메뉴 건너뛰기




Volumn 4, Issue , 2012, Pages 3230-3238

Latent coincidence analysis: A hidden variable model for distance metric learning

Author keywords

[No Author keywords available]

Indexed keywords

COINCIDENCE ANALYSIS; DIMENSIONALITY REDUCTION; DISTANCE METRIC LEARNING; EXPECTATION-MAXIMIZATION ALGORITHMS; HIDDEN VARIABLE MODELS; HIGH DIMENSIONAL DATA; LATENT VARIABLE MODELS; POSTERIOR DISTRIBUTIONS;

EID: 84877760772     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (26)

References (21)
  • 1
    • 34250232348 scopus 로고
    • EM algorithms for ML factor analysis
    • D. B. Rubin and D. T. Thayer. EM algorithms for ML factor analysis. Psychometrika, 47:69-76, 1982.
    • (1982) Psychometrika , vol.47 , pp. 69-76
    • Rubin, D.B.1    Thayer, D.T.2
  • 5
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10:207-244, 2009.
    • (2009) The Journal of Machine Learning Research , vol.10 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 6
    • 34547996209 scopus 로고    scopus 로고
    • Information-theoretic metric learning
    • Corvalis, Oregon, USA, June
    • J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic metric learning. In ICML, pages 209-216, Corvalis, Oregon, USA, June 2007.
    • (2007) ICML , pp. 209-216
    • Davis, J.V.1    Kulis, B.2    Jain, P.3    Sra, S.4    Dhillon, I.S.5
  • 7
    • 84898964829 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • S. Thrun S. Becker and K. Ober- mayer, editors, MIT Press, Cambridge, MA
    • G. Hinton and S. Roweis. Stochastic neighbor embedding. In S. Thrun S. Becker and K. Ober- mayer, editors, Advances in Neural Information Processing Systems 15, pages 833-840. MIT Press, Cambridge, MA, 2003.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 833-840
    • Hinton, G.1    Roweis, S.2
  • 8
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20:273-297, 1995.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 11
    • 84877772745 scopus 로고    scopus 로고
    • http://yann.lecun.com/exdb/mnist/.
  • 12
    • 84877742885 scopus 로고    scopus 로고
    • http://mlg.ucd.ie/datasets/bbc.html.
  • 13
    • 84877732210 scopus 로고    scopus 로고
    • http://www.dataminingresearch.com/index.php/2010/09/classic3-classic4- datasets/.
  • 14
    • 84877724775 scopus 로고    scopus 로고
    • http://archive.ics.uci.edu/ml/datasets.html.
  • 15
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R A Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7(2):179-188, 1936.
    • (1936) Annals of Eugenics , vol.7 , Issue.2 , pp. 179-188
    • Fisher, R.A.1
  • 21
    • 77951458444 scopus 로고    scopus 로고
    • An online algorithm for large scale image similarity learning
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • G. Chechik, U. Shalit, V. Sharma, and S. Bengio. An online algorithm for large scale image similarity learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 306-314. 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 306-314
    • Chechik, G.1    Shalit, U.2    Sharma, V.3    Bengio, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.