-
2
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Belkin, M., Niyogi, P., & Sindhwani, V. (2006). Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7, 2399-2434.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
4
-
-
33646544831
-
A direct formulation for sparse PCA using semidefinite programming
-
d'Aspremont, A., Ghaoui, L., Jordan, M., & Lanckriet, G. (2004). A direct formulation for sparse PCA using semidefinite programming. Neural Information Processing Systems (pp. 41-48).
-
(2004)
Neural Information Processing Systems
, pp. 41-48
-
-
d'Aspremont, A.1
Ghaoui, L.2
Jordan, M.3
Lanckriet, G.4
-
5
-
-
33744552752
-
For most large underdeter-mined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution
-
Donoho, D. (2006). For most large underdeter-mined systems of linear equations, the minimal 11-norm near-solution approximates the sparsest near-solution. Communications on Pure and Applied Mathematics, 59, 907-934.
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, pp. 907-934
-
-
Donoho, D.1
-
6
-
-
3242708140
-
Least angle regression
-
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
8
-
-
45849107328
-
Pathwise coordinate optimization
-
Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. Annals of Applied Statistics, 302-332.
-
(2007)
Annals of Applied Statistics
, pp. 302-332
-
-
Friedman, J.1
Hastie, T.2
Höfling, H.3
Tibshirani, R.4
-
10
-
-
69649095451
-
Fixed-point continuation for ℓ1-minimization: Methodology and convergence
-
Hale, E., Yin, W., & Zhang, Y. (2008). Fixed-point continuation for ℓ1-minimization: Methodology and convergence. SIAM Journal on Optimization, 19, 1107-1130.
-
(2008)
SIAM Journal on Optimization
, vol.19
, pp. 1107-1130
-
-
Hale, E.1
Yin, W.2
Zhang, Y.3
-
11
-
-
0003684449
-
-
New York, NY: Springer
-
Hastie, T., Tibshirani, R., & Friedman, J. H. (2001). The elements of statistical learning: Data mining, inference, and prediction. New York, NY: Springer.
-
(2001)
The elements of statistical learning: Data mining, inference, and prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
12
-
-
0000107975
-
Relations between two sets of variables
-
Hotelling, H. (1936). Relations between two sets of variables. Biometrika, 28, 312-377.
-
(1936)
Biometrika
, vol.28
, pp. 312-377
-
-
Hotelling, H.1
-
14
-
-
84899033524
-
Maximal margin labeling for multi-topic text categorization
-
Kazawa, H., Izumitani, T., Taira, H., & Maeda, E. (2005). Maximal margin labeling for multi-topic text categorization. Neural Information Processing Systems (pp. 649-656).
-
(2005)
Neural Information Processing Systems
, pp. 649-656
-
-
Kazawa, H.1
Izumitani, T.2
Taira, H.3
Maeda, E.4
-
15
-
-
0039943513
-
LSQR: An algorithm for sparse linear equations and sparse least squares
-
Paige, C. C., & Saunders, M. A. (1982). LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8, 43-71.
-
(1982)
ACM Transactions on Mathematical Software
, vol.8
, pp. 43-71
-
-
Paige, C.C.1
Saunders, M.A.2
-
16
-
-
33745819990
-
Overview and recent advances in partial least squares. Subspace, Latent Structure and Feature Selection Techniques
-
Rosipal, R., & Krämer, N. (2006). Overview and recent advances in partial least squares. Subspace, Latent Structure and Feature Selection Techniques, Lecture Notes in Computer Science (pp. 34-51).
-
(2006)
Lecture Notes in Computer Science
, pp. 34-51
-
-
Rosipal, R.1
Krämer, N.2
-
18
-
-
0003408420
-
-
Cambridge, MA: MIT Press
-
Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. Cambridge, MA: MIT Press.
-
(2002)
Learning with kernels: Support vector machines, regularization, optimization, and beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
21
-
-
62249116488
-
Geometric mean for subspace selection
-
Tao, D., Li, X., Wu, X., & Maybank, S. (2009). Geometric mean for subspace selection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31, 260-274.
-
(2009)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.31
, pp. 260-274
-
-
Tao, D.1
Li, X.2
Wu, X.3
Maybank, S.4
-
22
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B, 58, 267-288.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
|