-
1
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290:2323, 2000.
-
(2000)
Science
, vol.290
, pp. 2323
-
-
Roweis, S.T.1
Saul, L.K.2
-
2
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. B. Tenenbaum, V. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290:2319, 2000.
-
(2000)
Science
, vol.290
, pp. 2319
-
-
Tenenbaum, J.B.1
Silva, V.2
Langford, J.C.3
-
4
-
-
84898980901
-
Gaussian process latent variable models for visualisation of high dimensional data
-
MIT Press
-
N. D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional data. In Advances in Neural Information Processing Systems 16, pages 329-336. MIT Press, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 329-336
-
-
Lawrence, N.D.1
-
5
-
-
0012657603
-
Dimension reduction and visualization in discriminant analysis (with discussion)
-
R. D. Cook and X. Yin. Dimension reduction and visualization in discriminant analysis (with discussion). Australian & New Zealand Journal of Statistics, 43:147-199, 2001.
-
(2001)
Australian & New Zealand Journal of Statistics
, vol.43
, pp. 147-199
-
-
Cook, R.D.1
Yin, X.2
-
9
-
-
0001659464
-
On principal Hessian directions for data visualization and dimension reduction: Another application of Stein's lemma
-
K.-C. Li. On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma. Journal of the American Statistical Association, 86:316-342, 1992.
-
(1992)
Journal of the American Statistical Association
, vol.86
, pp. 316-342
-
-
Li, K.-C.1
-
13
-
-
0001808038
-
The information bottleneck method
-
N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing, pages 368-377, 1999.
-
(1999)
Proceedings of the 37th Annual Allerton Conference on Communication, Control, and Computing
, pp. 368-377
-
-
Tishby, N.1
Pereira, F.C.2
Bialek, W.3
-
16
-
-
29144480967
-
Kernel methods for measuring independence
-
A. Gretton, R. Herbrich, A. Smola, O. Bousquet, and B. Schölkopf. Kernel methods for measuring independence. The Journal of Machine Learning Research, 6:2075-2129, 2005.
-
(2005)
The Journal of Machine Learning Research
, vol.6
, pp. 2075-2129
-
-
Gretton, A.1
Herbrich, R.2
Smola, A.3
Bousquet, O.4
Schölkopf, B.5
-
18
-
-
34547972314
-
A dependence maximization view of clustering
-
ACM
-
L. Song, A. Smola, A. Gretton, and K. M. Borgwardt. A dependence maximization view of clustering. In Proceedings of the 24th International Conference on Machine Learning, pages 815-822. ACM, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 815-822
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
-
19
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
ACM
-
L. Song, A. Smola, A. Gretton, K. M. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In Proceedings of the 24th International Conference on Machine Learning, pages 823-830. ACM, 2007.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 823-830
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.M.4
Bedo, J.5
-
20
-
-
85162021460
-
Colored maximum variance unfolding
-
L. Song, A. Smola, K. Borgwardt, and A. Gretton. Colored maximum variance unfolding. Advances in Neural Information Processing Systems 20, pages 1385-1392, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1385-1392
-
-
Song, L.1
Smola, A.2
Borgwardt, K.3
Gretton, A.4
-
21
-
-
4544371135
-
Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces
-
K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. The Journal of Machine Learning Research, 5:73-99, 2004.
-
(2004)
The Journal of Machine Learning Research
, vol.5
, pp. 73-99
-
-
Fukumizu, K.1
Bach, F.R.2
Jordan, M.I.3
-
22
-
-
73349108769
-
Sufficient dimension reduction and prediction in regression
-
K. P. Adragni and R. D. Cook. Sufficient dimension reduction and prediction in regression. Philosophical Transactions A, 367:4385-4405, 2009.
-
(2009)
Philosophical Transactions A
, vol.367
, pp. 4385-4405
-
-
Adragni, K.P.1
Cook, R.D.2
-
23
-
-
84898936871
-
On kernel-target alignment
-
MIT Press
-
N., J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On kernel-target alignment. In Advances in Neural Information Processing Systems 14, pages 367-373. MIT Press, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
, pp. 367-373
-
-
Kandola, N.J.1
Elisseeff, A.2
Shawe-Taylor, J.3
-
24
-
-
0000704059
-
Computation with infinite neural networks
-
C. K. I.Williams. Computation with infinite neural networks. Neural Computation, 10:1203-1216, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 1203-1216
-
-
Williams, C.K.I.1
-
28
-
-
0032216898
-
The geometry of algorithms with orthogonality constraints
-
A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl, 20:303-353, 1998.
-
(1998)
SIAM J. Matrix Anal. Appl
, vol.20
, pp. 303-353
-
-
Edelman, A.1
Arias, T.A.2
Smith, S.T.3
-
29
-
-
84864071145
-
Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators
-
MIT Press
-
B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis. Diffusion maps, spectral clustering and eigenfunctions of Fokker-Planck operators. In Advances in Neural Information Processing Systems 18, pages 955-962. MIT Press, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.18
, pp. 955-962
-
-
Nadler, B.1
Lafon, S.2
Coifman, R.3
Kevrekidis, I.G.4
-
30
-
-
61749090884
-
Distancemetric learning for large margin nearest neighbor classification
-
K. Q.Weinberger and L. K. Saul. Distancemetric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10:207-244, 2009.
-
(2009)
The Journal of Machine Learning Research
, vol.10
, pp. 207-244
-
-
Weinberger, K.Q.1
Saul, L.K.2
|