메뉴 건너뛰기




Volumn 49, Issue , 2016, Pages 68-75

The many roles of Notch signaling during vertebrate somitogenesis

Author keywords

Notch pathway; Segmentation clock; Somitogenesis

Indexed keywords

NOTCH RECEPTOR;

EID: 84958117778     PISSN: 10849521     EISSN: 10963634     Source Type: Journal    
DOI: 10.1016/j.semcdb.2014.11.010     Document Type: Review
Times cited : (43)

References (108)
  • 1
    • 34548838032 scopus 로고    scopus 로고
    • Amniote somite derivatives
    • Christ B., Huang R., Scaal M. Amniote somite derivatives. Dev Dyn 2007, 236:2382-2396.
    • (2007) Dev Dyn , vol.236 , pp. 2382-2396
    • Christ, B.1    Huang, R.2    Scaal, M.3
  • 4
    • 79957580977 scopus 로고    scopus 로고
    • Vertebrate segmentation: from cyclic gene networks to scoliosis
    • Pourquie O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 2011, 145:650-663.
    • (2011) Cell , vol.145 , pp. 650-663
    • Pourquie, O.1
  • 5
    • 69249215314 scopus 로고    scopus 로고
    • Developmental control of segment numbers in vertebrates
    • Gomez C., Pourquie O. Developmental control of segment numbers in vertebrates. J Exp Zool B: Mol Dev Evol 2009, 312:533-544.
    • (2009) J Exp Zool B: Mol Dev Evol , vol.312 , pp. 533-544
    • Gomez, C.1    Pourquie, O.2
  • 8
    • 0019404021 scopus 로고
    • The control of somitogenesis in mouse embryos
    • Tam P.P. The control of somitogenesis in mouse embryos. J Embryol Exp Morphol 1981, 65:103-128.
    • (1981) J Embryol Exp Morphol , vol.65 , pp. 103-128
    • Tam, P.P.1
  • 9
    • 0030840351 scopus 로고    scopus 로고
    • Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis
    • Palmeirim I., Henrique D., Ish-Horowicz D., Pourquie O. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 1997, 91:639-648.
    • (1997) Cell , vol.91 , pp. 639-648
    • Palmeirim, I.1    Henrique, D.2    Ish-Horowicz, D.3    Pourquie, O.4
  • 11
    • 34247125714 scopus 로고    scopus 로고
    • Identification of oscillatory genes in somitogenesis from functional genomic analysis of a human mesenchymal stem cell model
    • William D.A., Saitta B., Gibson J.D., Traas J., Markov V., Gonzalez D.M., et al. Identification of oscillatory genes in somitogenesis from functional genomic analysis of a human mesenchymal stem cell model. Dev Biol 2007, 305:172-186.
    • (2007) Dev Biol , vol.305 , pp. 172-186
    • William, D.A.1    Saitta, B.2    Gibson, J.D.3    Traas, J.4    Markov, V.5    Gonzalez, D.M.6
  • 12
    • 84865609774 scopus 로고    scopus 로고
    • The mechanism of somite formation in mice
    • Saga Y. The mechanism of somite formation in mice. Curr Opin Genet Dev 2012, 22:331-338.
    • (2012) Curr Opin Genet Dev , vol.22 , pp. 331-338
    • Saga, Y.1
  • 13
    • 33845791041 scopus 로고    scopus 로고
    • The eventful somite: patterning, fate determination and cell division in the somite
    • Yusuf F., Brand-Saberi B. The eventful somite: patterning, fate determination and cell division in the somite. Anat Embryol (Berl) 2006, 211(Suppl. 1):21-30.
    • (2006) Anat Embryol (Berl) , vol.211 , pp. 21-30
    • Yusuf, F.1    Brand-Saberi, B.2
  • 14
    • 0016658676 scopus 로고
    • Control of somite number during morphogenesis of a vertebrate Xenopus laevis
    • Cooke J. Control of somite number during morphogenesis of a vertebrate Xenopus laevis. Nature 1975, 254:196-199.
    • (1975) Nature , vol.254 , pp. 196-199
    • Cooke, J.1
  • 15
    • 0017122064 scopus 로고
    • A clock and wavefront model for control of the number of repeated structures during animal morphogenesis
    • Cooke J., Zeeman E.C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 1976, 58:455-476.
    • (1976) J Theor Biol , vol.58 , pp. 455-476
    • Cooke, J.1    Zeeman, E.C.2
  • 16
    • 84883445252 scopus 로고    scopus 로고
    • A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles
    • Kusumi K., May C.M., Eckalbar W.L. A large-scale view of the evolution of amniote development: insights from somitogenesis in reptiles. Curr Opin Genet Dev 2013, 23:491-497.
    • (2013) Curr Opin Genet Dev , vol.23 , pp. 491-497
    • Kusumi, K.1    May, C.M.2    Eckalbar, W.L.3
  • 17
    • 21444449061 scopus 로고    scopus 로고
    • Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact
    • Maroto M., Dale J.K., Dequeant M.L., Petit A.C., Pourquie O. Synchronised cycling gene oscillations in presomitic mesoderm cells require cell-cell contact. Int J Dev Biol 2005, 49:309-315.
    • (2005) Int J Dev Biol , vol.49 , pp. 309-315
    • Maroto, M.1    Dale, J.K.2    Dequeant, M.L.3    Petit, A.C.4    Pourquie, O.5
  • 18
    • 31944447678 scopus 로고    scopus 로고
    • Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells
    • Masamizu Y., Ohtsuka T., Takashima Y., Nagahara H., Takenaka Y., Yoshikawa K., et al. Real-time imaging of the somite segmentation clock: revelation of unstable oscillators in the individual presomitic mesoderm cells. Proc Natl Acad Sci USA 2006, 103:1313-1318.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 1313-1318
    • Masamizu, Y.1    Ohtsuka, T.2    Takashima, Y.3    Nagahara, H.4    Takenaka, Y.5    Yoshikawa, K.6
  • 20
    • 0041677612 scopus 로고    scopus 로고
    • Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator
    • Lewis J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 2003, 13:1398-1408.
    • (2003) Curr Biol , vol.13 , pp. 1398-1408
    • Lewis, J.1
  • 21
    • 34848818078 scopus 로고    scopus 로고
    • Synchrony dynamics during initiation, failure, and rescue of the segmentation clock
    • Riedel-Kruse I.H., Muller C., Oates A.C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 2007, 317:1911-1915.
    • (2007) Science , vol.317 , pp. 1911-1915
    • Riedel-Kruse, I.H.1    Muller, C.2    Oates, A.C.3
  • 23
    • 33745000977 scopus 로고    scopus 로고
    • Noise-resistant and synchronized oscillation of the segmentation clock
    • Horikawa K., Ishimatsu K., Yoshimoto E., Kondo S., Takeda H. Noise-resistant and synchronized oscillation of the segmentation clock. Nature 2006, 441:719-723.
    • (2006) Nature , vol.441 , pp. 719-723
    • Horikawa, K.1    Ishimatsu, K.2    Yoshimoto, E.3    Kondo, S.4    Takeda, H.5
  • 25
    • 84865241459 scopus 로고    scopus 로고
    • The Notch signalling system: recent insights into the complexity of a conserved pathway
    • Guruharsha K.G., Kankel M.W., Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 2012, 13:654-666.
    • (2012) Nat Rev Genet , vol.13 , pp. 654-666
    • Guruharsha, K.G.1    Kankel, M.W.2    Artavanis-Tsakonas, S.3
  • 28
    • 0033535508 scopus 로고    scopus 로고
    • Presenilin is required for activity and nuclear access of Notch in Drosophila
    • Struhl G., Greenwald I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 1999, 398:522-525.
    • (1999) Nature , vol.398 , pp. 522-525
    • Struhl, G.1    Greenwald, I.2
  • 29
    • 0033868818 scopus 로고    scopus 로고
    • A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE
    • Brou C., Logeat F., Gupta N., Bessia C., LeBail O., Doedens J.R., et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 2000, 5:207-216.
    • (2000) Mol Cell , vol.5 , pp. 207-216
    • Brou, C.1    Logeat, F.2    Gupta, N.3    Bessia, C.4    LeBail, O.5    Doedens, J.R.6
  • 30
    • 64249172203 scopus 로고    scopus 로고
    • The canonical Notch signaling pathway: unfolding the activation mechanism
    • Kopan R., Ilagan M.X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009, 137:216-233.
    • (2009) Cell , vol.137 , pp. 216-233
    • Kopan, R.1    Ilagan, M.X.2
  • 31
    • 77956309916 scopus 로고    scopus 로고
    • Notch targets and their regulation
    • Bray S., Bernard F. Notch targets and their regulation. Curr Top Dev Biol 2010, 92:253-275.
    • (2010) Curr Top Dev Biol , vol.92 , pp. 253-275
    • Bray, S.1    Bernard, F.2
  • 32
    • 59649099685 scopus 로고    scopus 로고
    • Role of unusual O-glycans in intercellular signaling
    • Luther K.B., Haltiwanger R.S. Role of unusual O-glycans in intercellular signaling. Int J Biochem Cell Biol 2009, 41:1011-1024.
    • (2009) Int J Biochem Cell Biol , vol.41 , pp. 1011-1024
    • Luther, K.B.1    Haltiwanger, R.S.2
  • 35
    • 12944255642 scopus 로고    scopus 로고
    • Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1
    • Yang L.T., Nichols J.T., Yao C., Manilay J.O., Robey E.A., Weinmaster G. Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cell 2005, 16:927-942.
    • (2005) Mol Biol Cell , vol.16 , pp. 927-942
    • Yang, L.T.1    Nichols, J.T.2    Yao, C.3    Manilay, J.O.4    Robey, E.A.5    Weinmaster, G.6
  • 36
  • 38
    • 84895760653 scopus 로고    scopus 로고
    • O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function
    • Muller J., Rana N.A., Serth K., Kakuda S., Haltiwanger R.S., Gossler A. O-fucosylation of the notch ligand mDLL1 by POFUT1 is dispensable for ligand function. PLoS ONE 2014, 9:88571.
    • (2014) PLoS ONE , vol.9 , pp. 88571
    • Muller, J.1    Rana, N.A.2    Serth, K.3    Kakuda, S.4    Haltiwanger, R.S.5    Gossler, A.6
  • 39
    • 0028989016 scopus 로고
    • Notch1 is required for the coordinate segmentation of somites
    • Conlon R.A., Reaume A.G., Rossant J. Notch1 is required for the coordinate segmentation of somites. Development 1995, 121:1533-1545.
    • (1995) Development , vol.121 , pp. 1533-1545
    • Conlon, R.A.1    Reaume, A.G.2    Rossant, J.3
  • 40
    • 0035887251 scopus 로고    scopus 로고
    • Dynamic expression and essential functions of Hes7 in somite segmentation
    • Bessho Y., Sakata R., Komatsu S., Shiota K., Yamada S., Kageyama R. Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev 2001, 15:2642-2647.
    • (2001) Genes Dev , vol.15 , pp. 2642-2647
    • Bessho, Y.1    Sakata, R.2    Komatsu, S.3    Shiota, K.4    Yamada, S.5    Kageyama, R.6
  • 41
    • 0032560814 scopus 로고    scopus 로고
    • Lunatic fringe is an essential mediator of somite segmentation and patterning
    • Evrard Y.A., Lun Y., Aulehla A., Gan L., Johnson R.L. Lunatic fringe is an essential mediator of somite segmentation and patterning. Nature 1998, 394:377-381.
    • (1998) Nature , vol.394 , pp. 377-381
    • Evrard, Y.A.1    Lun, Y.2    Aulehla, A.3    Gan, L.4    Johnson, R.L.5
  • 42
    • 17344368196 scopus 로고    scopus 로고
    • The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries
    • Kusumi K., Sun E.S., Kerrebrock A.W., Bronson R.T., Chi D.C., Bulotsky M.S., et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet 1998, 19:274-278.
    • (1998) Nat Genet , vol.19 , pp. 274-278
    • Kusumi, K.1    Sun, E.S.2    Kerrebrock, A.W.3    Bronson, R.T.4    Chi, D.C.5    Bulotsky, M.S.6
  • 43
    • 42149133151 scopus 로고    scopus 로고
    • Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton
    • Shifley E.T., Vanhorn K.M., Perez-Balaguer A., Franklin J.D., Weinstein M., Cole S.E. Oscillatory lunatic fringe activity is crucial for segmentation of the anterior but not posterior skeleton. Development 2008, 135:899-908.
    • (2008) Development , vol.135 , pp. 899-908
    • Shifley, E.T.1    Vanhorn, K.M.2    Perez-Balaguer, A.3    Franklin, J.D.4    Weinstein, M.5    Cole, S.E.6
  • 44
    • 29244458644 scopus 로고    scopus 로고
    • Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype
    • Sparrow D.B., Chapman G., Wouters M.A., Whittock N.V., Ellard S., Fatkin D., et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 2006, 78:28-37.
    • (2006) Am J Hum Genet , vol.78 , pp. 28-37
    • Sparrow, D.B.1    Chapman, G.2    Wouters, M.A.3    Whittock, N.V.4    Ellard, S.5    Fatkin, D.6
  • 45
    • 0034028904 scopus 로고    scopus 로고
    • Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis
    • Bulman M.P., Kusumi K., Frayling T.M., McKeown C., Garrett C., Lander E.S., et al. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 2000, 24:438-441.
    • (2000) Nat Genet , vol.24 , pp. 438-441
    • Bulman, M.P.1    Kusumi, K.2    Frayling, T.M.3    McKeown, C.4    Garrett, C.5    Lander, E.S.6
  • 46
    • 56049123626 scopus 로고    scopus 로고
    • Mutation of hairy-and-enhancer-of-split-in humans causes spondylocostal dysostosis
    • Sparrow D.B., Guillen-Navarro E., Fatkin D., Dunwoodie S.L. Mutation of hairy-and-enhancer-of-split-in humans causes spondylocostal dysostosis. Hum Mol Genet 2008, 17:3761-3766.
    • (2008) Hum Mol Genet , vol.17 , pp. 3761-3766
    • Sparrow, D.B.1    Guillen-Navarro, E.2    Fatkin, D.3    Dunwoodie, S.L.4
  • 47
    • 0036332729 scopus 로고    scopus 로고
    • Her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis
    • Holley S.A., Julich D., Rauch G.J., Geisler R., Nusslein-Volhard C. her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development 2002, 129:1175-1183.
    • (2002) Development , vol.129 , pp. 1175-1183
    • Holley, S.A.1    Julich, D.2    Rauch, G.J.3    Geisler, R.4    Nusslein-Volhard, C.5
  • 48
    • 0036679340 scopus 로고    scopus 로고
    • Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries
    • Henry C.A., Urban M.K., Dill K.K., Merlie J.P., Page M.F., Kimmel C.B., et al. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 2002, 129:3693-3704.
    • (2002) Development , vol.129 , pp. 3693-3704
    • Henry, C.A.1    Urban, M.K.2    Dill, K.K.3    Merlie, J.P.4    Page, M.F.5    Kimmel, C.B.6
  • 49
    • 34250316233 scopus 로고    scopus 로고
    • Setting the tempo in development: an investigation of the zebrafish somite clock mechanism
    • Giudicelli F., Ozbudak E.M., Wright G.J., Lewis J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol 2007, 5:e150.
    • (2007) PLoS Biol , vol.5 , pp. e150
    • Giudicelli, F.1    Ozbudak, E.M.2    Wright, G.J.3    Lewis, J.4
  • 50
    • 0038046204 scopus 로고    scopus 로고
    • Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock
    • Bessho Y., Hirata H., Masamizu Y., Kageyama R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes Dev 2003, 17:1451-1456.
    • (2003) Genes Dev , vol.17 , pp. 1451-1456
    • Bessho, Y.1    Hirata, H.2    Masamizu, Y.3    Kageyama, R.4
  • 51
    • 30944454348 scopus 로고    scopus 로고
    • Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis
    • Chen J., Kang L., Zhang N. Negative feedback loop formed by Lunatic fringe and Hes7 controls their oscillatory expression during somitogenesis. Genesis 2005, 43:196-204.
    • (2005) Genesis , vol.43 , pp. 196-204
    • Chen, J.1    Kang, L.2    Zhang, N.3
  • 52
    • 34247863926 scopus 로고    scopus 로고
    • Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC
    • Mara A., Schroeder J., Chalouni C., Holley S.A. Priming, initiation and synchronization of the segmentation clock by deltaD and deltaC. Nat Cell Biol 2007, 9:523-530.
    • (2007) Nat Cell Biol , vol.9 , pp. 523-530
    • Mara, A.1    Schroeder, J.2    Chalouni, C.3    Holley, S.A.4
  • 53
    • 0034234968 scopus 로고    scopus 로고
    • Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity
    • Holley S.A., Geisler R., Nusslein-Volhard C. Control of her1 expression during zebrafish somitogenesis by a delta-dependent oscillator and an independent wave-front activity. Genes Dev 2000, 14:1678-1690.
    • (2000) Genes Dev , vol.14 , pp. 1678-1690
    • Holley, S.A.1    Geisler, R.2    Nusslein-Volhard, C.3
  • 55
    • 84898767794 scopus 로고    scopus 로고
    • Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock
    • Soza-Ried C., Ozturk E., Ish-Horowicz D., Lewis J. Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock. Development 2014, 141:1780-1788.
    • (2014) Development , vol.141 , pp. 1780-1788
    • Soza-Ried, C.1    Ozturk, E.2    Ish-Horowicz, D.3    Lewis, J.4
  • 56
    • 84869061827 scopus 로고    scopus 로고
    • Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics
    • Delaune E.A., Francois P., Shih N.P., Amacher S.L. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev Cell 2012, 23:995-1005.
    • (2012) Dev Cell , vol.23 , pp. 995-1005
    • Delaune, E.A.1    Francois, P.2    Shih, N.P.3    Amacher, S.L.4
  • 57
    • 17844390391 scopus 로고    scopus 로고
    • Analysis of Notch function in presomitic mesoderm suggests a gamma-secretase-independent role for presenilins in somite differentiation
    • Huppert S.S., Ilagan M.X., De Strooper B., Kopan R. Analysis of Notch function in presomitic mesoderm suggests a gamma-secretase-independent role for presenilins in somite differentiation. Dev Cell 2005, 8:677-688.
    • (2005) Dev Cell , vol.8 , pp. 677-688
    • Huppert, S.S.1    Ilagan, M.X.2    De Strooper, B.3    Kopan, R.4
  • 58
    • 19644371990 scopus 로고    scopus 로고
    • The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity
    • Morimoto M., Takahashi Y., Endo M., Saga Y. The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature 2005, 435:354-359.
    • (2005) Nature , vol.435 , pp. 354-359
    • Morimoto, M.1    Takahashi, Y.2    Endo, M.3    Saga, Y.4
  • 59
    • 34547418278 scopus 로고    scopus 로고
    • The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock
    • Niwa Y., Masamizu Y., Liu T., Nakayama R., Deng C.X., Kageyama R. The initiation and propagation of Hes7 oscillation are cooperatively regulated by Fgf and notch signaling in the somite segmentation clock. Dev Cell 2007, 13:298-304.
    • (2007) Dev Cell , vol.13 , pp. 298-304
    • Niwa, Y.1    Masamizu, Y.2    Liu, T.3    Nakayama, R.4    Deng, C.X.5    Kageyama, R.6
  • 60
    • 50049093489 scopus 로고    scopus 로고
    • Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation
    • Feller J., Schneider A., Schuster-Gossler K., Gossler A. Noncyclic Notch activity in the presomitic mesoderm demonstrates uncoupling of somite compartmentalization and boundary formation. Genes Dev 2008, 22:2166-2171.
    • (2008) Genes Dev , vol.22 , pp. 2166-2171
    • Feller, J.1    Schneider, A.2    Schuster-Gossler, K.3    Gossler, A.4
  • 61
    • 25444518441 scopus 로고    scopus 로고
    • Involvement of SIP1 in positioning of somite boundaries in the mouse embryo
    • Maruhashi M., Putte V.D., Huylebroeck D., Kondoh H., Higashi Y. Involvement of SIP1 in positioning of somite boundaries in the mouse embryo. Dev Dyn 2005, 234:332-338.
    • (2005) Dev Dyn , vol.234 , pp. 332-338
    • Maruhashi, M.1    Putte, V.D.2    Huylebroeck, D.3    Kondoh, H.4    Higashi, Y.5
  • 62
    • 0032560766 scopus 로고    scopus 로고
    • Defects in somite formation in lunatic fringe-deficient mice
    • Zhang N., Gridley T. Defects in somite formation in lunatic fringe-deficient mice. Nature 1998, 394:374-377.
    • (1998) Nature , vol.394 , pp. 374-377
    • Zhang, N.1    Gridley, T.2
  • 63
    • 0037380655 scopus 로고    scopus 로고
    • Transcriptional oscillation of lunatic fringe is essential for somitogenesis
    • Serth K., Schuster-Gossler K., Cordes R., Gossler A. Transcriptional oscillation of lunatic fringe is essential for somitogenesis. Genes Dev 2003, 17:912-925.
    • (2003) Genes Dev , vol.17 , pp. 912-925
    • Serth, K.1    Schuster-Gossler, K.2    Cordes, R.3    Gossler, A.4
  • 64
    • 0037448536 scopus 로고    scopus 로고
    • Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock
    • Dale J.K., Maroto M., Dequeant M.L., Malapert P., McGrew M., Pourquie O. Periodic notch inhibition by lunatic fringe underlies the chick segmentation clock. Nature 2003, 421:275-278.
    • (2003) Nature , vol.421 , pp. 275-278
    • Dale, J.K.1    Maroto, M.2    Dequeant, M.L.3    Malapert, P.4    McGrew, M.5    Pourquie, O.6
  • 65
    • 0036065035 scopus 로고    scopus 로고
    • Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis
    • Cole S.E., Levorse J.M., Tilghman S.M., Vogt T.F. Clock regulatory elements control cyclic expression of Lunatic fringe during somitogenesis. Dev Cell 2002, 3:75-84.
    • (2002) Dev Cell , vol.3 , pp. 75-84
    • Cole, S.E.1    Levorse, J.M.2    Tilghman, S.M.3    Vogt, T.F.4
  • 66
    • 0036065333 scopus 로고    scopus 로고
    • Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling
    • Morales A.V., Yasuda Y., Ish-Horowicz D. Periodic Lunatic fringe expression is controlled during segmentation by a cyclic transcriptional enhancer responsive to notch signaling. Dev Cell 2002, 3:63-74.
    • (2002) Dev Cell , vol.3 , pp. 63-74
    • Morales, A.V.1    Yasuda, Y.2    Ish-Horowicz, D.3
  • 67
    • 0033104404 scopus 로고    scopus 로고
    • Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation
    • Aulehla A., Johnson R.L. Dynamic expression of lunatic fringe suggests a link between notch signaling and an autonomous cellular oscillator driving somite segmentation. Dev Biol 1999, 207:49-61.
    • (1999) Dev Biol , vol.207 , pp. 49-61
    • Aulehla, A.1    Johnson, R.L.2
  • 68
    • 77951224757 scopus 로고    scopus 로고
    • The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite
    • Oginuma M., Takahashi Y., Kitajima S., Kiso M., Kanno J., Kimura A., et al. The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite. Development 2010, 137:1515-1522.
    • (2010) Development , vol.137 , pp. 1515-1522
    • Oginuma, M.1    Takahashi, Y.2    Kitajima, S.3    Kiso, M.4    Kanno, J.5    Kimura, A.6
  • 69
    • 84869422729 scopus 로고    scopus 로고
    • Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling
    • Okubo Y., Sugawara T., Abe-Koduka N., Kanno J., Kimura A., Saga Y. Lfng regulates the synchronized oscillation of the mouse segmentation clock via trans-repression of Notch signalling. Nat Commun 2012, 3:1141.
    • (2012) Nat Commun , vol.3 , pp. 1141
    • Okubo, Y.1    Sugawara, T.2    Abe-Koduka, N.3    Kanno, J.4    Kimura, A.5    Saga, Y.6
  • 70
    • 79958056964 scopus 로고    scopus 로고
    • Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis
    • Niwa Y., Shimojo H., Isomura A., Gonzalez A., Miyachi H., Kageyama R. Different types of oscillations in Notch and Fgf signaling regulate the spatiotemporal periodicity of somitogenesis. Genes Dev 2011, 25:1115-1120.
    • (2011) Genes Dev , vol.25 , pp. 1115-1120
    • Niwa, Y.1    Shimojo, H.2    Isomura, A.3    Gonzalez, A.4    Miyachi, H.5    Kageyama, R.6
  • 71
    • 70349682625 scopus 로고    scopus 로고
    • Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites
    • Ferjentsik Z., Hayashi S., Dale J.K., Bessho Y., Herreman A., De Strooper B., et al. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genetics 2009, 5:e1000662.
    • (2009) PLoS Genetics , vol.5 , pp. e1000662
    • Ferjentsik, Z.1    Hayashi, S.2    Dale, J.K.3    Bessho, Y.4    Herreman, A.5    De Strooper, B.6
  • 72
    • 84895930030 scopus 로고    scopus 로고
    • Posterior skeletal development and the segmentation clock period are sensitive to Lfng dosage during somitogenesis
    • Williams D.R., Shifley E.T., Lather J.D., Cole S.E. Posterior skeletal development and the segmentation clock period are sensitive to Lfng dosage during somitogenesis. Dev Biol 2014, 388:159-169.
    • (2014) Dev Biol , vol.388 , pp. 159-169
    • Williams, D.R.1    Shifley, E.T.2    Lather, J.D.3    Cole, S.E.4
  • 73
    • 33845444174 scopus 로고    scopus 로고
    • A complex oscillating network of signaling genes underlies the mouse segmentation clock
    • Dequeant M.L., Glynn E., Gaudenz K., Wahl M., Chen J., Mushegian A., et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 2006, 314:1595-1598.
    • (2006) Science , vol.314 , pp. 1595-1598
    • Dequeant, M.L.1    Glynn, E.2    Gaudenz, K.3    Wahl, M.4    Chen, J.5    Mushegian, A.6
  • 74
  • 76
    • 84887466041 scopus 로고    scopus 로고
    • Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes
    • Hoyle N.P., Ish-Horowicz D. Transcript processing and export kinetics are rate-limiting steps in expressing vertebrate segmentation clock genes. Proc Natl Acad Sci USA 2013, 110:E4316-E4324.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E4316-E4324
    • Hoyle, N.P.1    Ish-Horowicz, D.2
  • 77
    • 84873152971 scopus 로고    scopus 로고
    • Accelerating the tempo of the segmentation clock by reducing the number of introns in the hes7 gene
    • Harima Y., Takashima Y., Ueda Y., Ohtsuka T., Kageyama R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the hes7 gene. Cell Rep 2013, 3:1-7.
    • (2013) Cell Rep , vol.3 , pp. 1-7
    • Harima, Y.1    Takashima, Y.2    Ueda, Y.3    Ohtsuka, T.4    Kageyama, R.5
  • 79
    • 38349016564 scopus 로고    scopus 로고
    • Modelling periodic oscillations during somitogenesis
    • Feng P., Navaratna M. Modelling periodic oscillations during somitogenesis. Math Biosci Eng 2007, 4:661-673.
    • (2007) Math Biosci Eng , vol.4 , pp. 661-673
    • Feng, P.1    Navaratna, M.2
  • 80
    • 84891834037 scopus 로고    scopus 로고
    • 3'-UTR-dependent regulation of mRNA turnover is critical for differential distribution patterns of cyclic gene mRNAs
    • Nitanda Y., Matsui T., Matta T., Higami A., Kohno K., Nakahata Y., et al. 3'-UTR-dependent regulation of mRNA turnover is critical for differential distribution patterns of cyclic gene mRNAs. FEBS J 2014, 281:146-156.
    • (2014) FEBS J , vol.281 , pp. 146-156
    • Nitanda, Y.1    Matsui, T.2    Matta, T.3    Higami, A.4    Kohno, K.5    Nakahata, Y.6
  • 81
    • 84875249426 scopus 로고    scopus 로고
    • Mir-125a-5p-mediated regulation of Lfng is essential for the avian segmentation clock
    • Riley M.F., Bochter M.S., Wahi K., Nuovo G.J., Cole S.E. Mir-125a-5p-mediated regulation of Lfng is essential for the avian segmentation clock. Dev Cell 2013, 24:554-561.
    • (2013) Dev Cell , vol.24 , pp. 554-561
    • Riley, M.F.1    Bochter, M.S.2    Wahi, K.3    Nuovo, G.J.4    Cole, S.E.5
  • 82
    • 3042842911 scopus 로고    scopus 로고
    • Instability of Hes7 protein is crucial for the somite segmentation clock
    • Hirata H., Bessho Y., Kokubu H., Masamizu Y., Yamada S., Lewis J., et al. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat Genet 2004, 36:750-754.
    • (2004) Nat Genet , vol.36 , pp. 750-754
    • Hirata, H.1    Bessho, Y.2    Kokubu, H.3    Masamizu, Y.4    Yamada, S.5    Lewis, J.6
  • 83
    • 84856165921 scopus 로고    scopus 로고
    • Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock
    • Oates A.C., Morelli L.G., Ares S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 2012, 139:625-639.
    • (2012) Development , vol.139 , pp. 625-639
    • Oates, A.C.1    Morelli, L.G.2    Ares, S.3
  • 84
    • 0037344080 scopus 로고    scopus 로고
    • Wnt3a plays a major role in the segmentation clock controlling somitogenesis
    • Aulehla A., Wehrle C., Brand-Saberi B., Kemler R., Gossler A., Kanzler B., et al. Wnt3a plays a major role in the segmentation clock controlling somitogenesis. Dev Cell 2003, 4:395-406.
    • (2003) Dev Cell , vol.4 , pp. 395-406
    • Aulehla, A.1    Wehrle, C.2    Brand-Saberi, B.3    Kemler, R.4    Gossler, A.5    Kanzler, B.6
  • 85
    • 0842264188 scopus 로고    scopus 로고
    • Fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo
    • Dubrulle J., Pourquie O. fgf8 mRNA decay establishes a gradient that couples axial elongation to patterning in the vertebrate embryo. Nature 2004, 427:419-422.
    • (2004) Nature , vol.427 , pp. 419-422
    • Dubrulle, J.1    Pourquie, O.2
  • 86
    • 23844468774 scopus 로고    scopus 로고
    • Control of the segmentation process by graded MAPK/ERK activation in the chick embryo
    • Delfini M.C., Dubrulle J., Malapert P., Chal J., Pourquie O. Control of the segmentation process by graded MAPK/ERK activation in the chick embryo. Proc Natl Acad Sci USA 2005, 102:11343-11348.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 11343-11348
    • Delfini, M.C.1    Dubrulle, J.2    Malapert, P.3    Chal, J.4    Pourquie, O.5
  • 87
    • 0141862018 scopus 로고    scopus 로고
    • FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension
    • Diez del Corral R., Olivera-Martinez I., Goriely A., Gale E., Maden M., Storey K., et al. FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and segmentation during body axis extension. Neuron 2003, 40:65-79.
    • (2003) Neuron , vol.40 , pp. 65-79
    • Diez del Corral, R.1    Olivera-Martinez, I.2    Goriely, A.3    Gale, E.4    Maden, M.5    Storey, K.6
  • 88
    • 38849137768 scopus 로고    scopus 로고
    • A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation
    • Aulehla A., Wiegraebe W., Baubet V., Wahl M.B., Deng C., Taketo M., et al. A beta-catenin gradient links the clock and wavefront systems in mouse embryo segmentation. Nat Cell Biol 2008, 10:186-193.
    • (2008) Nat Cell Biol , vol.10 , pp. 186-193
    • Aulehla, A.1    Wiegraebe, W.2    Baubet, V.3    Wahl, M.B.4    Deng, C.5    Taketo, M.6
  • 89
    • 38849171709 scopus 로고    scopus 로고
    • Wnt3a/-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation
    • Dunty W.C., Biris K.K., Chalamalasetty R.B., Taketo M.M., Lewandoski M., Yamaguchi T.P. Wnt3a/-catenin signaling controls posterior body development by coordinating mesoderm formation and segmentation. Development 2008, 135:85-94.
    • (2008) Development , vol.135 , pp. 85-94
    • Dunty, W.C.1    Biris, K.K.2    Chalamalasetty, R.B.3    Taketo, M.M.4    Lewandoski, M.5    Yamaguchi, T.P.6
  • 91
    • 0035958586 scopus 로고    scopus 로고
    • FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation
    • Dubrulle J., McGrew M.J., Pourquie O. FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 2001, 106:219-232.
    • (2001) Cell , vol.106 , pp. 219-232
    • Dubrulle, J.1    McGrew, M.J.2    Pourquie, O.3
  • 92
    • 79951680614 scopus 로고    scopus 로고
    • FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis
    • Naiche L.A., Holder N., Lewandoski M. FGF4 and FGF8 comprise the wavefront activity that controls somitogenesis. Proc Natl Acad Sci USA 2011, 108:4018-4023.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 4018-4023
    • Naiche, L.A.1    Holder, N.2    Lewandoski, M.3
  • 93
    • 18844427286 scopus 로고    scopus 로고
    • Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites
    • Kawamura A., Koshida S., Hijikata H., Sakaguchi T., Kondoh H., Takada S. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev 2005, 19:1156-1161.
    • (2005) Genes Dev , vol.19 , pp. 1156-1161
    • Kawamura, A.1    Koshida, S.2    Hijikata, H.3    Sakaguchi, T.4    Kondoh, H.5    Takada, S.6
  • 94
    • 84875566370 scopus 로고    scopus 로고
    • Topology and dynamics of the zebrafish segmentation clock core circuit
    • Schroter C., Ares S., Morelli L.G., Isakova A., Hens K., Soroldoni D., et al. Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol 2012, 10:e1001364.
    • (2012) PLoS Biol , vol.10 , pp. e1001364
    • Schroter, C.1    Ares, S.2    Morelli, L.G.3    Isakova, A.4    Hens, K.5    Soroldoni, D.6
  • 95
    • 84902532362 scopus 로고    scopus 로고
    • Modeling the zebrafish segmentation clock's gene regulatory network constrained by expression data suggests evolutionary transitions between oscillating and nonoscillating transcription
    • Schwendinger-Schreck J., Kang Y., Holley S.A. Modeling the zebrafish segmentation clock's gene regulatory network constrained by expression data suggests evolutionary transitions between oscillating and nonoscillating transcription. Genetics 2014, 197:725-738.
    • (2014) Genetics , vol.197 , pp. 725-738
    • Schwendinger-Schreck, J.1    Kang, Y.2    Holley, S.A.3
  • 96
    • 79957538412 scopus 로고    scopus 로고
    • Segment number and axial identity in a segmentation clock period mutant
    • Schroter C., Oates A.C. Segment number and axial identity in a segmentation clock period mutant. Curr Biol 2010, 20:1254-1258.
    • (2010) Curr Biol , vol.20 , pp. 1254-1258
    • Schroter, C.1    Oates, A.C.2
  • 97
    • 0034449141 scopus 로고    scopus 로고
    • Mesp1 expression is the earliest sign of cardiovascular development
    • Saga Y., Kitajima S., Miyagawa-Tomita S. Mesp1 expression is the earliest sign of cardiovascular development. Trends Cardiovasc Med 2000, 10:345-352.
    • (2000) Trends Cardiovasc Med , vol.10 , pp. 345-352
    • Saga, Y.1    Kitajima, S.2    Miyagawa-Tomita, S.3
  • 98
    • 0034425701 scopus 로고    scopus 로고
    • Mesp2 initiates somite segmentation through the Notch signalling pathway
    • Takahashi Y., Koizumi K., Takagi A., Kitajima S., Inoue T., Koseki H., et al. Mesp2 initiates somite segmentation through the Notch signalling pathway. Nat Genet 2000, 25:390-396.
    • (2000) Nat Genet , vol.25 , pp. 390-396
    • Takahashi, Y.1    Koizumi, K.2    Takagi, A.3    Kitajima, S.4    Inoue, T.5    Koseki, H.6
  • 100
    • 58149343855 scopus 로고    scopus 로고
    • Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2
    • Yasuhiko Y., Kitajima S., Takahashi Y., Oginuma M., Kagiwada H., Kanno J., et al. Functional importance of evolutionally conserved Tbx6 binding sites in the presomitic mesoderm-specific enhancer of Mesp2. Development 2008, 135:3511-3519.
    • (2008) Development , vol.135 , pp. 3511-3519
    • Yasuhiko, Y.1    Kitajima, S.2    Takahashi, Y.3    Oginuma, M.4    Kagiwada, H.5    Kanno, J.6
  • 101
    • 50649117174 scopus 로고    scopus 로고
    • Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis
    • Oginuma M., Niwa Y., Chapman D.L., Saga Y. Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis. Development 2008, 135:2555-2562.
    • (2008) Development , vol.135 , pp. 2555-2562
    • Oginuma, M.1    Niwa, Y.2    Chapman, D.L.3    Saga, Y.4
  • 102
    • 34248582613 scopus 로고    scopus 로고
    • The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite
    • Morimoto M., Sasaki N., Oginuma M., Kiso M., Igarashi K., Aizaki K., et al. The negative regulation of Mesp2 by mouse Ripply2 is required to establish the rostro-caudal patterning within a somite. Development 2007, 134:1561-1569.
    • (2007) Development , vol.134 , pp. 1561-1569
    • Morimoto, M.1    Sasaki, N.2    Oginuma, M.3    Kiso, M.4    Igarashi, K.5    Aizaki, K.6
  • 103
    • 77952956168 scopus 로고    scopus 로고
    • Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite
    • Takahashi J., Ohbayashi A., Oginuma M., Saito D., Mochizuki A., Saga Y., et al. Analysis of Ripply1/2-deficient mouse embryos reveals a mechanism underlying the rostro-caudal patterning within a somite. Dev Biol 2010, 342:134-145.
    • (2010) Dev Biol , vol.342 , pp. 134-145
    • Takahashi, J.1    Ohbayashi, A.2    Oginuma, M.3    Saito, D.4    Mochizuki, A.5    Saga, Y.6
  • 104
    • 84871814633 scopus 로고    scopus 로고
    • Scaling of embryonic patterning based on phase-gradient encoding
    • Lauschke V.M., Tsiairis C.D., Francois P., Aulehla A. Scaling of embryonic patterning based on phase-gradient encoding. Nature 2013, 493:101-105.
    • (2013) Nature , vol.493 , pp. 101-105
    • Lauschke, V.M.1    Tsiairis, C.D.2    Francois, P.3    Aulehla, A.4
  • 106
    • 78650723791 scopus 로고    scopus 로고
    • The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis
    • Sasaki N., Kiso M., Kitagawa M., Saga Y. The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis. Development 2011, 138:55-64.
    • (2011) Development , vol.138 , pp. 55-64
    • Sasaki, N.1    Kiso, M.2    Kitagawa, M.3    Saga, Y.4
  • 107
    • 23244457575 scopus 로고    scopus 로고
    • Dll1 is a downstream target of Tbx6 in the paraxial mesoderm
    • White P.H., Chapman D.L. Dll1 is a downstream target of Tbx6 in the paraxial mesoderm. Genesis 2005, 42:193-202.
    • (2005) Genesis , vol.42 , pp. 193-202
    • White, P.H.1    Chapman, D.L.2
  • 108
    • 84878444424 scopus 로고    scopus 로고
    • Dynamic CREB family activity drives segmentation and posterior polarity specification in mammalian somitogenesis
    • Lopez T.P., Fan C.M. Dynamic CREB family activity drives segmentation and posterior polarity specification in mammalian somitogenesis. Proc Natl Acad Sci USA 2013, 110:E2019-E2027.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E2019-E2027
    • Lopez, T.P.1    Fan, C.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.