-
1
-
-
52649107626
-
Cancer cell metabolism: Warburg and beyond
-
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008; 134:703-707.
-
(2008)
Cell.
, vol.134
, pp. 703-707
-
-
Hsu, P.P.1
Sabatini, D.M.2
-
2
-
-
66249108601
-
Understanding the Warburg effect: the metabolic requirements of cell proliferation
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009; 324:1029-1033.
-
(2009)
Science.
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
3
-
-
12444279265
-
On the origin of cancer cells
-
Warburg O. On the origin of cancer cells. Science. 1956; 123:309-314.
-
(1956)
Science.
, vol.123
, pp. 309-314
-
-
Warburg, O.1
-
5
-
-
84860512005
-
Links between metabolism and cancer
-
Dang CV. Links between metabolism and cancer. Genes Dev. 2012; 26:877-890.
-
(2012)
Genes Dev.
, vol.26
, pp. 877-890
-
-
Dang, C.V.1
-
6
-
-
84869009687
-
How cancer metabolism is tuned for proliferation and vulnerable to disruption
-
Schulze A, Harris AL. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature. 2012; 491:364-373.
-
(2012)
Nature.
, vol.491
, pp. 364-373
-
-
Schulze, A.1
Harris, A.L.2
-
7
-
-
84875321515
-
SnapShot: cancer metabolism pathways
-
Finley LW, Zhang J, Ye J, Ward PS, Thompson CB. SnapShot: cancer metabolism pathways. Cell Metab. 2013;17: 466-466 e462.
-
(2013)
Cell Metab.
, vol.17
, pp. 466-466 e462
-
-
Finley, L.W.1
Zhang, J.2
Ye, J.3
Ward, P.S.4
Thompson, C.B.5
-
8
-
-
84925969707
-
Metabolic pathways promoting cancer cell survival and growth
-
Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015; 17:351-359.
-
(2015)
Nat Cell Biol.
, vol.17
, pp. 351-359
-
-
Boroughs, L.K.1
DeBerardinis, R.J.2
-
9
-
-
0037163021
-
The key role of anaplerosis and cataplerosis for citric acid cycle function
-
Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002; 277:30409-30412.
-
(2002)
J Biol Chem.
, vol.277
, pp. 30409-30412
-
-
Owen, O.E.1
Kalhan, S.C.2
Hanson, R.W.3
-
10
-
-
84855453655
-
Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells
-
Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, Tsukamoto T, Rojas CJ, Slusher BS, Zhang H, Zimmerman LJ, Liebler DC, Slebos RJ et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012; 15:110-121.
-
(2012)
Cell Metab.
, vol.15
, pp. 110-121
-
-
Le, A.1
Lane, A.N.2
Hamaker, M.3
Bose, S.4
Gouw, A.5
Barbi, J.6
Tsukamoto, T.7
Rojas, C.J.8
Slusher, B.S.9
Zhang, H.10
Zimmerman, L.J.11
Liebler, D.C.12
Slebos, R.J.13
-
11
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013; 496:101-105.
-
(2013)
Nature.
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
Perera, R.M.7
Ferrone, C.R.8
Mullarky, E.9
Shyh-Chang, N.10
Kang, Y.11
Fleming, J.B.12
Bardeesy, N.13
-
12
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, YudkoffM, McMahon SB, Thompson CB. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008; 105:18782-18787.
-
(2008)
Proc Natl Acad Sci U S A.
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
DeBerardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
Nissim, I.7
Daikhin, E.8
Yudkoff, M.9
McMahon, S.B.10
Thompson, C.B.11
-
13
-
-
64749116346
-
c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism
-
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT, Dang CV. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009; 458:762-765.
-
(2009)
Nature.
, vol.458
, pp. 762-765
-
-
Gao, P.1
Tchernyshyov, I.2
Chang, T.C.3
Lee, Y.S.4
Kita, K.5
Ochi, T.6
Zeller, K.I.7
De Marzo, A.M.8
Van Eyk, J.E.9
Mendell, J.T.10
Dang, C.V.11
-
14
-
-
77956497712
-
Targeting mitochondrial glutaminase activity inhibits oncogenic transformation
-
Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell. 2010; 18:207-219.
-
(2010)
Cancer Cell.
, vol.18
, pp. 207-219
-
-
Wang, J.B.1
Erickson, J.W.2
Fuji, R.3
Ramachandran, S.4
Gao, P.5
Dinavahi, R.6
Wilson, K.F.7
Ambrosio, A.L.8
Dias, S.M.9
Dang, C.V.10
Cerione, R.A.11
-
15
-
-
78549283855
-
Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1
-
Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV, Tsukamoto T, Rojas CJ, Slusher BS, Rabinowitz JD, Dang CV, Riggins GJ. Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res. 2010; 70:8981-8987.
-
(2010)
Cancer Res.
, vol.70
, pp. 8981-8987
-
-
Seltzer, M.J.1
Bennett, B.D.2
Joshi, A.D.3
Gao, P.4
Thomas, A.G.5
Ferraris, D.V.6
Tsukamoto, T.7
Rojas, C.J.8
Slusher, B.S.9
Rabinowitz, J.D.10
Dang, C.V.11
Riggins, G.J.12
-
16
-
-
84883497454
-
Glutamine and cancer: cell biology, physiology, and clinical opportunities
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013; 123:3678-3684.
-
(2013)
J Clin Invest.
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
DeBerardinis, R.J.3
-
17
-
-
84930392977
-
Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis
-
Xiang Y, Stine ZE, Xia J, Lu Y, O'Connor RS, Altman BJ, Hsieh AL, Gouw AM, Thomas AG, Gao P, Sun L, Song L, Yan B et al. Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest. 2015; 125:2293-2306.
-
(2015)
J Clin Invest.
, vol.125
, pp. 2293-2306
-
-
Xiang, Y.1
Stine, Z.E.2
Xia, J.3
Lu, Y.4
O'Connor, R.S.5
Altman, B.J.6
Hsieh, A.L.7
Gouw, A.M.8
Thomas, A.G.9
Gao, P.10
Sun, L.11
Song, L.12
Yan, B.13
-
18
-
-
84856374900
-
Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism
-
Cassago A, Ferreira AP, Ferreira IM, Fornezari C, Gomes ER, Greene KS, Pereira HM, Garratt RC, Dias SM, Ambrosio AL. Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism. Proc Natl Acad Sci U S A. 2012; 109:1092-1097.
-
(2012)
Proc Natl Acad Sci U S A.
, vol.109
, pp. 1092-1097
-
-
Cassago, A.1
Ferreira, A.P.2
Ferreira, I.M.3
Fornezari, C.4
Gomes, E.R.5
Greene, K.S.6
Pereira, H.M.7
Garratt, R.C.8
Dias, S.M.9
Ambrosio, A.L.10
-
19
-
-
84873050284
-
Regulatory networks defining EMT during cancer initiation and progression
-
De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013; 13:97-110.
-
(2013)
Nat Rev Cancer.
, vol.13
, pp. 97-110
-
-
De Craene, B.1
Berx, G.2
-
20
-
-
84885915873
-
Epithelial-mesenchymal plasticity in carcinoma metastasis
-
Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013; 27:2192-2206.
-
(2013)
Genes Dev.
, vol.27
, pp. 2192-2206
-
-
Tsai, J.H.1
Yang, J.2
-
21
-
-
84887444879
-
Microenvironmental regulation of tumor progression and metastasis
-
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013; 19:1423-1437.
-
(2013)
Nat Med.
, vol.19
, pp. 1423-1437
-
-
Quail, D.F.1
Joyce, J.A.2
-
22
-
-
84901787644
-
Oncogenic roles of EMT-inducing transcription factors
-
Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol. 2014; 16:488-494.
-
(2014)
Nat Cell Biol.
, vol.16
, pp. 488-494
-
-
Puisieux, A.1
Brabletz, T.2
Caramel, J.3
-
23
-
-
84870365240
-
Why does cancer therapy lack effective anti-metastasis drugs?
-
Weber GF. Why does cancer therapy lack effective anti-metastasis drugs? Cancer Lett. 2013; 328: 207-211.
-
(2013)
Cancer Lett
, vol.328
, pp. 207-211
-
-
Weber, G.F.1
-
24
-
-
34249289041
-
Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?
-
Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007; 7: 415-428.
-
(2007)
Nat Rev Cancer
, vol.7
, pp. 415-428
-
-
Peinado, H.1
Olmeda, D.2
Cano, A.3
-
25
-
-
84890852964
-
The Role of Snail in EMT and Tumorigenesis
-
Wang Y, Shi J, Chai K, Ying X, Zhou BP. The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets. 2013; 13:963-972.
-
(2013)
Curr Cancer Drug Targets.
, vol.13
, pp. 963-972
-
-
Wang, Y.1
Shi, J.2
Chai, K.3
Ying, X.4
Zhou, B.P.5
-
26
-
-
84892440278
-
Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential
-
De Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, Jonkers J, Fuchs E, Berx G. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014; 21:310-320.
-
(2014)
Cell Death Differ.
, vol.21
, pp. 310-320
-
-
De Craene, B.1
Denecker, G.2
Vermassen, P.3
Taminau, J.4
Mauch, C.5
Derore, A.6
Jonkers, J.7
Fuchs, E.8
Berx, G.9
-
27
-
-
84871846692
-
WNT signalling pathways as therapeutic targets in cancer
-
Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013; 13:11-26.
-
(2013)
Nat Rev Cancer.
, vol.13
, pp. 11-26
-
-
Anastas, J.N.1
Moon, R.T.2
-
28
-
-
84888639681
-
The roles of TGFbeta in the tumour microenvironment
-
Pickup M, Novitskiy S, Moses HL. The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer. 2013; 13:788-799.
-
(2013)
Nat Rev Cancer.
, vol.13
, pp. 788-799
-
-
Pickup, M.1
Novitskiy, S.2
Moses, H.L.3
-
29
-
-
84863917176
-
Wnt/Snail Signaling Regulates Cytochrome c Oxidase and Glucose Metabolism
-
Lee SY, Jeon HM, Ju MK, Kim CH, Yoon G, Han SI, Park HG, Kang HS. Wnt/Snail Signaling Regulates Cytochrome c Oxidase and Glucose Metabolism. Cancer Res. 2012; 72:3607-3617.
-
(2012)
Cancer Res.
, vol.72
, pp. 3607-3617
-
-
Lee, S.Y.1
Jeon, H.M.2
Ju, M.K.3
Kim, C.H.4
Yoon, G.5
Han, S.I.6
Park, H.G.7
Kang, H.S.8
-
30
-
-
84876434755
-
Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer
-
Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013; 23:316-331.
-
(2013)
Cancer Cell.
, vol.23
, pp. 316-331
-
-
Dong, C.1
Yuan, T.2
Wu, Y.3
Wang, Y.4
Fan, T.W.5
Miriyala, S.6
Lin, Y.7
Yao, J.8
Shi, J.9
Kang, T.10
Lorkiewicz, P.11
St Clair, D.12
Hung, M.C.13
-
31
-
-
0033760811
-
Multiple functions of Dlx genes
-
Merlo GR, Zerega B, Paleari L, Trombino S, Mantero S, Levi G. Multiple functions of Dlx genes. Int J Dev Biol. 2000; 44:619-626.
-
(2000)
Int J Dev Biol.
, vol.44
, pp. 619-626
-
-
Merlo, G.R.1
Zerega, B.2
Paleari, L.3
Trombino, S.4
Mantero, S.5
Levi, G.6
-
32
-
-
0036796883
-
Developmental functions of the Distal-less/Dlx homeobox genes
-
Panganiban G, Rubenstein JL. Developmental functions of the Distal-less/Dlx homeobox genes. Development. 2002; 129:4371-4386.
-
(2002)
Development.
, vol.129
, pp. 4371-4386
-
-
Panganiban, G.1
Rubenstein, J.L.2
-
33
-
-
80052849532
-
Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis
-
Lee SY, Jeon HM, Kim CH, Ju MK, Bae HS, Park HG, Lim SC, Han SI, Kang HS. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Mol Cancer. 2011;10: 113.
-
(2011)
Mol Cancer.
, vol.10
, pp. 113
-
-
Lee, S.Y.1
Jeon, H.M.2
Kim, C.H.3
Ju, M.K.4
Bae, H.S.5
Park, H.G.6
Lim, S.C.7
Han, S.I.8
Kang, H.S.9
-
34
-
-
80455173877
-
Transcription factor Dlx2 protects from TGFbeta-induced cell-cycle arrest and apoptosis
-
Yilmaz M, Maass D, Tiwari N, Waldmeier L, Schmidt P, Lehembre F, Christofori G. Transcription factor Dlx2 protects from TGFbeta-induced cell-cycle arrest and apoptosis. Embo J. 2011; 30:4489-4499.
-
(2011)
Embo J.
, vol.30
, pp. 4489-4499
-
-
Yilmaz, M.1
Maass, D.2
Tiwari, N.3
Waldmeier, L.4
Schmidt, P.5
Lehembre, F.6
Christofori, G.7
-
35
-
-
84877355354
-
Increased expression of DLX2 correlates with advanced stage of gastric adenocarcinoma
-
Tang P, Huang H, Chang J, Zhao GF, Lu ML, Wang Y. Increased expression of DLX2 correlates with advanced stage of gastric adenocarcinoma. World J Gastroenterol. 2013; 19:2697-2703.
-
(2013)
World J Gastroenterol.
, vol.19
, pp. 2697-2703
-
-
Tang, P.1
Huang, H.2
Chang, J.3
Zhao, G.F.4
Lu, M.L.5
Wang, Y.6
-
36
-
-
84877775938
-
Upregulation of DLX2 confers a poor prognosis in glioblastoma patients by inducing a proliferative phenotype
-
Yan ZH, Bao ZS, Yan W, Liu YW, Zhang CB, Wang HJ, Feng Y, Wang YZ, Zhang W, You G, Zhang QG, Jiang T. Upregulation of DLX2 confers a poor prognosis in glioblastoma patients by inducing a proliferative phenotype. Curr Mol Med. 2013; 13:438-445.
-
(2013)
Curr Mol Med.
, vol.13
, pp. 438-445
-
-
Yan, Z.H.1
Bao, Z.S.2
Yan, W.3
Liu, Y.W.4
Zhang, C.B.5
Wang, H.J.6
Feng, Y.7
Wang, Y.Z.8
Zhang, W.9
You, G.10
Zhang, Q.G.11
Jiang, T.12
-
37
-
-
84923103896
-
Dlx-2 is implicated in TGF-beta-and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation
-
Lee SY, Jeon HM, Ju MK, Jeong EK, Kim CH, Yoo MA, Park HG, Han SI, Kang HS. Dlx-2 is implicated in TGF-beta-and Wnt-induced epithelial-mesenchymal, glycolytic switch, and mitochondrial repression by Snail activation. Int J Oncol. 2015; 46:1768-1780.
-
(2015)
Int J Oncol.
, vol.46
, pp. 1768-1780
-
-
Lee, S.Y.1
Jeon, H.M.2
Ju, M.K.3
Jeong, E.K.4
Kim, C.H.5
Yoo, M.A.6
Park, H.G.7
Han, S.I.8
Kang, H.S.9
-
38
-
-
33845209913
-
A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes
-
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N, Coppe JP, Tong F, Speed T, Spellman PT, DeVries S et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006; 10:515-527.
-
(2006)
Cancer Cell.
, vol.10
, pp. 515-527
-
-
Neve, R.M.1
Chin, K.2
Fridlyand, J.3
Yeh, J.4
Baehner, F.L.5
Fevr, T.6
Clark, L.7
Bayani, N.8
Coppe, J.P.9
Tong, F.10
Speed, T.11
Spellman, P.T.12
DeVries, S.13
-
39
-
-
84855729906
-
A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition
-
Kim NH, Kim HS, Li XY, Lee I, Choi HS, Kang SE, Cha SY, Ryu JK, Yoon D, Fearon ER, Rowe RG, Lee S, Maher CA et al. A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition. J Cell Biol. 2011; 195:417-433.
-
(2011)
J Cell Biol.
, vol.195
, pp. 417-433
-
-
Kim, N.H.1
Kim, H.S.2
Li, X.Y.3
Lee, I.4
Choi, H.S.5
Kang, S.E.6
Cha, S.Y.7
Ryu, J.K.8
Yoon, D.9
Fearon, E.R.10
Rowe, R.G.11
Lee, S.12
Maher, C.A.13
-
40
-
-
84893093252
-
Dealing with hunger: Metabolic stress responses in tumors
-
Reid MA, Kong M. Dealing with hunger: Metabolic stress responses in tumors. J Carcinog. 2013;12: 17.
-
(2013)
J Carcinog.
, vol.12
, pp. 17
-
-
Reid, M.A.1
Kong, M.2
-
41
-
-
84878177599
-
Coordinate transcriptional and translational repression of p53 by TGF-beta1 impairs the stress response
-
Lopez-Diaz FJ, Gascard P, Balakrishnan SK, Zhao J, Del Rincon SV, Spruck C, Tlsty TD, Emerson BM. Coordinate transcriptional and translational repression of p53 by TGF-beta1 impairs the stress response. Mol Cell. 2013; 50:552-564.
-
(2013)
Mol Cell.
, vol.50
, pp. 552-564
-
-
Lopez-Diaz, F.J.1
Gascard, P.2
Balakrishnan, S.K.3
Zhao, J.4
Del Rincon, S.V.5
Spruck, C.6
Tlsty, T.D.7
Emerson, B.M.8
-
42
-
-
84862768105
-
The NF-kappaB member p65 controls glutamine metabolism through miR-23a
-
Rathore MG, Saumet A, Rossi JF, de Bettignies C, Tempe D, Lecellier CH, Villalba M. The NF-kappaB member p65 controls glutamine metabolism through miR-23a. Int J Biochem Cell Biol. 2012; 44:1448-1456.
-
(2012)
Int J Biochem Cell Biol.
, vol.44
, pp. 1448-1456
-
-
Rathore, M.G.1
Saumet, A.2
Rossi, J.F.3
de Bettignies, C.4
Tempe, D.5
Lecellier, C.H.6
Villalba, M.7
-
43
-
-
84907485996
-
The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy
-
Corbet C, Draoui N, Polet F, Pinto A, Drozak X, Riant O, Feron O. The SIRT1/HIF2alpha axis drives reductive glutamine metabolism under chronic acidosis and alters tumor response to therapy. Cancer Res. 2014; 74:5507-5519.
-
(2014)
Cancer Res.
, vol.74
, pp. 5507-5519
-
-
Corbet, C.1
Draoui, N.2
Polet, F.3
Pinto, A.4
Drozak, X.5
Riant, O.6
Feron, O.7
-
44
-
-
84876838620
-
The B55alpha subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation
-
Reid MA, Wang WI, Rosales KR, Welliver MX, Pan M, Kong M. The B55alpha subunit of PP2A drives a p53-dependent metabolic adaptation to glutamine deprivation. Mol Cell. 2013; 50:200-211.
-
(2013)
Mol Cell.
, vol.50
, pp. 200-211
-
-
Reid, M.A.1
Wang, W.I.2
Rosales, K.R.3
Welliver, M.X.4
Pan, M.5
Kong, M.6
-
45
-
-
11844293427
-
P53 and prognosis: new insights and further complexity
-
Vousden KH, Prives C. P53 and prognosis: new insights and further complexity. Cell. 2005; 120:7-10.
-
(2005)
Cell.
, vol.120
, pp. 7-10
-
-
Vousden, K.H.1
Prives, C.2
-
46
-
-
79952283482
-
p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs
-
Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, Yu WH, Rehman SK, Hsu JL, Lee HH, Liu M, Chen CT, Yu D et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011; 13:317-323.
-
(2011)
Nat Cell Biol.
, vol.13
, pp. 317-323
-
-
Chang, C.J.1
Chao, C.H.2
Xia, W.3
Yang, J.Y.4
Xiong, Y.5
Li, C.W.6
Yu, W.H.7
Rehman, S.K.8
Hsu, J.L.9
Lee, H.H.10
Liu, M.11
Chen, C.T.12
Yu, D.13
-
47
-
-
84888875112
-
SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition
-
Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. Embo J. 2013; 32:3079-3095.
-
(2013)
Embo J.
, vol.32
, pp. 3079-3095
-
-
Hahn, S.1
Jackstadt, R.2
Siemens, H.3
Hunten, S.4
Hermeking, H.5
-
48
-
-
33751514601
-
A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells
-
Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J, Fearon ER, Weiss SJ. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006; 8:1398-1406.
-
(2006)
Nat Cell Biol.
, vol.8
, pp. 1398-1406
-
-
Yook, J.I.1
Li, X.Y.2
Ota, I.3
Hu, C.4
Kim, H.S.5
Kim, N.H.6
Cha, S.Y.7
Ryu, J.K.8
Choi, Y.J.9
Kim, J.10
Fearon, E.R.11
Weiss, S.J.12
-
49
-
-
84877979327
-
p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells
-
Kim NH, Cha YH, Kang SE, Lee Y, Lee I, Cha SY, Ryu JK, Na JM, Park C, Yoon HG, Park GJ, Yook JI, Kim HS. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013; 12:1578-1587.
-
(2013)
Cell Cycle.
, vol.12
, pp. 1578-1587
-
-
Kim, N.H.1
Cha, Y.H.2
Kang, S.E.3
Lee, Y.4
Lee, I.5
Cha, S.Y.6
Ryu, J.K.7
Na, J.M.8
Park, C.9
Yoon, H.G.10
Park, G.J.11
Yook, J.I.12
Kim, H.S.13
-
50
-
-
59049087460
-
Bidirectional transport of amino acids regulates mTOR and autophagy
-
Nicklin P, Bergman P, Zhang B, Triantafellow E, Wang H, Nyfeler B, Yang H, Hild M, Kung C, Wilson C, Myer VE, MacKeigan JP, Porter JA et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. 2009; 136:521-534.
-
(2009)
Cell.
, vol.136
, pp. 521-534
-
-
Nicklin, P.1
Bergman, P.2
Zhang, B.3
Triantafellow, E.4
Wang, H.5
Nyfeler, B.6
Yang, H.7
Hild, M.8
Kung, C.9
Wilson, C.10
Myer, V.E.11
MacKeigan, J.P.12
Porter, J.A.13
-
51
-
-
78649348967
-
Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
-
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell. 2010; 40:310-322.
-
(2010)
Mol Cell.
, vol.40
, pp. 310-322
-
-
Sengupta, S.1
Peterson, T.R.2
Sabatini, D.M.3
-
52
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, Hall MN. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012; 47:349-358.
-
(2012)
Mol Cell.
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
Hall, M.N.7
-
53
-
-
0023665208
-
Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis
-
Scorsone KA, Panniers R, Rowlands AG, Henshaw EC. Phosphorylation of eukaryotic initiation factor 2 during physiological stresses which affect protein synthesis. J Biol Chem. 1987; 262:14538-14543.
-
(1987)
J Biol Chem.
, vol.262
, pp. 14538-14543
-
-
Scorsone, K.A.1
Panniers, R.2
Rowlands, A.G.3
Henshaw, E.C.4
-
54
-
-
84869027086
-
ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation
-
Qing G, Li B, Vu A, Skuli N, Walton ZE, Liu X, Mayes PA, Wise DR, Thompson CB, Maris JM, Hogarty MD, Simon MC. ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell. 2012; 22:631-644.
-
(2012)
Cancer Cell.
, vol.22
, pp. 631-644
-
-
Qing, G.1
Li, B.2
Vu, A.3
Skuli, N.4
Walton, Z.E.5
Liu, X.6
Mayes, P.A.7
Wise, D.R.8
Thompson, C.B.9
Maris, J.M.10
Hogarty, M.D.11
Simon, M.C.12
-
55
-
-
34547587877
-
Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway
-
Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007; 178:437-451.
-
(2007)
J Cell Biol.
, vol.178
, pp. 437-451
-
-
Lamouille, S.1
Derynck, R.2
-
56
-
-
79955486858
-
mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways
-
Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M, Lee EY, Weiss HL, O'Connor KL, Gao T, Evers BM. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 2011; 71:3246-3256.
-
(2011)
Cancer Res.
, vol.71
, pp. 3246-3256
-
-
Gulhati, P.1
Bowen, K.A.2
Liu, J.3
Stevens, P.D.4
Rychahou, P.G.5
Chen, M.6
Lee, E.Y.7
Weiss, H.L.8
O'Connor, K.L.9
Gao, T.10
Evers, B.M.11
-
57
-
-
84862777192
-
The translational landscape of mTOR signalling steers cancer initiation and metastasis
-
Hsieh AC, Liu Y, Edlind MP, Ingolia NT, Janes MR, Sher A, Shi EY, Stumpf CR, Christensen C, Bonham MJ, Wang S, Ren P, Martin M et al. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature. 2012; 485:55-61.
-
(2012)
Nature.
, vol.485
, pp. 55-61
-
-
Hsieh, A.C.1
Liu, Y.2
Edlind, M.P.3
Ingolia, N.T.4
Janes, M.R.5
Sher, A.6
Shi, E.Y.7
Stumpf, C.R.8
Christensen, C.9
Bonham, M.J.10
Wang, S.11
Ren, P.12
Martin, M.13
-
58
-
-
84888345142
-
Genetic and pharmacologic inhibition of mTORC1 promotes EMT by a TGF-beta-independent mechanism
-
Mikaelian I, Malek M, Gadet R, Viallet J, Garcia A, Girard-Gagnepain A, Hesling C, Gillet G, Gonzalo P, Rimokh R, Billaud M. Genetic and pharmacologic inhibition of mTORC1 promotes EMT by a TGF-beta-independent mechanism. Cancer Res. 2013; 73:6621-6631.
-
(2013)
Cancer Res.
, vol.73
, pp. 6621-6631
-
-
Mikaelian, I.1
Malek, M.2
Gadet, R.3
Viallet, J.4
Garcia, A.5
Girard-Gagnepain, A.6
Hesling, C.7
Gillet, G.8
Gonzalo, P.9
Rimokh, R.10
Billaud, M.11
-
59
-
-
84906271182
-
Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail
-
Cai W, Ye Q, She QB. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget. 2014; 5: 6015-6027. doi: 10.18632/oncotarget.2109
-
(2014)
Oncotarget
, vol.5
, pp. 6015-6027
-
-
Cai, W.1
Ye, Q.2
She, Q.B.3
-
60
-
-
84887621878
-
Anoikis molecular pathways and its role in cancer progression
-
Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 2013; 1833:3481-3498.
-
(2013)
Biochim Biophys Acta.
, vol.1833
, pp. 3481-3498
-
-
Paoli, P.1
Giannoni, E.2
Chiarugi, P.3
-
61
-
-
84920135306
-
The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism
-
Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 2015; 28:156-164.
-
(2015)
Cancer Lett
, vol.28
, pp. 156-164
-
-
Lu, J.1
Tan, M.2
Cai, Q.3
-
62
-
-
16244377705
-
TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells
-
Yoon YS, Lee JH, Hwang SC, Choi KS, Yoon G. TGF beta1 induces prolonged mitochondrial ROS generation through decreased complex IV activity with senescent arrest in Mv1Lu cells. Oncogene. 2005; 24:1895-1903.
-
(2005)
Oncogene.
, vol.24
, pp. 1895-1903
-
-
Yoon, Y.S.1
Lee, J.H.2
Hwang, S.C.3
Choi, K.S.4
Yoon, G.5
-
63
-
-
0020606245
-
Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells
-
Sariban-Sohraby S, Magrath IT, Balaban RS. Comparison of energy metabolism in human normal and neoplastic (Burkitt's lymphoma) lymphoid cells. Cancer Res. 1983; 43:4662-4664.
-
(1983)
Cancer Res.
, vol.43
, pp. 4662-4664
-
-
Sariban-Sohraby, S.1
Magrath, I.T.2
Balaban, R.S.3
|