang, L.1
Cichocki, A.2
Amari, S.3
-
133
-
-
33745309913
-
Sparse principal component analysis
-
H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2):265-286, 2006.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, Issue.2
, pp. 265-286
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|