-
1
-
-
51849086132
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
Onureena Banerjee, Laurent El Ghaoui, and Alexandre d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 2007.
-
(2007)
Journal of Machine Learning Research
-
-
Banerjee, O.1
El Ghaoui, L.2
D'Aspremont, A.3
-
2
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
DOI 10.1162/089976603321780317
-
Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6):1373-1396, 2003. doi: 10.1162/089976603321780317. (Pubitemid 37049796)
-
(2003)
Neural Computation
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
4344599431
-
Learning eigenfunctions links spectral embedding and kernel PCA
-
DOI 10.1162/0899766041732396
-
Yoshua Bengio, Olivier Delalleau, Jean-Francois Palement, Nicolas Le Roux, Marie Ouimet, and Pascal Vincent. Learning eigenfunctions links spectral embedding and kernel PCA. Neural Computation, 16(10):2197-2219, 2004a. (Pubitemid 39137820)
-
(2004)
Neural Computation
, vol.16
, Issue.10
, pp. 2197-2219
-
-
Bengio, Y.1
Delalleau, O.2
Le Roux, N.3
Paiement, J.-F.4
Vincent, P.5
Ouimet, M.6
-
4
-
-
33947233031
-
Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering
-
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Cambridge, MA, MIT Press
-
Yoshua Bengio, Jean-Francois Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux, and Marie Ouimet. Out-of-sample extensions for LLE, isomap, MDS, eigenmaps, and spectral clustering. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 177-184, Cambridge, MA, 2004b. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 177-184
-
-
Bengio, Y.1
Paiement, J.-F.2
Vincent, P.3
Delalleau, O.4
Le Roux, N.5
Ouimet, M.6
-
5
-
-
0000582521
-
Statistical analysis of non-lattice data
-
Julian Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179-195, 1975.
-
(1975)
The Statistician
, vol.24
, Issue.3
, pp. 179-195
-
-
Besag, J.1
-
7
-
-
84880865323
-
WiFi-SLAM using Gaussian process latent variable models
-
Manuela M. Veloso, editor
-
Brian D. Ferris, Dieter Fox, and Neil D. Lawrence. WiFi-SLAM using Gaussian process latent variable models. In Manuela M. Veloso, editor, Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007), pages 2480-2485, 2007.
-
(2007)
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007)
, pp. 2480-2485
-
-
Ferris, B.D.1
Fox, D.2
Lawrence, N.D.3
-
8
-
-
85156256883
-
Does the wake-sleep algorithm learn good density estimators?
-
David Touretzky, Michael Mozer, and Mark Hasselmo, editors, Cambridge, MA, MIT Press
-
Brendan J. Frey, Geoffrey E. Hinton, and Peter Dayan. Does the wake-sleep algorithm learn good density estimators? In David Touretzky, Michael Mozer, and Mark Hasselmo, editors, Advances in Neural Information Processing Systems, volume 8, pages 661-670, Cambridge, MA, 1996. MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 661-670
-
-
Frey, B.J.1
Hinton, G.E.2
Dayan, P.3
-
9
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
DOI 10.1093/biostatistics/kxm045
-
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, 9(3):432-441, Jul. 2008. doi: 10.1093/biostatistics/kxm045. (Pubitemid 351882084)
-
(2008)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
10
-
-
11144299132
-
A kernel view of dimensionality reduction of manifolds
-
Russell Greiner and Dale Schuurmans, editors, Omnipress
-
Jihun Ham, Daniel D. Lee, Sebastian Mika, and Bernhard Schölkopf. A kernel view of dimensionality reduction of manifolds. In Russell Greiner and Dale Schuurmans, editors, Proceedings of the International Conference in Machine Learning, volume 21. Omnipress, 2004.
-
(2004)
Proceedings of the International Conference in Machine Learning
, vol.21
-
-
Ham, J.1
Lee, D.D.2
Mika, S.3
Schölkopf, B.4
-
11
-
-
0003678451
-
Markov fields on finite graphs and lattices
-
John M. Hammersley and Peter Clifford. Markov fields on finite graphs and lattices. Technical report, 1971. URL http://www.statslab.cam.ac.uk/-grg/books/ hammfest/hamm-cliff.pdf.
-
(1971)
Technical Report
-
-
Hammersley, J.M.1
Clifford, P.2
-
12
-
-
57849152974
-
Exploring model selection techniques for nonlinear dimensionality reduction
-
University of Edinburgh
-
Stefan Harmeling. Exploring model selection techniques for nonlinear dimensionality reduction. Technical Report EDI-INF-RR-0960, University of Edinburgh, 2007.
-
(2007)
Technical Report EDI-INF-RR-0960
-
-
Harmeling, S.1
-
14
-
-
0002945580
-
Bayesian methods: General background
-
J. H. Justice, editor, Cambridge University Press
-
Edwin T. Jaynes. Bayesian methods: General background. In J. H. Justice, editor, Maximum Entropy and Bayesian Methods in Applied Statistics, pages 1-25. Cambridge University Press, 1986.
-
(1986)
Maximum Entropy and Bayesian Methods in Applied Statistics
, pp. 1-25
-
-
Jaynes, E.T.1
-
18
-
-
84861999538
-
The neural autoregressive distribution estimator
-
Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. JMLR: W&CP, 15:29-37, 2011.
-
(2011)
JMLR: W&CP
, vol.15
, pp. 29-37
-
-
Larochelle, H.1
Murray, I.2
-
19
-
-
84898980901
-
Gaussian process models for visualisation of high dimensional data
-
Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Cambridge, MA, MIT Press
-
Neil D. Lawrence. Gaussian process models for visualisation of high dimensional data. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329-336, Cambridge, MA, 2004. MIT Press.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 329-336
-
-
Lawrence, N.D.1
-
20
-
-
27844605876
-
Probabilistic non-linear principal component analysis with Gaussian process latent variable models
-
Neil D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783-1816, 11 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.11
, pp. 1783-1816
-
-
Lawrence, N.D.1
-
21
-
-
0347361674
-
Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data
-
Na Li and Matthew Stephens. Modeling linkage disequilibrium and identifying recombination hotspots using single-nucleotide polymorphism data. Genetics, 165:2213-2233, 2003. URL http://www.genetics.org/cgi/content/abstract/ 165/4/2213. (Pubitemid 38040302)
-
(2003)
Genetics
, vol.165
, Issue.4
, pp. 2213-2233
-
-
Li, N.1
Stephens, M.2
-
23
-
-
44049116681
-
Connectionist learning of belief networks
-
Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71-113, 1992.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.M.1
-
24
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323-2326, 2000. doi: 10.1126/science.290.5500.2323. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
25
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998. doi: 10.1162/089976698300017467. (Pubitemid 128463674)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
26
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
DOI 10.1126/science.290.5500.2319
-
Joshua B. Tenenbaum, Virginia de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000. doi: 10.1126/science.290.5500.2319. (Pubitemid 32041577)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
De Silva, V.2
Langford, J.C.3
-
27
-
-
0038959172
-
Probabilistic principal component analysis
-
doi: doi:10.1111/1467-9868.00196
-
Michael E. Tipping and Christopher M. Bishop. Probabilistic principal component analysis. Journal of the Royal Statistical Society, B, 6(3):611-622, 1999. doi: doi:10.1111/1467-9868.00196.
-
(1999)
Journal of the Royal Statistical Society, B
, vol.6
, Issue.3
, pp. 611-622
-
-
Tipping, M.E.1
Bishop, C.M.2
-
28
-
-
10644295905
-
-
Springer-Verlag, New York, ISBN 9780387402727
-
Larry A. Wasserman. All of Statistics. Springer-Verlag, New York, 2003. ISBN 9780387402727.
-
(2003)
All of Statistics
-
-
Wasserman, L.A.1
-
29
-
-
14344251006
-
Learning a kernel matrix for nonlinear dimensionality reduction
-
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
-
Kilian Q. Weinberger, Fei Sha, and Lawrence K. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. In Russell Greiner and Dale Schuurmans, editors, Proceedings of the International Conference in Machine Learning, volume 21, pages 839-846. Omnipress, 2004. (Pubitemid 40290888)
-
(2004)
Proceedings, Twenty-First International Conference on Machine Learning, ICML 2004
, pp. 839-846
-
-
Weinberger, K.Q.1
Sha, F.2
Saul, L.K.3
-
30
-
-
84898939890
-
On a connection between kernel PCA and metric multidimensional scaling
-
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Cambridge, MA, MIT Press
-
Christopher K. I. Williams. On a connection between kernel PCA and metric multidimensional scaling. In Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information Processing Systems, volume 13, pages 675-681, Cambridge, MA, 2001. MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 675-681
-
-
Christopher, K.1
Williams, I.2
-
31
-
-
33749596705
-
Semi-supervised learning: From Gaussian fields to Gaussian processes
-
Carnegie Mellon University
-
Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Semi-supervised learning: From Gaussian fields to Gaussian processes. Technical Report CMU-CS-03-175, Carnegie Mellon University, 2003.
-
(2003)
Technical Report CMU-CS-03-175
-
-
Zhu, X.1
Lafferty, J.2
Ghahramani, Z.3
|