-
1
-
-
84904699083
-
Regulation of intestinal lipid absorption by clock genes
-
M.M. Hussain Regulation of intestinal lipid absorption by clock genes Annu Rev Nutr 34 2014 357 375
-
(2014)
Annu Rev Nutr
, vol.34
, pp. 357-375
-
-
Hussain, M.M.1
-
2
-
-
77949274561
-
Role of biological rhythms in gastrointestinal health and disease
-
W.A. Hoogerwerf Role of biological rhythms in gastrointestinal health and disease Rev Endocr Metab Disord 10 2009 293 300
-
(2009)
Rev Endocr Metab Disord
, vol.10
, pp. 293-300
-
-
Hoogerwerf, W.A.1
-
3
-
-
79959448076
-
Gut clock: Implication of circadian rhythms in the gastrointestinal tract
-
P.C. Konturek, T. Brzozowski, and S.J. Konturek Gut clock: implication of circadian rhythms in the gastrointestinal tract J Physiol Pharmacol 62 2011 139 150
-
(2011)
J Physiol Pharmacol
, vol.62
, pp. 139-150
-
-
Konturek, P.C.1
Brzozowski, T.2
Konturek, S.J.3
-
4
-
-
84925844053
-
Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock
-
G. Asher, and P. Sassone-Corsi Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock Cell 161 2015 84 92
-
(2015)
Cell
, vol.161
, pp. 84-92
-
-
Asher, G.1
Sassone-Corsi, P.2
-
5
-
-
84927009462
-
Circadian timing of metabolism in animal models and humans
-
C. Dibner, and U. Schibler Circadian timing of metabolism in animal models and humans J Intern Med 277 2015 513 527
-
(2015)
J Intern Med
, vol.277
, pp. 513-527
-
-
Dibner, C.1
Schibler, U.2
-
6
-
-
84858172824
-
(Re)inventing the circadian feedback loop
-
S.A. Brown, E. Kowalska, and R. Dallmann (Re)inventing the circadian feedback loop Dev Cell 22 2012 477 487
-
(2012)
Dev Cell
, vol.22
, pp. 477-487
-
-
Brown, S.A.1
Kowalska, E.2
Dallmann, R.3
-
7
-
-
77951927020
-
Suprachiasmatic nucleus: Cell autonomy and network properties
-
D.K. Welsh, J.S. Takahashi, and S.A. Kay Suprachiasmatic nucleus: cell autonomy and network properties Annu Rev Physiol 72 2010 551 577
-
(2010)
Annu Rev Physiol
, vol.72
, pp. 551-577
-
-
Welsh, D.K.1
Takahashi, J.S.2
Kay, S.A.3
-
8
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
F. Damiola, N. Le Minh, N. Preitner, and et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus Genes Dev 14 2000 2950 2961
-
(2000)
Genes Dev
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
Le Minh, N.2
Preitner, N.3
-
10
-
-
79551534130
-
Crosstalk between components of circadian and metabolic cycles in mammals
-
G. Asher, and U. Schibler Crosstalk between components of circadian and metabolic cycles in mammals Cell Metab 13 2011 125 137
-
(2011)
Cell Metab
, vol.13
, pp. 125-137
-
-
Asher, G.1
Schibler, U.2
-
11
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
K.M. Ramsey, J. Yoshino, C.S. Brace, and et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis Science 324 2009 651 654
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
Yoshino, J.2
Brace, C.S.3
-
12
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Y. Nakahata, S. Sahar, G. Astarita, and et al. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1 Science 324 2009 654 657
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
Sahar, S.2
Astarita, G.3
-
13
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
G. Asher, D. Gatfield, M. Stratmann, and et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation Cell 134 2008 317 328
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
Gatfield, D.2
Stratmann, M.3
-
14
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Y. Nakahata, M. Kaluzova, B. Grimaldi, and et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control Cell 134 2008 329 340
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
Kaluzova, M.2
Grimaldi, B.3
-
15
-
-
84879391795
-
SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging
-
H.C. Chang, and L. Guarente SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging Cell 153 2013 1448 1460
-
(2013)
Cell
, vol.153
, pp. 1448-1460
-
-
Chang, H.C.1
Guarente, L.2
-
16
-
-
84884248040
-
Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice
-
C.B. Peek, A.H. Affinati, K.M. Ramsey, and et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice Science 342 2013 1243417
-
(2013)
Science
, vol.342
, pp. 1243417
-
-
Peek, C.B.1
Affinati, A.H.2
Ramsey, K.M.3
-
17
-
-
84905389924
-
Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism
-
S. Masri, P. Rigor, M. Cervantes, and et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism Cell 158 2014 659 672
-
(2014)
Cell
, vol.158
, pp. 659-672
-
-
Masri, S.1
Rigor, P.2
Cervantes, M.3
-
18
-
-
77956627087
-
Poly(ADP-Ribose) Polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
G. Asher, H. Reinke, M. Altmeyer, and et al. Poly(ADP-Ribose) Polymerase 1 participates in the phase entrainment of circadian clocks to feeding Cell 142 2010 943 953
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
Reinke, H.2
Altmeyer, M.3
-
19
-
-
79251566511
-
Circadian clocks in human red blood cells
-
J.S. O'Neill, and A.B. Reddy Circadian clocks in human red blood cells Nature 469 2011 498 503
-
(2011)
Nature
, vol.469
, pp. 498-503
-
-
O'Neill, J.S.1
Reddy, A.B.2
-
20
-
-
79251539603
-
Circadian rhythms persist without transcription in a eukaryote
-
J.S. O'Neill, G. van Ooijen, L.E. Dixon, and et al. Circadian rhythms persist without transcription in a eukaryote Nature 469 2011 554 558
-
(2011)
Nature
, vol.469
, pp. 554-558
-
-
O'Neill, J.S.1
Van Ooijen, G.2
Dixon, L.E.3
-
21
-
-
70350128135
-
AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation
-
K.A. Lamia, U.M. Sachdeva, L. DiTacchio, and et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation Science 326 2009 437 440
-
(2009)
Science
, vol.326
, pp. 437-440
-
-
Lamia, K.A.1
Sachdeva, U.M.2
DiTacchio, L.3
-
22
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
C. Liu, S. Li, T. Liu, and et al. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism Nature 447 2007 477 481
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
-
23
-
-
84948436225
-
Circadian clock control by polyamine levels through a mechanism that declines with age
-
Z. Zwighaft, R. Aviram, M. Shalev, and et al. Circadian clock control by polyamine levels through a mechanism that declines with age Cell Metab 22 2015 874 885
-
(2015)
Cell Metab
, vol.22
, pp. 874-885
-
-
Zwighaft, Z.1
Aviram, R.2
Shalev, M.3
-
25
-
-
77957960061
-
Temperature as a universal resetting cue for mammalian circadian oscillators
-
E.D. Buhr, S.H. Yoo, and J.S. Takahashi Temperature as a universal resetting cue for mammalian circadian oscillators Science 330 2010 379 385
-
(2010)
Science
, vol.330
, pp. 379-385
-
-
Buhr, E.D.1
Yoo, S.H.2
Takahashi, J.S.3
-
26
-
-
38949209515
-
Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor
-
H. Reinke, C. Saini, F. Fleury-Olela, and et al. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor Genes Dev 22 2008 331 345
-
(2008)
Genes Dev
, vol.22
, pp. 331-345
-
-
Reinke, H.1
Saini, C.2
Fleury-Olela, F.3
-
27
-
-
84858321758
-
Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators
-
C. Saini, J. Morf, M. Stratmann, and et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators Genes Dev 26 2012 567 580
-
(2012)
Genes Dev
, vol.26
, pp. 567-580
-
-
Saini, C.1
Morf, J.2
Stratmann, M.3
-
28
-
-
84873287518
-
Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity
-
A. Gerber, C. Esnault, G. Aubert, and et al. Blood-borne circadian signal stimulates daily oscillations in actin dynamics and SRF activity Cell 152 2013 492 503
-
(2013)
Cell
, vol.152
, pp. 492-503
-
-
Gerber, A.1
Esnault, C.2
Aubert, G.3
-
29
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
S. Panda, M.P. Antoch, B.H. Miller, and et al. Coordinated transcription of key pathways in the mouse by the circadian clock Cell 109 2002 307 320
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
Antoch, M.P.2
Miller, B.H.3
-
30
-
-
0037007625
-
Extensive and divergent circadian gene expression in liver and heart
-
K.F. Storch, O. Lipan, I. Leykin, and et al. Extensive and divergent circadian gene expression in liver and heart Nature 417 2002 78 83
-
(2002)
Nature
, vol.417
, pp. 78-83
-
-
Storch, K.F.1
Lipan, O.2
Leykin, I.3
-
31
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
R.A. Akhtar, A.B. Reddy, E.S. Maywood, and et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus Curr Biol 12 2002 540 550
-
(2002)
Curr Biol
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
Reddy, A.B.2
Maywood, E.S.3
-
32
-
-
84909592563
-
A circadian gene expression atlas in mammals: Implications for biology and medicine
-
R. Zhang, N.F. Lahens, H.I. Ballance, and et al. A circadian gene expression atlas in mammals: implications for biology and medicine Proc Natl Acad Sci U S A 111 2014 16219 16224
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 16219-16224
-
-
Zhang, R.1
Lahens, N.F.2
Ballance, H.I.3
-
33
-
-
84893799587
-
In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism
-
M.S. Robles, J. Cox, and M. Mann In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism PLoS Genet 10 2014 e1004047
-
(2014)
PLoS Genet
, vol.10
, pp. e1004047
-
-
Robles, M.S.1
Cox, J.2
Mann, M.3
-
34
-
-
84891940889
-
Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver
-
D. Mauvoisin, J. Wang, C. Jouffe, and et al. Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver Proc Natl Acad Sci U S A 111 2014 167 172
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 167-172
-
-
Mauvoisin, D.1
Wang, J.2
Jouffe, C.3
-
35
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
K.L. Eckel-Mahan, V.R. Patel, R.P. Mohney, and et al. Coordination of the transcriptome and metabolome by the circadian clock Proc Natl Acad Sci U S A 109 2012 5541 5546
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
Patel, V.R.2
Mohney, R.P.3
-
36
-
-
84893444129
-
Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides
-
Y. Adamovich, L. Rousso-Noori, Z. Zwighaft, and et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides Cell Metab 19 2014 319 330
-
(2014)
Cell Metab
, vol.19
, pp. 319-330
-
-
Adamovich, Y.1
Rousso-Noori, L.2
Zwighaft, Z.3
-
37
-
-
33846944676
-
System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock
-
B. Kornmann, O. Schaad, H. Bujard, and et al. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock PloS Biol 5 2007 e34
-
(2007)
PloS Biol
, vol.5
, pp. e34
-
-
Kornmann, B.1
Schaad, O.2
Bujard, H.3
-
38
-
-
75849136095
-
Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression
-
C. Vollmers, S. Gill, L. DiTacchio, and et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression Proc Natl Acad Sci U S A 106 2009 21453 21458
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 21453-21458
-
-
Vollmers, C.1
Gill, S.2
DiTacchio, L.3
-
39
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
K.A. Lamia, K.F. Storch, and C.J. Weitz Physiological significance of a peripheral tissue circadian clock Proc Natl Acad Sci U S A 105 2008 15172 15177
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.F.2
Weitz, C.J.3
-
40
-
-
0038015596
-
The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior
-
M. Ruiter, S.E. La Fleur, C. van Heijningen, and et al. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior Diabetes 52 2003 1709 1715
-
(2003)
Diabetes
, vol.52
, pp. 1709-1715
-
-
Ruiter, M.1
La Fleur, S.E.2
Van Heijningen, C.3
-
41
-
-
0029741066
-
Evidence for a circadian rhythm of insulin secretion
-
G. Boden, J. Ruiz, J.L. Urbain, and et al. Evidence for a circadian rhythm of insulin secretion Am J Physiol 271 1996 E246 E252
-
(1996)
Am J Physiol
, vol.271
, pp. E246-E252
-
-
Boden, G.1
Ruiz, J.2
Urbain, J.L.3
-
42
-
-
0034992684
-
A daily rhythm in glucose tolerance: A role for the suprachiasmatic nucleus
-
S.E. la Fleur, A. Kalsbeek, J. Wortel, and et al. A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus Diabetes 50 2001 1237 1243
-
(2001)
Diabetes
, vol.50
, pp. 1237-1243
-
-
La Fleur, S.E.1
Kalsbeek, A.2
Wortel, J.3
-
43
-
-
0021720186
-
Demonstration of a dawn phenomenon in normal human volunteers
-
G.B. Bolli, P. De Feo, S. De Cosmo, and et al. Demonstration of a dawn phenomenon in normal human volunteers Diabetes 33 1984 1150 1153
-
(1984)
Diabetes
, vol.33
, pp. 1150-1153
-
-
Bolli, G.B.1
De Feo, P.2
De Cosmo, S.3
-
44
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
B. Marcheva, K.M. Ramsey, E.D. Buhr, and et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes Nature 466 2010 627 631
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
Ramsey, K.M.2
Buhr, E.D.3
-
45
-
-
84878347362
-
Autonomous and self-sustained circadian oscillators displayed in human islet cells
-
P. Pulimeno, T. Mannic, D. Sage, and et al. Autonomous and self-sustained circadian oscillators displayed in human islet cells Diabetologia 56 2013 497 507
-
(2013)
Diabetologia
, vol.56
, pp. 497-507
-
-
Pulimeno, P.1
Mannic, T.2
Sage, D.3
-
46
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
R.D. Rudic, P. McNamara, A.M. Curtis, and et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis PLoS Biol 2 2004 e377
-
(2004)
PLoS Biol
, vol.2
, pp. e377
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.M.3
-
47
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
-
E.E. Zhang, Y. Liu, R. Dentin, and et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis Nat Med 16 2010 1152 1156
-
(2010)
Nat Med
, vol.16
, pp. 1152-1156
-
-
Zhang, E.E.1
Liu, Y.2
Dentin, R.3
-
48
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
K.A. Lamia, S.J. Papp, R.T. Yu, and et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor Nature 480 2011 552 556
-
(2011)
Nature
, vol.480
, pp. 552-556
-
-
Lamia, K.A.1
Papp, S.J.2
Yu, R.T.3
-
49
-
-
70350447953
-
Glucocorticoid regulation of the circadian clock modulates glucose homeostasis
-
A.Y. So, T.U. Bernal, M.L. Pillsbury, and et al. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis Proc Natl Acad Sci U S A 106 2009 17582 17587
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 17582-17587
-
-
So, A.Y.1
Bernal, T.U.2
Pillsbury, M.L.3
-
50
-
-
77953394284
-
Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver
-
F. Guillaumond, A. Grechez-Cassiau, M. Subramaniam, and et al. Kruppel-like factor KLF10 is a link between the circadian clock and metabolism in liver Mol Cell Biol 30 2010 3059 3070
-
(2010)
Mol Cell Biol
, vol.30
, pp. 3059-3070
-
-
Guillaumond, F.1
Grechez-Cassiau, A.2
Subramaniam, M.3
-
51
-
-
84863230321
-
Klf15 orchestrates circadian nitrogen homeostasis
-
D. Jeyaraj, F.A. Scheer, J.A. Ripperger, and et al. Klf15 orchestrates circadian nitrogen homeostasis Cell Metab 15 2012 311 323
-
(2012)
Cell Metab
, vol.15
, pp. 311-323
-
-
Jeyaraj, D.1
Scheer, F.A.2
Ripperger, J.A.3
-
52
-
-
84930042223
-
The emerging roles of lipids in circadian control
-
Y. Adamovich, R. Aviram, and G. Asher The emerging roles of lipids in circadian control Biochim Biophys Acta 1851 2015 1017 1025
-
(2015)
Biochim Biophys Acta
, vol.1851
, pp. 1017-1025
-
-
Adamovich, Y.1
Aviram, R.2
Asher, G.3
-
53
-
-
70349764508
-
REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis
-
G. Le Martelot, T. Claudel, D. Gatfield, and et al. REV-ERBalpha participates in circadian SREBP signaling and bile acid homeostasis PloS Biol 7 2009 e1000181
-
(2009)
PloS Biol
, vol.7
, pp. e1000181
-
-
Le Martelot, G.1
Claudel, T.2
Gatfield, D.3
-
54
-
-
78049437320
-
PER2 controls lipid metabolism by direct regulation of PPARgamma
-
B. Grimaldi, M.M. Bellet, S. Katada, and et al. PER2 controls lipid metabolism by direct regulation of PPARgamma Cell Metab 12 2010 509 520
-
(2010)
Cell Metab
, vol.12
, pp. 509-520
-
-
Grimaldi, B.1
Bellet, M.M.2
Katada, S.3
-
55
-
-
0036906591
-
Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription
-
E. Raspe, H. Duez, A. Mansen, and et al. Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription J Lipid Res 43 2002 2172 2179
-
(2002)
J Lipid Res
, vol.43
, pp. 2172-2179
-
-
Raspe, E.1
Duez, H.2
Mansen, A.3
-
56
-
-
20844461135
-
Obesity and metabolic syndrome in circadian Clock mutant mice
-
F.W. Turek, C. Joshu, A. Kohsaka, and et al. Obesity and metabolic syndrome in circadian Clock mutant mice Science 308 2005 1043 1045
-
(2005)
Science
, vol.308
, pp. 1043-1045
-
-
Turek, F.W.1
Joshu, C.2
Kohsaka, A.3
-
57
-
-
84859329911
-
Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function
-
A. Bugge, D. Feng, L.J. Everett, and et al. Rev-erbalpha and Rev-erbbeta coordinately protect the circadian clock and normal metabolic function Genes Dev 26 2012 657 667
-
(2012)
Genes Dev
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
-
58
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
D. Feng, T. Liu, Z. Sun, and et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism Science 331 2011 1315 1319
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
59
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
M. Hatori, C. Vollmers, A. Zarrinpar, and et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet Cell Metab 15 2012 848 860
-
(2012)
Cell Metab
, vol.15
, pp. 848-860
-
-
Hatori, M.1
Vollmers, C.2
Zarrinpar, A.3
-
60
-
-
84886686038
-
Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
-
J.L. Feldman, J. Baeza, and J.M. Denu Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins J Biol Chem 288 2013 31350 31356
-
(2013)
J Biol Chem
, vol.288
, pp. 31350-31356
-
-
Feldman, J.L.1
Baeza, J.2
Denu, J.M.3
-
61
-
-
0033636789
-
Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors
-
T.T. Lu, M. Makishima, J.J. Repa, and et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors Mol Cell 6 2000 507 515
-
(2000)
Mol Cell
, vol.6
, pp. 507-515
-
-
Lu, T.T.1
Makishima, M.2
Repa, J.J.3
-
62
-
-
0027428137
-
Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP
-
D.J. Lavery, and U. Schibler Circadian transcription of the cholesterol 7 alpha hydroxylase gene may involve the liver-enriched bZIP protein DBP Genes Dev 7 1993 1871 1884
-
(1993)
Genes Dev
, vol.7
, pp. 1871-1884
-
-
Lavery, D.J.1
Schibler, U.2
-
63
-
-
84930655782
-
Circadian control of bile acid synthesis by a KLF15-Fgf15 axis
-
S.S. Han, R. Zhang, R. Jain, and et al. Circadian control of bile acid synthesis by a KLF15-Fgf15 axis Nat Commun 6 2015 7231
-
(2015)
Nat Commun
, vol.6
, pp. 7231
-
-
Han, S.S.1
Zhang, R.2
Jain, R.3
-
64
-
-
0021062922
-
Regulation of bile acid synthesis in man. Presence of a diurnal rhythm
-
W.C. Duane, D.G. Levitt, S.M. Mueller, and et al. Regulation of bile acid synthesis in man. Presence of a diurnal rhythm J Clin Invest 72 1983 1930 1936
-
(1983)
J Clin Invest
, vol.72
, pp. 1930-1936
-
-
Duane, W.C.1
Levitt, D.G.2
Mueller, S.M.3
-
65
-
-
33747157406
-
Nuclear receptor expression links the circadian clock to metabolism
-
X. Yang, M. Downes, R.T. Yu, and et al. Nuclear receptor expression links the circadian clock to metabolism Cell 126 2006 801 810
-
(2006)
Cell
, vol.126
, pp. 801-810
-
-
Yang, X.1
Downes, M.2
Yu, R.T.3
-
66
-
-
58149461577
-
Circadian expression profiles of drug-processing genes and transcription factors in mouse liver
-
Y.K. Zhang, R.L. Yeager, and C.D. Klaassen Circadian expression profiles of drug-processing genes and transcription factors in mouse liver Drug Metab Dispos 37 2009 106 115
-
(2009)
Drug Metab Dispos
, vol.37
, pp. 106-115
-
-
Zhang, Y.K.1
Yeager, R.L.2
Klaassen, C.D.3
-
67
-
-
33745329809
-
The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification
-
F. Gachon, F.F. Olela, O. Schaad, and et al. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification Cell Metab 4 2006 25 36
-
(2006)
Cell Metab
, vol.4
, pp. 25-36
-
-
Gachon, F.1
Olela, F.F.2
Schaad, O.3
-
68
-
-
84943450709
-
Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness
-
D. Jacobi, S. Liu, K. Burkewitz, and et al. Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness Cell Metab 22 2015 709 720
-
(2015)
Cell Metab
, vol.22
, pp. 709-720
-
-
Jacobi, D.1
Liu, S.2
Burkewitz, K.3
-
69
-
-
77950323927
-
Pathogenesis of non-alcoholic fatty liver disease
-
J.K. Dowman, J.W. Tomlinson, and P.N. Newsome Pathogenesis of non-alcoholic fatty liver disease QJM 103 2010 71 83
-
(2010)
QJM
, vol.103
, pp. 71-83
-
-
Dowman, J.K.1
Tomlinson, J.W.2
Newsome, P.N.3
-
70
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
L.A. Solt, Y. Wang, S. Banerjee, and et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists Nature 485 2012 62 68
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
Wang, Y.2
Banerjee, S.3
-
71
-
-
84928924350
-
Social jetlag, obesity and metabolic disorder: Investigation in a cohort study
-
M.J. Parsons, T.E. Moffitt, A.M. Gregory, and et al. Social jetlag, obesity and metabolic disorder: investigation in a cohort study Int J Obes (Lond) 39 2015 842 848
-
(2015)
Int J Obes (Lond)
, vol.39
, pp. 842-848
-
-
Parsons, M.J.1
Moffitt, T.E.2
Gregory, A.M.3
-
72
-
-
84939823947
-
Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock
-
X. Liang, F.D. Bushman, and G.A. FitzGerald Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock Proc Natl Acad Sci U S A 112 2015 10479 10484
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 10479-10484
-
-
Liang, X.1
Bushman, F.D.2
FitzGerald, G.A.3
-
73
-
-
84929300092
-
Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism
-
V. Leone, S.M. Gibbons, K. Martinez, and et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism Cell Host Microbe 17 2015 681 689
-
(2015)
Cell Host Microbe
, vol.17
, pp. 681-689
-
-
Leone, V.1
Gibbons, S.M.2
Martinez, K.3
-
74
-
-
84908302963
-
Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
-
C.A. Thaiss, D. Zeevi, M. Levy, and et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis Cell 159 2014 514 529
-
(2014)
Cell
, vol.159
, pp. 514-529
-
-
Thaiss, C.A.1
Zeevi, D.2
Levy, M.3
-
75
-
-
84877721051
-
Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs
-
A. Mukherji, A. Kobiita, T. Ye, and et al. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs Cell 153 2013 812 827
-
(2013)
Cell
, vol.153
, pp. 812-827
-
-
Mukherji, A.1
Kobiita, A.2
Ye, T.3
|