-
2
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S.-i. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 251-276
-
-
Amari, S.-I.1
-
4
-
-
5044233142
-
Neural learning by geometric integration of reduced 'rigid-body' equations
-
E. Celledoni and S. Fiori. Neural learning by geometric integration of reduced 'rigid-body' equations. Journal of Computational and Applied Mathematics, 172(2):247-269, 2004.
-
(2004)
Journal of Computational and Applied Mathematics
, vol.172
, Issue.2
, pp. 247-269
-
-
Celledoni, E.1
Fiori, S.2
-
6
-
-
0001586142
-
A theory for learning by weight flow on Stiefel-Grassman manifold
-
S. Fiori. A theory for learning by weight flow on Stiefel-Grassman manifold. Neural Computation, 13(7):1625-1647, 2001.
-
(2001)
Neural Computation
, vol.13
, Issue.7
, pp. 1625-1647
-
-
Fiori, S.1
-
7
-
-
0036565608
-
A theory for learning based on rigid bodies dynamics
-
S. Fiori. A theory for learning based on rigid bodies dynamics. IEEE Trans. on Neural Networks, 13(3):521-531, 2002.
-
(2002)
IEEE Trans. on Neural Networks
, vol.13
, Issue.3
, pp. 521-531
-
-
Fiori, S.1
-
8
-
-
2442478521
-
A fast fixed-point neural blind deconvolution algorithm
-
S. Fiori. A fast fixed-point neural blind deconvolution algorithm. IEEE Trans. on Neural Networks, 15(2):455-459, 2004.
-
(2004)
IEEE Trans. on Neural Networks
, vol.15
, Issue.2
, pp. 455-459
-
-
Fiori, S.1
-
9
-
-
17044396848
-
Non-linear complex-valued extensions of Hebbian learning: An essay
-
S. Fiori. Non-linear complex-valued extensions of Hebbian learning: An essay. Neural Computation, 17(4):779-838, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.4
, pp. 779-838
-
-
Fiori, S.1
-
10
-
-
21844463456
-
Formulation and integration of learning differential equations on the Stiefel manifold
-
forthcoming
-
S. Fiori. Formulation and integration of learning differential equations on the Stiefel manifold. IEEE Trans. on Neural Networks, forthcoming.
-
IEEE Trans. on Neural Networks
-
-
Fiori, S.1
-
11
-
-
21844447023
-
Editorial: Special issue on "geometrical methods in neural networks and learning"
-
forthcoming
-
S. Fiori and S.-i. Amari. Editorial: Special issue on "Geometrical Methods in Neural Networks and Learning", Neurocomputing, forthcoming.
-
Neurocomputing
-
-
Fiori, S.1
Amari, S.-I.2
-
12
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109, 1970.
-
(1970)
Biometrika
, vol.57
, pp. 97-109
-
-
Hastings, W.K.1
-
14
-
-
0035439412
-
An algorithmic introduction to numerical simulation of stochastic differential equations
-
D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3):525-546, 2001.
-
(2001)
SIAM Review
, vol.43
, Issue.3
, pp. 525-546
-
-
Higham, D.J.1
-
15
-
-
0032382838
-
Markov Chain Monte Carlo in practice: A roundtable discussion
-
R. E. Kass, B. P. Carlin, A. Gelman and R. M. Neal. Markov Chain Monte Carlo in practice: A roundtable discussion. The American Statistician, 52(2):93-100, 1998.
-
(1998)
The American Statistician
, vol.52
, Issue.2
, pp. 93-100
-
-
Kass, R.E.1
Carlin, B.P.2
Gelman, A.3
Neal, R.M.4
-
18
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-1091, 1953.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1091
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
20
-
-
0003345224
-
Applications of Lie groups to differential equations
-
Second Edition, Springer
-
P. J. Olver. Applications of Lie groups to differential equations. Graduate Texts in Mathematics 107, Second Edition, Springer, 2003.
-
(2003)
Graduate Texts in Mathematics
, vol.107
-
-
Olver, P.J.1
-
21
-
-
0034266869
-
Adaptive natural gradient learning algorithms for various stochastic models
-
H. Park, S.-i. Amari and K. Fukumizu. Adaptive Natural Gradient Learning Algorithms for Various Stochastic Models. Neural Networks, 13:755-764, 2000.
-
(2000)
Neural Networks
, vol.13
, pp. 755-764
-
-
Park, H.1
Amari, S.-I.2
Fukumizu, K.3
-
22
-
-
0036612776
-
Conditions for non-negative independent component analysis
-
M. D. Plumbley. Conditions for non-negative independent component analysis. IEEE Signal processing Letters, 9(6):177-180, 2002.
-
(2002)
IEEE Signal Processing Letters
, vol.9
, Issue.6
, pp. 177-180
-
-
Plumbley, M.D.1
-
23
-
-
0038460232
-
Algorithms for nonnegative independent component analysis
-
M. D. Plumbley. Algorithms for nonnegative independent component analysis. IEEE Trans. on Neural Networks, 14(3):534-543, 2003.
-
(2003)
IEEE Trans. on Neural Networks
, vol.14
, Issue.3
, pp. 534-543
-
-
Plumbley, M.D.1
-
25
-
-
0037090016
-
Jump-diffusion Markov processes on orthogonal groups for object recognition
-
A. Srivastava, U. Grenander, G. R. Jensen and M. I. Miller. Jump-diffusion Markov processes on orthogonal groups for object recognition. Journal of Statistical Planning and Inference, 103(1/2):15-37, 2002.
-
(2002)
Journal of Statistical Planning and Inference
, vol.103
, Issue.1-2
, pp. 15-37
-
-
Srivastava, A.1
Grenander, U.2
Jensen, G.R.3
Miller, M.I.4
-
26
-
-
0000056917
-
Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
-
H. H. Yang and S.-i. Amari. Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Computation, 9:1457-1482, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 1457-1482
-
-
Yang, H.H.1
Amari, S.-I.2
-
27
-
-
11244323805
-
The normal kernel coupler: An adaptive MCMC method for efficiently sampling from multi-modal distributions
-
Dept. of Statistics, University of Washington
-
G. R. Warnes. The normal kernel coupler: An adaptive MCMC method for efficiently sampling from multi-modal distributions. Technical Report 39, Dept. of Statistics, University of Washington, 2001.
-
(2001)
Technical Report
, vol.39
-
-
Warnes, G.R.1
-
28
-
-
0242662161
-
The general inefficiency of batch training for gradient descent learning
-
D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10):1429-1451, 2003.
-
(2003)
Neural Networks
, vol.16
, Issue.10
, pp. 1429-1451
-
-
Wilson, D.R.1
Martinez, T.R.2
|