메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Quasi-geodesic neural learning algorithms over the orthogonal group: A tutorial

Author keywords

Differential geometry; Diffusion type gradient; Lie groups; Non negative independent component analysis; Riemannian gradient

Indexed keywords

APPROXIMATION THEORY; DIFFERENTIAL EQUATIONS; GEODESY; INDEPENDENT COMPONENT ANALYSIS; INTEGRAL EQUATIONS; NEURAL NETWORKS; NUMERICAL METHODS; OPTIMIZATION;

EID: 21844443579     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (64)

References (29)
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S.-i. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:251-276, 1998.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.-I.1
  • 4
    • 5044233142 scopus 로고    scopus 로고
    • Neural learning by geometric integration of reduced 'rigid-body' equations
    • E. Celledoni and S. Fiori. Neural learning by geometric integration of reduced 'rigid-body' equations. Journal of Computational and Applied Mathematics, 172(2):247-269, 2004.
    • (2004) Journal of Computational and Applied Mathematics , vol.172 , Issue.2 , pp. 247-269
    • Celledoni, E.1    Fiori, S.2
  • 6
    • 0001586142 scopus 로고    scopus 로고
    • A theory for learning by weight flow on Stiefel-Grassman manifold
    • S. Fiori. A theory for learning by weight flow on Stiefel-Grassman manifold. Neural Computation, 13(7):1625-1647, 2001.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1625-1647
    • Fiori, S.1
  • 7
    • 0036565608 scopus 로고    scopus 로고
    • A theory for learning based on rigid bodies dynamics
    • S. Fiori. A theory for learning based on rigid bodies dynamics. IEEE Trans. on Neural Networks, 13(3):521-531, 2002.
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.3 , pp. 521-531
    • Fiori, S.1
  • 8
    • 2442478521 scopus 로고    scopus 로고
    • A fast fixed-point neural blind deconvolution algorithm
    • S. Fiori. A fast fixed-point neural blind deconvolution algorithm. IEEE Trans. on Neural Networks, 15(2):455-459, 2004.
    • (2004) IEEE Trans. on Neural Networks , vol.15 , Issue.2 , pp. 455-459
    • Fiori, S.1
  • 9
    • 17044396848 scopus 로고    scopus 로고
    • Non-linear complex-valued extensions of Hebbian learning: An essay
    • S. Fiori. Non-linear complex-valued extensions of Hebbian learning: An essay. Neural Computation, 17(4):779-838, 2005.
    • (2005) Neural Computation , vol.17 , Issue.4 , pp. 779-838
    • Fiori, S.1
  • 10
    • 21844463456 scopus 로고    scopus 로고
    • Formulation and integration of learning differential equations on the Stiefel manifold
    • forthcoming
    • S. Fiori. Formulation and integration of learning differential equations on the Stiefel manifold. IEEE Trans. on Neural Networks, forthcoming.
    • IEEE Trans. on Neural Networks
    • Fiori, S.1
  • 11
    • 21844447023 scopus 로고    scopus 로고
    • Editorial: Special issue on "geometrical methods in neural networks and learning"
    • forthcoming
    • S. Fiori and S.-i. Amari. Editorial: Special issue on "Geometrical Methods in Neural Networks and Learning", Neurocomputing, forthcoming.
    • Neurocomputing
    • Fiori, S.1    Amari, S.-I.2
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57:97-109, 1970.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.K.1
  • 14
    • 0035439412 scopus 로고    scopus 로고
    • An algorithmic introduction to numerical simulation of stochastic differential equations
    • D. J. Higham. An algorithmic introduction to numerical simulation of stochastic differential equations. SIAM Review, 43(3):525-546, 2001.
    • (2001) SIAM Review , vol.43 , Issue.3 , pp. 525-546
    • Higham, D.J.1
  • 15
    • 0032382838 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in practice: A roundtable discussion
    • R. E. Kass, B. P. Carlin, A. Gelman and R. M. Neal. Markov Chain Monte Carlo in practice: A roundtable discussion. The American Statistician, 52(2):93-100, 1998.
    • (1998) The American Statistician , vol.52 , Issue.2 , pp. 93-100
    • Kass, R.E.1    Carlin, B.P.2    Gelman, A.3    Neal, R.M.4
  • 20
    • 0003345224 scopus 로고    scopus 로고
    • Applications of Lie groups to differential equations
    • Second Edition, Springer
    • P. J. Olver. Applications of Lie groups to differential equations. Graduate Texts in Mathematics 107, Second Edition, Springer, 2003.
    • (2003) Graduate Texts in Mathematics , vol.107
    • Olver, P.J.1
  • 21
    • 0034266869 scopus 로고    scopus 로고
    • Adaptive natural gradient learning algorithms for various stochastic models
    • H. Park, S.-i. Amari and K. Fukumizu. Adaptive Natural Gradient Learning Algorithms for Various Stochastic Models. Neural Networks, 13:755-764, 2000.
    • (2000) Neural Networks , vol.13 , pp. 755-764
    • Park, H.1    Amari, S.-I.2    Fukumizu, K.3
  • 22
    • 0036612776 scopus 로고    scopus 로고
    • Conditions for non-negative independent component analysis
    • M. D. Plumbley. Conditions for non-negative independent component analysis. IEEE Signal processing Letters, 9(6):177-180, 2002.
    • (2002) IEEE Signal Processing Letters , vol.9 , Issue.6 , pp. 177-180
    • Plumbley, M.D.1
  • 23
    • 0038460232 scopus 로고    scopus 로고
    • Algorithms for nonnegative independent component analysis
    • M. D. Plumbley. Algorithms for nonnegative independent component analysis. IEEE Trans. on Neural Networks, 14(3):534-543, 2003.
    • (2003) IEEE Trans. on Neural Networks , vol.14 , Issue.3 , pp. 534-543
    • Plumbley, M.D.1
  • 26
    • 0000056917 scopus 로고    scopus 로고
    • Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information
    • H. H. Yang and S.-i. Amari. Adaptive online learning algorithms for blind separation: Maximum entropy and minimum mutual information. Neural Computation, 9:1457-1482, 1997.
    • (1997) Neural Computation , vol.9 , pp. 1457-1482
    • Yang, H.H.1    Amari, S.-I.2
  • 27
    • 11244323805 scopus 로고    scopus 로고
    • The normal kernel coupler: An adaptive MCMC method for efficiently sampling from multi-modal distributions
    • Dept. of Statistics, University of Washington
    • G. R. Warnes. The normal kernel coupler: An adaptive MCMC method for efficiently sampling from multi-modal distributions. Technical Report 39, Dept. of Statistics, University of Washington, 2001.
    • (2001) Technical Report , vol.39
    • Warnes, G.R.1
  • 28
    • 0242662161 scopus 로고    scopus 로고
    • The general inefficiency of batch training for gradient descent learning
    • D. R. Wilson and T. R. Martinez. The general inefficiency of batch training for gradient descent learning. Neural Networks, 16(10):1429-1451, 2003.
    • (2003) Neural Networks , vol.16 , Issue.10 , pp. 1429-1451
    • Wilson, D.R.1    Martinez, T.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.