메뉴 건너뛰기




Volumn 39, Issue 2, 2013, Pages 354-366

Comparison of individual and combined ANN models for prediction of air and dew point temperature

Author keywords

Air temperature; Artificial neural networks; Decision support system; Dew point temperature; Frost protection; Weather modeling

Indexed keywords

AIR TEMPERATURE; ARTIFICIAL NEURAL NETWORK MODELS; AUTOMATED ENVIRONMENTS; DEWPOINT TEMPERATURE; MEAN ABSOLUTE ERROR; PREDICTION ACCURACY; PREDICTION HORIZON; WEATHER MODELING;

EID: 84882829483     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-012-0417-1     Document Type: Article
Times cited : (26)

References (35)
  • 1
    • 15844401040 scopus 로고    scopus 로고
    • New globally convergent training scheme based on the resilient propagation algorithm
    • 10.1016/j.neucom.2004.11.016
    • Anastasiadis AD, Magoulas GD, Vrahatis MN (2005) New globally convergent training scheme based on the resilient propagation algorithm. Neurocomputing 64:253-270
    • (2005) Neurocomputing , vol.64 , pp. 253-270
    • Anastasiadis, A.D.1    Magoulas, G.D.2    Vrahatis, M.N.3
  • 3
  • 4
    • 79251608751 scopus 로고    scopus 로고
    • Support vector regression with reduced training sets for air temperature prediction: A comparison with artificial neural networks
    • 10.1007/s00521-010-0363-y
    • Chevalier R, Hoogenboom G, McClendon R, Paz J (2011) Support vector regression with reduced training sets for air temperature prediction: a comparison with artificial neural networks. Neural Comput Appl 20:151-159
    • (2011) Neural Comput Appl , vol.20 , pp. 151-159
    • Chevalier, R.1    Hoogenboom, G.2    McClendon, R.3    Paz, J.4
  • 5
    • 84860162676 scopus 로고    scopus 로고
    • A web-based fuzzy expert system for frost warnings in horticultural crops
    • 10.1016/j.envsoft.2012.02.010
    • Chevalier R, Hoogenboom G, McClendon R, Paz J (2012) A web-based fuzzy expert system for frost warnings in horticultural crops. Environ Model Softw 35:84-91
    • (2012) Environ Model Softw , vol.35 , pp. 84-91
    • Chevalier, R.1    Hoogenboom, G.2    McClendon, R.3    Paz, J.4
  • 6
    • 84882879073 scopus 로고
    • Microclimate and physiology of citrus: Their relation to cold protection
    • Cooper WC, Young RH, Turrell FM (1964) Microclimate and physiology of citrus: their relation to cold protection. Agric Sci Rev 2(1):38-50
    • (1964) Agric Sci Rev , vol.2 , Issue.1 , pp. 38-50
    • Cooper, W.C.1    Young, R.H.2    Turrell, F.M.3
  • 9
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • 10.1016/S0304-3800(02)00257-0
    • Gevrey M, Dimopoulos I, Lek S (2003) Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol Model 160:249-264
    • (2003) Ecol Model , vol.160 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 10
    • 84155184280 scopus 로고    scopus 로고
    • A retrospective analysis of American football hyperthermia deaths in the United States
    • 10.1007/s00484-010-0391-4
    • Grundstein A, Ramseyer C, Zhao F, Pesses J, Akers P, Qureshi A et al (2012) A retrospective analysis of American football hyperthermia deaths in the United States. Int J Biometeorol 56:11-20
    • (2012) Int J Biometeorol , vol.56 , pp. 11-20
    • Grundstein, A.1    Ramseyer, C.2    Zhao, F.3    Pesses, J.4    Akers, P.5    Qureshi, A.6
  • 12
    • 0004701137 scopus 로고
    • Irrigation method and Rowcover use for strawberry freeze protection
    • Hochmuth GJ, Kostewicz S, Martin F (1993) Irrigation method and Rowcover use for strawberry freeze protection. J Am Soc Hortic Sci 118:575-579
    • (1993) J Am Soc Hortic Sci , vol.118 , pp. 575-579
    • Hochmuth, G.J.1    Kostewicz, S.2    Martin, F.3
  • 13
    • 2342587934 scopus 로고
    • The Georgia automated environmental monitoring network
    • K. Hatcher (eds) The University of Georgia, Athens
    • Hoogenboom G (1993) The Georgia automated environmental monitoring network. In: Hatcher K (ed) Proceedings of the 1993 Georgia water resources conference, The University of Georgia, Athens, pp 398-402
    • (1993) Proceedings of the 1993 Georgia Water Resources Conference , pp. 398-402
    • Hoogenboom, G.1
  • 17
    • 0037238922 scopus 로고    scopus 로고
    • Empirical evaluation of the improved RPROP learning algorithms
    • 1006.68811 10.1016/S0925-2312(01)00700-7
    • Igel C, Hüsken M (2003) Empirical evaluation of the improved RPROP learning algorithms. Neurocomputing 50:105-123
    • (2003) Neurocomputing , vol.50 , pp. 105-123
    • Igel, C.1    Hüsken, M.2
  • 19
    • 48849103533 scopus 로고    scopus 로고
    • Prediction of frost for fruit protection using artificial neural networks
    • Jain A, McClendon RW, Hoogenboom G, Ramyaa R (2003) Prediction of frost for fruit protection using artificial neural networks. Am Soc Agric Eng 03:3075
    • (2003) Am Soc Agric Eng , vol.3 , pp. 3075
    • Jain, A.1    McClendon, R.W.2    Hoogenboom, G.3    Ramyaa, R.4
  • 22
    • 0028137961 scopus 로고
    • Adaptive control of nonlinear multivariable systems using neural networks
    • 0825.93363
    • Narendra KS, Mukhopadhyay S (1994) Adaptive control of nonlinear multivariable systems using neural networks. Decis Control 7(5):737-752
    • (1994) Decis Control , vol.7 , Issue.5 , pp. 737-752
    • Narendra, K.S.1    Mukhopadhyay, S.2
  • 23
    • 84882856056 scopus 로고
    • Frost/freeze protection for horticultural crops. North Carolina cooperative extension service
    • Perry KB (1994) Frost/freeze protection for horticultural crops. North Carolina cooperative extension service. Leaflet No: 705-A
    • (1994) Leaflet No: 705-A
    • Perry, K.B.1
  • 25
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • 10.1109/ICNN.1993.298623
    • Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: the RPROP algorithm. In: IEEE international conference on neural networks, pp 586-591
    • (1993) IEEE International Conference on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 26
    • 0033884085 scopus 로고    scopus 로고
    • Temporal trends in United States dew point temperatures
    • 10.1002/1097-0088(200007)20:9<985: AID-JOC513>3.0.CO;2-W
    • Robinson PJ (2000) Temporal trends in United States dew point temperatures. Int J Climatol 20(9):985-1002
    • (2000) Int J Climatol , vol.20 , Issue.9 , pp. 985-1002
    • Robinson, P.J.1
  • 27
    • 0034604617 scopus 로고    scopus 로고
    • Spring frosts in deciduous fruit trees - Morphological damage and flower hardiness
    • 10.1016/S0304-4238(99)00150-8
    • Rodrigo J (2000) Spring frosts in deciduous fruit trees - morphological damage and flower hardiness. Sci Hortic 85:155-173
    • (2000) Sci Hortic , vol.85 , pp. 155-173
    • Rodrigo, J.1
  • 28
    • 12444337588 scopus 로고    scopus 로고
    • A Central-US summer extreme dew-point climatology (1949-2000)
    • 10.2747/0272-3646.25.3.191
    • Sandstrom MA, Lauritsen RG, Changnon D (2004) A Central-US summer extreme dew-point climatology (1949-2000). Phys Geogr 25(3):191-207
    • (2004) Phys Geogr , vol.25 , Issue.3 , pp. 191-207
    • Sandstrom, M.A.1    Lauritsen, R.G.2    Changnon, D.3
  • 29
    • 48849095634 scopus 로고    scopus 로고
    • Ensemble artificial neural networks for prediction of dew point temperature
    • 10.1080/08839510802226785
    • Shank DB, McClendon RW, Paz JA (2008) Ensemble artificial neural networks for prediction of dew point temperature. Appl Artif Intell 22(6):523-542
    • (2008) Appl Artif Intell , vol.22 , Issue.6 , pp. 523-542
    • Shank, D.B.1    McClendon, R.W.2    Paz, J.A.3
  • 30
    • 48849113389 scopus 로고    scopus 로고
    • Dewpoint temperature prediction using artificial neural networks
    • 10.1175/2007JAMC1693.1
    • Shank D, Hoogenboom G, McClendon R (2008) Dewpoint temperature prediction using artificial neural networks. J Appl Meteorol Climatol 47:1757
    • (2008) J Appl Meteorol Climatol , vol.47 , pp. 1757
    • Shank, D.1    Hoogenboom, G.2    McClendon, R.3
  • 31
    • 67449132094 scopus 로고    scopus 로고
    • Artificial neural networks for automated year-round temperature prediction
    • 10.1016/j.compag.2009.04.003
    • Smith BA, Hoogenboom G, McClendon RW (2009) Artificial neural networks for automated year-round temperature prediction. Comput Electron Agric 68:52-61
    • (2009) Comput Electron Agric , vol.68 , pp. 52-61
    • Smith, B.A.1    Hoogenboom, G.2    McClendon, R.W.3
  • 32
    • 38049067157 scopus 로고    scopus 로고
    • Improving air temperature prediction with artificial neural networks
    • Smith BA, McClendon RW, Hoogenboom G (2008) Improving air temperature prediction with artificial neural networks. Int J Comput Intell 3(3):179-186
    • (2008) Int J Comput Intell , vol.3 , Issue.3 , pp. 179-186
    • Smith, B.A.1    McClendon, R.W.2    Hoogenboom, G.3
  • 33
    • 3042782838 scopus 로고
    • Ward System Group Ward System Group Frederick
    • Ward System Group (1993) Manual of NeuroShell 2. Ward System Group, Frederick
    • (1993) Manual of NeuroShell 2
  • 34
    • 52449112336 scopus 로고    scopus 로고
    • Temperatures and cold damage to small fruit crops across the Eastern United States associated with the April 2007 freeze
    • Warmund MR, Guinan P, Fernandez G (2008) Temperatures and cold damage to small fruit crops across the Eastern United States associated with the April 2007 freeze. HortScience 43(6):1643-1647
    • (2008) HortScience , vol.43 , Issue.6 , pp. 1643-1647
    • Warmund, M.R.1    Guinan, P.2    Fernandez, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.