메뉴 건너뛰기




Volumn 19, Issue 4, 2007, Pages 1022-1038

A maximum-likelihood interpretation for slow feature analysis

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34247248843     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2007.19.4.1022     Document Type: Article
Times cited : (93)

References (29)
  • 1
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H. (1999). Independent factor analysis. Neural Comp., 11(4), 803-851.
    • (1999) Neural Comp , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 2
    • 0030832881 scopus 로고    scopus 로고
    • The "independent components" of natural scenes are edge filters
    • Bell, A. J., & Sejnowski, T. J. (1997). The "independent components" of natural scenes are edge filters. Vision Research, 37(23), 3327-3338.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3327-3338
    • Bell, A.J.1    Sejnowski, T.J.2
  • 3
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • Berkes, P., & Wiskott, L. (2005). Slow feature analysis yields a rich repertoire of complex cell properties. Journal of Vision, 5(6), 579-602.
    • (2005) Journal of Vision , vol.5 , Issue.6 , pp. 579-602
    • Berkes, P.1    Wiskott, L.2
  • 4
    • 33749443571 scopus 로고    scopus 로고
    • What is the relation between slow feature analysis and independent component analysis?
    • Blaschke, A. J., Berkes, P., & Wiskott, L. (2006). What is the relation between slow feature analysis and independent component analysis? Neural Computation, 18(10), 2495-2508.
    • (2006) Neural Computation , vol.18 , Issue.10 , pp. 2495-2508
    • Blaschke, A.J.1    Berkes, P.2    Wiskott, L.3
  • 6
    • 0000188120 scopus 로고
    • Learning invariance from transformation sequences
    • Földiák, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194-200.
    • (1991) Neural Computation , vol.3 , Issue.2 , pp. 194-200
    • Földiák, P.1
  • 7
    • 84899008192 scopus 로고    scopus 로고
    • Learning nonlinear dynamical systems using an EM algorithm
    • M. S. Kearns, S. A. Solla, & D. A. Cohn Eds, Cambridge, MA: MIT Press
    • Ghahramani, Z., & Roweis, S. T. (1999). Learning nonlinear dynamical systems using an EM algorithm. In M. S. Kearns, S. A. Solla, & D. A. Cohn (Eds.), Advances in neural information processing systems, 11 (pp. 599-605). Cambridge, MA: MIT Press.
    • (1999) Advances in neural information processing systems , vol.11 , pp. 599-605
    • Ghahramani, Z.1    Roweis, S.T.2
  • 8
    • 14544274150 scopus 로고    scopus 로고
    • Bilinear sparse coding for invariant vision
    • Grimes, D. B., & Rao, R. P. N. (2005). Bilinear sparse coding for invariant vision. Neural Comput., 17(1), 47-73.
    • (2005) Neural Comput , vol.17 , Issue.1 , pp. 47-73
    • Grimes, D.B.1    Rao, R.P.N.2
  • 9
    • 0024732792 scopus 로고
    • Connectionist learning procedures
    • Hinton, G. E. (1989). Connectionist learning procedures. Artificial Intelligence, 40(1-3), 185-234.
    • (1989) Artificial Intelligence , vol.40 , Issue.1-3 , pp. 185-234
    • Hinton, G.E.1
  • 10
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771-1800.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 11
    • 0346284217 scopus 로고    scopus 로고
    • Temporal and spatiotemporal coherence in simple-cell responses: A generative model of natural image sequences
    • Hurri, J., & Hyvärinen, A. (2003). Temporal and spatiotemporal coherence in simple-cell responses: A generative model of natural image sequences. Network, 14(3), 527-551.
    • (2003) Network , vol.14 , Issue.3 , pp. 527-551
    • Hurri, J.1    Hyvärinen, A.2
  • 13
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M. I., Ghahramani, Z., Jaakkola, T., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 14
    • 13244255412 scopus 로고    scopus 로고
    • A hierarchical Bayesian model for learning non-linear statistical regularities in nonstationary natural signals
    • Karklin, Y., & Lewicki, M. S. (2005). A hierarchical Bayesian model for learning non-linear statistical regularities in nonstationary natural signals. Neural Computation, 17(2), 397-423.
    • (2005) Neural Computation , vol.17 , Issue.2 , pp. 397-423
    • Karklin, Y.1    Lewicki, M.S.2
  • 15
    • 0041825352 scopus 로고    scopus 로고
    • Learning the nonlinearity of neurons from natural visual stimuli
    • Kayser, C., Körding, K. P., & König, P. (2003). Learning the nonlinearity of neurons from natural visual stimuli. Neural Computation, 15(8), 1751-1759.
    • (2003) Neural Computation , vol.15 , Issue.8 , pp. 1751-1759
    • Kayser, C.1    Körding, K.P.2    König, P.3
  • 16
    • 18244431804 scopus 로고    scopus 로고
    • How are complex cell properties adapted to the statistics of natural stimuli?
    • Körding, K. P., Kayser, C., Einhäuser, W., & König, P. (2004). How are complex cell properties adapted to the statistics of natural stimuli? Journal of Neurophysiology, 91(1), 206-212.
    • (2004) Journal of Neurophysiology , vol.91 , Issue.1 , pp. 206-212
    • Körding, K.P.1    Kayser, C.2    Einhäuser, W.3    König, P.4
  • 17
    • 85039190832 scopus 로고    scopus 로고
    • MacKay, D. J. C. (1999). Maximum likelihood and covariant algorithms for independent component analysis. Unpublished manuscript. Available online at ftp://wol.ra.phy.cam.ac.uk/pub/mackay/ica.ps.gz.
    • MacKay, D. J. C. (1999). Maximum likelihood and covariant algorithms for independent component analysis. Unpublished manuscript. Available online at ftp://wol.ra.phy.cam.ac.uk/pub/mackay/ica.ps.gz.
  • 19
    • 0039765605 scopus 로고
    • Removing time variation with the anti-Hebbian differential synapse
    • Mitchison, G. (1991). Removing time variation with the anti-Hebbian differential synapse. Neural Computation, 3, 312-320.
    • (1991) Neural Computation , vol.3 , pp. 312-320
    • Mitchison, G.1
  • 20
    • 0002788893 scopus 로고    scopus 로고
    • A view of the EM algorithm that justifies incremental, sparse, and other variants
    • M. I. Jordan Ed, Norwell, MA: Kluwer Academic Press
    • Neal, R. M., & Hinton, G. E. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in graphical models (pp. 355-370). Norwell, MA: Kluwer Academic Press.
    • (1998) Learning in graphical models , pp. 355-370
    • Neal, R.M.1    Hinton, G.E.2
  • 21
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381(6583), 607-609.
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 22
    • 33644900506 scopus 로고    scopus 로고
    • Topographic product models applied to natural scene statistics
    • Osindero, S., Welling, M., & Hinton, G. E. (2006). Topographic product models applied to natural scene statistics. Neural Computation, 18(2), 381-414.
    • (2006) Neural Computation , vol.18 , Issue.2 , pp. 381-414
    • Osindero, S.1    Welling, M.2    Hinton, G.E.3
  • 23
    • 84898936603 scopus 로고    scopus 로고
    • Maximum likelihood blind source separation: A context-sensitive generalization of ICA
    • M. C. Mozer, M. I. Jordan, & T. Petche Eds, Cambridge, MA: MIT Press
    • Pearlmutter, B., & Parra, L. (1997). Maximum likelihood blind source separation: A context-sensitive generalization of ICA. In M. C. Mozer, M. I. Jordan, & T. Petche (Eds.), Advances in neural information processing systems, 9 (pp. 613-619). Cambridge, MA: MIT Press.
    • (1997) Advances in neural information processing systems , vol.9 , pp. 613-619
    • Pearlmutter, B.1    Parra, L.2
  • 24
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian models. Neural Computation, 21 (2), 305-345.
    • (1999) Neural Computation , vol.21 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 26
    • 0030265917 scopus 로고    scopus 로고
    • Learning perceptually salient visual parameters using spatiotemporal smoothness constraints
    • Stone, J. V. (1996). Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Computation, 8(7), 1463-1492.
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1463-1492
    • Stone, J.V.1
  • 27
    • 0034202338 scopus 로고    scopus 로고
    • Separating style and content with bilinear models
    • Tenenbaum, J. B., & Freeman, W. T. (2000). Separating style and content with bilinear models. Neural Computation, 12(6), 1247-1283.
    • (2000) Neural Computation , vol.12 , Issue.6 , pp. 1247-1283
    • Tenenbaum, J.B.1    Freeman, W.T.2
  • 29
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715-770.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.