메뉴 건너뛰기




Volumn 146, Issue 1, 2015, Pages 3-13

Determinants of cation transport selectivity: Equilibrium binding and transport kinetics

Author keywords

[No Author keywords available]

Indexed keywords

CATION; POTASSIUM CHANNEL;

EID: 84956673406     PISSN: 00221295     EISSN: 15407748     Source Type: Journal    
DOI: 10.1085/jgp.201511371     Document Type: Review
Times cited : (20)

References (114)
  • 1
    • 58149250085 scopus 로고    scopus 로고
    • High-resolution structure of the open NaK channel
    • Alam, A., and Y. Jiang. 2009a. High-resolution structure of the open NaK channel. Nat. Struct. Mol. Biol. 16:30-34. http://dx.doi.org/10.1038/nsmb.1531
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 30-34
    • Alam, A.1    Jiang, Y.2
  • 2
    • 58149213832 scopus 로고    scopus 로고
    • Structural analysis of ion selectivity in the NaK channel
    • Alam, A., and Y. Jiang. 2009b. Structural analysis of ion selectivity in the NaK channel. Nat. Struct. Mol. Biol. 16:35-41. http://dx.doi.org/10.1038/nsmb.1537
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 35-41
    • Alam, A.1    Jiang, Y.2
  • 3
    • 79956123183 scopus 로고    scopus 로고
    • Structural studies of ion selectivity in tetrameric cation channels
    • Alam, A., and Y. Jiang. 2011. Structural studies of ion selectivity in tetrameric cation channels. J. Gen. Physiol. 137:397-403. http://dx.doi.org/10.1085/jgp.201010546
    • (2011) J. Gen. Physiol , vol.137 , pp. 397-403
    • Alam, A.1    Jiang, Y.2
  • 4
    • 0021284546 scopus 로고
    • Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore
    • Almers, W., and E.W. McCleskey. 1984. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J. Physiol. 353:585-608. http://dx.doi.org/10.1113/jphysiol.1984.sp015352
    • (1984) J. Physiol , vol.353 , pp. 585-608
    • Almers, W.1    McCleskey, E.W.2
  • 5
    • 84866519244 scopus 로고    scopus 로고
    • Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes
    • Baconguis, I., and E. Gouaux. 2012. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature. 489:400-405. http://dx.doi.org/10.1038/nature11375
    • (2012) Nature , vol.489 , pp. 400-405
    • Baconguis, I.1    Gouaux, E.2
  • 6
    • 0030031856 scopus 로고    scopus 로고
    • + channel
    • + channel. Science. 271:653-656. http://dx.doi.org/10.1126/science.271.5249.653
    • (1996) Science , vol.271 , pp. 653-656
    • Baukrowitz, T.1    Yellen, G.2
  • 7
    • 0018886109 scopus 로고
    • Potassium flux ratio in voltage-clamped squid giant axons
    • Begenisich, T., and P. De Weer. 1980. Potassium flux ratio in voltage-clamped squid giant axons. J. Gen. Physiol. 76:83-98. http://dx.doi.org/10.1085/jgp.76.1.83
    • (1980) J. Gen. Physiol , vol.76 , pp. 83-98
    • Begenisich, T.1    De Weer, P.2
  • 8
    • 0015424492 scopus 로고
    • Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons
    • Bezanilla, F., and C.M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60:588-608. http://dx.doi.org/10.1085/jgp.60.5.588
    • (1972) J. Gen. Physiol , vol.60 , pp. 588-608
    • Bezanilla, F.1    Armstrong, C.M.2
  • 9
    • 77955087369 scopus 로고    scopus 로고
    • Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration
    • Bhate, M.P., B.J. Wylie, L. Tian, and A.E. McDermott. 2010. Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J. Mol. Biol. 401:155-166. http://dx.doi.org/10.1016/j.jmb.2010.06.031
    • (2010) J. Mol. Biol , vol.401 , pp. 155-166
    • Bhate, M.P.1    Wylie, B.J.2    Tian, L.3    McDermott, A.E.4
  • 10
    • 0021266783 scopus 로고
    • Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle
    • Blatz, A.L., and K.L. Magleby. 1984. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J. Gen. Physiol. 84:1-23. http://dx.doi.org/10.1085/jgp.84.1.1
    • (1984) J. Gen. Physiol , vol.84 , pp. 1-23
    • Blatz, A.L.1    Magleby, K.L.2
  • 11
    • 33846505059 scopus 로고    scopus 로고
    • Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter
    • Boudker, O., R.M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux. 2007. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature. 445:387-393. http://dx.doi.org/10.1038/nature05455
    • (2007) Nature , vol.445 , pp. 387-393
    • Boudker, O.1    Ryan, R.M.2    Yernool, D.3    Shimamoto, K.4    Gouaux, E.5
  • 14
    • 84876208373 scopus 로고    scopus 로고
    • Gating of the TrkH ion channel by its associated RCK protein TrkA
    • Cao, Y., Y. Pan, H. Huang, X. Jin, E.J. Levin, B. Kloss, and M. Zhou. 2013. Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature. 496:317-322. http://dx.doi.org/10.1038/nature12056
    • (2013) Nature , vol.496 , pp. 317-322
    • Cao, Y.1    Pan, Y.2    Huang, H.3    Jin, X.4    Levin, E.J.5    Kloss, B.6    Zhou, M.7
  • 15
    • 3543066536 scopus 로고    scopus 로고
    • Crystal structure of (2.2.2-cryptand)lithium perchlorate
    • Chekhlov, A.N. 2003. Crystal structure of (2.2.2-cryptand)lithium perchlorate. Russ. J. Coord. Chem. 29:828-832. http://dx.doi.org/10.1023/B:RUCO.0000008393.57920.7d
    • (2003) Russ. J. Coord. Chem , vol.29 , pp. 828-832
    • Chekhlov, A.N.1
  • 16
    • 29144508841 scopus 로고    scopus 로고
    • Synthesis and crystal structure of (2.2.2-cryptand)potassium bicarbonate trihydrate
    • Chekhlov, A.N. 2005a. Synthesis and crystal structure of (2.2.2-cryptand)potassium bicarbonate trihydrate. Russ. J. Inorg. Chem. 50:1556-1560.
    • (2005) Russ. J. Inorg. Chem , vol.50 , pp. 1556-1560
    • Chekhlov, A.N.1
  • 17
    • 17144373247 scopus 로고    scopus 로고
    • Synthesis and crystal structure of (2.2.2-cryptand)sodium nitrate
    • Chekhlov, A.N. 2005b. Synthesis and crystal structure of (2.2.2-cryptand)sodium nitrate. Russ. J. Inorg. Chem. 50:418-422.
    • (2005) Russ. J. Inorg. Chem , vol.50 , pp. 418-422
    • Chekhlov, A.N.1
  • 18
    • 23844522601 scopus 로고    scopus 로고
    • Synthesis and crystal structure of aqua(18-crown-6)(triphenylphosphine oxide)potassium bromide
    • Chekhlov, A.N. 2005c. Synthesis and crystal structure of aqua(18-crown-6)(triphenylphosphine oxide)potassium bromide. Russ. J. Inorg. Chem. 50:888-893.
    • (2005) Russ. J. Inorg. Chem , vol.50 , pp. 888-893
    • Chekhlov, A.N.1
  • 20
    • 77953714921 scopus 로고    scopus 로고
    • Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels
    • Clarke, O.B., A.T. Caputo, A.P. Hill, J.I. Vandenberg, B.J. Smith, and J.M. Gulbis. 2010. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell. 141:1018-1029. http://dx.doi.org/10.1016/j.cell.2010.05.003
    • (2010) Cell , vol.141 , pp. 1018-1029
    • Clarke, O.B.1    Caputo, A.T.2    Hill, A.P.3    Vandenberg, J.I.4    Smith, B.J.5    Gulbis, J.M.6
  • 22
    • 79959655732 scopus 로고    scopus 로고
    • A multipoint hydrogen-bond network underlying KcsA C-type inactivation
    • Cordero-Morales, J.F., V. Jogini, S. Chakrapani, and E. Perozo. 2011. A multipoint hydrogen-bond network underlying KcsA C-type inactivation. Biophys. J. 100:2387-2393. http://dx.doi.org/10.1016/j.bpj.2011.01.073
    • (2011) Biophys. J , vol.100 , pp. 2387-2393
    • Cordero-Morales, J.F.1    Jogini, V.2    Chakrapani, S.3    Perozo, E.4
  • 23
    • 0000917419 scopus 로고
    • Host-guest complexation. 39. Cryptahemispherands are highly selective and strongly binding hosts for alkali metal ions
    • Cram, D.J., and S.P. Ho. 1986. Host-guest complexation. 39. Cryptahemispherands are highly selective and strongly binding hosts for alkali metal ions. J. Am. Chem. Soc. 108:2998-3005. http://dx.doi.org/10.1021/ja00271a032
    • (1986) J. Am. Chem. Soc , vol.108 , pp. 2998-3005
    • Cram, D.J.1    Ho, S.P.2
  • 24
    • 33645313112 scopus 로고    scopus 로고
    • CNG and HCN channels: Two peas, one pod
    • Craven, K.B., and W.N. Zagotta. 2006. CNG and HCN channels: Two peas, one pod. Annu. Rev. Physiol. 68:375-401. http://dx.doi.org/10.1146/annurev.physiol.68.040104.134728
    • (2006) Annu. Rev. Physiol , vol.68 , pp. 375-401
    • Craven, K.B.1    Zagotta, W.N.2
  • 25
    • 79551660280 scopus 로고    scopus 로고
    • Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites
    • Derebe, M.G., D.B. Sauer, W. Zeng, A. Alam, N. Shi, and Y. Jiang. 2011a. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites. Proc. Natl. Acad. Sci. USA. 108:598-602. http://dx.doi.org/10.1073/pnas.1013636108
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 598-602
    • Derebe, M.G.1    Sauer, D.B.2    Zeng, W.3    Alam, A.4    Shi, N.5    Jiang, Y.6
  • 26
    • 79551680092 scopus 로고    scopus 로고
    • 2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore
    • 2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl. Acad. Sci. USA. 108:592-597. http://dx.doi.org/10.1073/pnas.1013643108
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 592-597
    • Derebe, M.G.1    Zeng, W.2    Li, Y.3    Alam, A.4    Jiang, Y.5
  • 27
    • 33845378831 scopus 로고
    • Coordination chemistry of alkali and alkalineearth cations with macrocyclic ligands
    • Dietrich, B. 1985. Coordination chemistry of alkali and alkalineearth cations with macrocyclic ligands. J. Chem. Educ. 62:954-964. http://dx.doi.org/10.1021/ed062p954
    • (1985) J. Chem. Educ , vol.62 , pp. 954-964
    • Dietrich, B.1
  • 29
    • 0016403071 scopus 로고
    • The crystal structure of the NaNCS complex of nonactin
    • Dobler, M., and R.P. Phizackerley. 1974. The crystal structure of the NaNCS complex of nonactin. Helv. Chim. Acta. 57:664-674. http://dx.doi.org/10.1002/hlca.19740570319
    • (1974) Helv. Chim. Acta , vol.57 , pp. 664-674
    • Dobler, M.1    Phizackerley, R.P.2
  • 30
    • 0026098110 scopus 로고
    • Genetic analysis of potassium transport loci in Escherichia coli: Evidence for three constitutive systems mediating uptake potassium
    • Dosch, D.C., G.L. Helmer, S.H. Sutton, F.F. Salvacion, and W. Epstein. 1991. Genetic analysis of potassium transport loci in Escherichia coli: Evidence for three constitutive systems mediating uptake potassium. J. Bacteriol. 173:687-696.
    • (1991) J. Bacteriol , vol.173 , pp. 687-696
    • Dosch, D.C.1    Helmer, G.L.2    Sutton, S.H.3    Salvacion, F.F.4    Epstein, W.5
  • 32
    • 0037122805 scopus 로고    scopus 로고
    • X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity
    • Dutzler, R., E.B. Campbell, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature. 415:287-294. http://dx.doi.org/10.1038/415287a
    • (2002) Nature , vol.415 , pp. 287-294
    • Dutzler, R.1    Campbell, E.B.2    Cadene, M.3    Chait, B.T.4    MacKinnon, R.5
  • 33
    • 77955550391 scopus 로고    scopus 로고
    • Ion selectivity of the KcsA channel: A perspective from multi-ion free energy landscapes
    • Egwolf, B., and B. Roux. 2010. Ion selectivity of the KcsA channel: A perspective from multi-ion free energy landscapes. J. Mol. Biol. 401:831-842. http://dx.doi.org/10.1016/j.jmb.2010.07.006
    • (2010) J. Mol. Biol , vol.401 , pp. 831-842
    • Egwolf, B.1    Roux, B.2
  • 34
    • 33750616752 scopus 로고
    • Ionic selectivity of proteins: Lessons from molecular dynamics simulations of valinomycin
    • B.P. Gaber and K.R.K. Easwaran, editors. Adenine Press, Schenectady, NY
    • Eisenman, G., and O. Alvarez. 1992. Ionic selectivity of proteins: Lessons from molecular dynamics simulations of valinomycin. In Biomembrane Structure and Function: The State of the Art. B.P. Gaber and K.R.K. Easwaran, editors. Adenine Press, Schenectady, NY. 321-351.
    • (1992) Biomembrane Structure and Function: The State of the Art , pp. 321-351
    • Eisenman, G.1    Alvarez, O.2
  • 35
    • 0022974833 scopus 로고
    • + channel from skeletal muscle
    • + channel from skeletal muscle. Biophys. J. 50:1025-1034. http://dx.doi.org/10.1016/S0006-3495(86)83546-9
    • (1986) Biophys. J , vol.50 , pp. 1025-1034
    • Eisenman, G.1    Latorre, R.2    Miller, C.3
  • 36
    • 67649200539 scopus 로고    scopus 로고
    • Structure and mechanism of an amino acid antiporter
    • Gao, X., F. Lu, L. Zhou, S. Dang, L. Sun, X. Li, J. Wang, and Y. Shi. 2009. Structure and mechanism of an amino acid antiporter. Science. 324:1565-1568. http://dx.doi.org/10.1126/science.1173654
    • (2009) Science , vol.324 , pp. 1565-1568
    • Gao, X.1    Lu, F.2    Zhou, L.3    Dang, S.4    Sun, L.5    Li, X.6    Wang, J.7    Shi, Y.8
  • 37
    • 28544453561 scopus 로고    scopus 로고
    • Principles of selective ion transport in channels and pumps
    • Gouaux, E., and R. Mackinnon. 2005. Principles of selective ion transport in channels and pumps. Science. 310:1461-1465. http://dx.doi.org/10.1126/science.1113666
    • (2005) Science , vol.310 , pp. 1461-1465
    • Gouaux, E.1    Mackinnon, R.2
  • 38
    • 0013903110 scopus 로고
    • Antibiotics as tools for metabolic studies. VI. Damped oscillatory swelling of mitochondria induced by nonactin, monactin, dinactin, and trinactin
    • Graven, S.N., H.A. Lardy, and A. Rutter. 1966. Antibiotics as tools for metabolic studies. VI. Damped oscillatory swelling of mitochondria induced by nonactin, monactin, dinactin, and trinactin. Biochemistry. 5:1735-1742. http://dx.doi.org/10.1021/bi00869a041
    • (1966) Biochemistry , vol.5 , pp. 1735-1742
    • Graven, S.N.1    Lardy, H.A.2    Rutter, A.3
  • 40
    • 0036014793 scopus 로고    scopus 로고
    • Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium
    • Harding, M.M. 2002. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D Biol. Crystallogr. 58:872-874. http://dx.doi.org/10.1107/S0907444902003712
    • (2002) Acta Crystallogr. D Biol. Crystallogr , vol.58 , pp. 872-874
    • Harding, M.M.1
  • 44
    • 0021280815 scopus 로고
    • Mechanism of ion permeation through calcium channels
    • Hess, P., and R.W. Tsien. 1984. Mechanism of ion permeation through calcium channels. Nature. 309:453-456. http://dx.doi.org/10.1038/309453a0
    • (1984) Nature , vol.309 , pp. 453-456
    • Hess, P.1    Tsien, R.W.2
  • 45
    • 0003443746 scopus 로고    scopus 로고
    • Third edition. Sinauer Associates, Sunderland, MA
    • Hille, B. 2001. Ion Channels of Excitable Membranes. Third edition. Sinauer Associates, Sunderland, MA. 814 pp.
    • (2001) Ion Channels of Excitable Membranes , pp. 814
    • Hille, B.1
  • 46
    • 0018117903 scopus 로고
    • Potassium channels as multi-ion single-file pores
    • Hille, B., and W. Schwarz. 1978. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:409-442. http://dx.doi.org/10.1085/jgp.72.4.409
    • (1978) J. Gen. Physiol , vol.72 , pp. 409-442
    • Hille, B.1    Schwarz, W.2
  • 47
    • 33748263658 scopus 로고
    • The potassium permeability of a giant nerve fibre
    • Hodgkin, A.L., and R.D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128:61-88. http://dx.doi.org/10.1113/jphysiol.1955.sp005291
    • (1955) J. Physiol , vol.128 , pp. 61-88
    • Hodgkin, A.L.1    Keynes, R.D.2
  • 48
    • 84899784442 scopus 로고    scopus 로고
    • Permeation redux: Thermodynamics and kinetics of ion movement through potassium channels
    • Horn, R., B. Roux, and J. Åqvist. 2014. Permeation redux: Thermodynamics and kinetics of ion movement through potassium channels. Biophys. J. 106:1859-1863. http://dx.doi.org/10.1016/j.bpj.2014.03.039
    • (2014) Biophys. J , vol.106 , pp. 1859-1863
    • Horn, R.1    Roux, B.2    Åqvist, J.3
  • 49
    • 77950913923 scopus 로고    scopus 로고
    • Structural basis underlying the dual gate properties of KcsA
    • Imai, S., M. Osawa, K. Takeuchi, and I. Shimada. 2010. Structural basis underlying the dual gate properties of KcsA. Proc. Natl. Acad. Sci. USA. 107:6216-6221. http://dx.doi.org/10.1073/pnas.0911270107
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 6216-6221
    • Imai, S.1    Osawa, M.2    Takeuchi, K.3    Shimada, I.4
  • 50
    • 0040151766 scopus 로고
    • Thermodynamic and kinetic data for cation macrocycle interaction
    • Izatt, R.M., J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, and J.J. Christensen. 1985. Thermodynamic and kinetic data for cation macrocycle interaction. Chem. Rev. 85:271-339. http://dx.doi.org/10.1021/cr00068a003
    • (1985) Chem. Rev , vol.85 , pp. 271-339
    • Izatt, R.M.1    Bradshaw, J.S.2    Nielsen, S.A.3    Lamb, J.D.4    Christensen, J.J.5
  • 51
    • 0037198626 scopus 로고    scopus 로고
    • Crystal structure and mechanism of a calcium-gated potassium channel
    • Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 417:515-522. http://dx.doi.org/10.1038/417515a
    • (2002) Nature , vol.417 , pp. 515-522
    • Jiang, Y.1    Lee, A.2    Chen, J.3    Cadene, M.4    Chait, B.T.5    MacKinnon, R.6
  • 53
    • 84986397838 scopus 로고
    • Enthalpy and entropy of formation of alkali and alkaline-earth macrobicyclic cryptate complexes
    • Kauffmann, E., J.M. Lehn, and J.P. Sauvage. 1976. Enthalpy and entropy of formation of alkali and alkaline-earth macrobicyclic cryptate complexes. Helv. Chim. Acta. 59:1099-1111. http://dx.doi.org/10.1002/hlca.19760590414
    • (1976) Helv. Chim. Acta , vol.59 , pp. 1099-1111
    • Kauffmann, E.1    Lehn, J.M.2    Sauvage, J.P.3
  • 55
    • 81055126297 scopus 로고    scopus 로고
    • On the selective ion binding hypothesis for potassium channels
    • Kim, I., and T.W. Allen. 2011. On the selective ion binding hypothesis for potassium channels. Proc. Natl. Acad. Sci. USA. 108:17963-17968. http://dx.doi.org/10.1073/pnas.1110735108
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 17963-17968
    • Kim, I.1    Allen, T.W.2
  • 56
    • 0029083687 scopus 로고
    • Permeation selectivity by competition in a delayed rectifier potassium channel
    • Korn, S.J., and S.R. Ikeda. 1995. Permeation selectivity by competition in a delayed rectifier potassium channel. Science. 269:410-412. http://dx.doi.org/10.1126/science.7618108
    • (1995) Science , vol.269 , pp. 410-412
    • Korn, S.J.1    Ikeda, S.R.2
  • 58
    • 84905366306 scopus 로고    scopus 로고
    • The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K
    • Lam, Y.L., W. Zeng, D.B. Sauer, and Y. Jiang. 2014. The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K. J. Gen. Physiol. 144:181-192. http://dx.doi.org/10.1085/jgp.201411191
    • (2014) J. Gen. Physiol , vol.144 , pp. 181-192
    • Lam, Y.L.1    Zeng, W.2    Sauer, D.B.3    Jiang, Y.4
  • 59
    • 84863012221 scopus 로고    scopus 로고
    • Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger
    • Liao, J., H. Li, W. Zeng, D.B. Sauer, R. Belmares, and Y. Jiang. 2012. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 335:686-690. http://dx.doi.org/10.1126/science.1215759
    • (2012) Science , vol.335 , pp. 686-690
    • Liao, J.1    Li, H.2    Zeng, W.3    Sauer, D.B.4    Belmares, R.5    Jiang, Y.6
  • 64
  • 65
    • 0035855251 scopus 로고    scopus 로고
    • + selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations
    • + selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations. Biochim. Biophys. Acta. 1548:194-202. http://dx.doi.org/10.1016/S0167-4838(01)00213-8
    • (2001) Biochim. Biophys. Acta , vol.1548 , pp. 194-202
    • Luzhkov, V.B.1    Aqvist, J.2
  • 66
    • 84855517288 scopus 로고    scopus 로고
    • Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotidebinding domains
    • Mari, S.A., J. Pessoa, S. Altieri, U. Hensen, L. Thomas, J.H. Morais-Cabral, and D.J. Müller. 2011. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotidebinding domains. Proc. Natl. Acad. Sci. USA. 108:20802-20807. http://dx.doi.org/10.1073/pnas.1111149108
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 20802-20807
    • Mari, S.A.1    Pessoa, J.2    Altieri, S.3    Hensen, U.4    Thomas, L.5    Morais-Cabral, J.H.6    Müller, D.J.7
  • 68
    • 84855467714 scopus 로고    scopus 로고
    • Structural correlates of selectivity and inactivation in potassium channels
    • McCoy, J.G., and C.M. Nimigean. 2012. Structural correlates of selectivity and inactivation in potassium channels. Biochim. Biophys. Acta. 1818:272-285. http://dx.doi.org/10.1016/j.bbamem.2011.09.007
    • (2012) Biochim. Biophys. Acta , vol.1818 , pp. 272-285
    • McCoy, J.G.1    Nimigean, C.M.2
  • 69
    • 84856297467 scopus 로고    scopus 로고
    • Crystal structure of the human two-pore domain potassium channel K2P1
    • Miller, A.N., and S.B. Long. 2012. Crystal structure of the human two-pore domain potassium channel K2P1. Science. 335:432-436. http://dx.doi.org/10.1126/science.1213274
    • (2012) Science , vol.335 , pp. 432-436
    • Miller, A.N.1    Long, S.B.2
  • 70
    • 0000652068 scopus 로고
    • Mechanism of action of valinomycin on mitochondria
    • Moore, C., and B.C. Pressman. 1964. Mechanism of action of valinomycin on mitochondria. Biochem. Biophys. Res. Commun. 15:562-567. http://dx.doi.org/10.1016/0006-291X(64)90505-4
    • (1964) Biochem. Biophys. Res. Commun , vol.15 , pp. 562-567
    • Moore, C.1    Pressman, B.C.2
  • 74
    • 79956147579 scopus 로고    scopus 로고
    • Origins of ion selectivity in potassium channels from the perspective of channel block
    • Nimigean, C.M., and T.W. Allen. 2011. Origins of ion selectivity in potassium channels from the perspective of channel block. J. Gen. Physiol. 137:405-413. http://dx.doi.org/10.1085/jgp.201010551
    • (2011) J. Gen. Physiol , vol.137 , pp. 405-413
    • Nimigean, C.M.1    Allen, T.W.2
  • 75
    • 34548386717 scopus 로고    scopus 로고
    • Crystal structure of a Kir3.1-prokaryotic Kir channel chimera
    • Nishida, M., M. Cadene, B.T. Chait, and R. MacKinnon. 2007. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26:4005-4015. http://dx.doi.org/10.1038/sj.emboj.7601828
    • (2007) EMBO J , vol.26 , pp. 4005-4015
    • Nishida, M.1    Cadene, M.2    Chait, B.T.3    MacKinnon, R.4
  • 76
    • 33750609826 scopus 로고    scopus 로고
    • Ion selectivity in potassium channels
    • Noskov, S.Y., and B. Roux. 2006. Ion selectivity in potassium channels. Biophys. Chem. 124:279-291. http://dx.doi.org/10.1016/j.bpc.2006.05.033
    • (2006) Biophys. Chem , vol.124 , pp. 279-291
    • Noskov, S.Y.1    Roux, B.2
  • 77
    • 33846625994 scopus 로고    scopus 로고
    • Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels
    • Noskov, S.Y., and B. Roux. 2007. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J. Gen. Physiol. 129:135-143. http://dx.doi.org/10.1085/jgp.200609633
    • (2007) J. Gen. Physiol , vol.129 , pp. 135-143
    • Noskov, S.Y.1    Roux, B.2
  • 78
    • 7244251461 scopus 로고    scopus 로고
    • Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands
    • Noskov, S.Y., S. Bernèche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature. 431:830-834. http://dx.doi.org/10.1038/nature02943
    • (2004) Nature , vol.431 , pp. 830-834
    • Noskov, S.Y.1    Bernèche, S.2    Roux, B.3
  • 80
    • 80054028670 scopus 로고    scopus 로고
    • Potassiumselective block of barium permeation through single KcsA channels
    • Piasta, K.N., D.L. Theobald, and C. Miller. 2011. Potassiumselective block of barium permeation through single KcsA channels. J. Gen. Physiol. 138:421-436. http://dx.doi.org/10.1085/jgp.201110684
    • (2011) J. Gen. Physiol , vol.138 , pp. 421-436
    • Piasta, K.N.1    Theobald, D.L.2    Miller, C.3
  • 81
    • 71449123048 scopus 로고    scopus 로고
    • Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters
    • Picollo, A., M. Malvezzi, J.C. Houtman, and A. Accardi. 2009. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat. Struct. Mol. Biol. 16:1294-1301. http://dx.doi.org/10.1038/nsmb.1704
    • (2009) Nat. Struct. Mol. Biol , vol.16 , pp. 1294-1301
    • Picollo, A.1    Malvezzi, M.2    Houtman, J.C.3    Accardi, A.4
  • 83
    • 85027948926 scopus 로고    scopus 로고
    • Binding thermodynamics of a glutamate transporter homolog
    • Reyes, N., S. Oh, and O. Boudker. 2013. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20:634-640. http://dx.doi.org/10.1038/nsmb.2548
    • (2013) Nat. Struct. Mol. Biol , vol.20 , pp. 634-640
    • Reyes, N.1    Oh, S.2    Boudker, O.3
  • 84
    • 79955711882 scopus 로고    scopus 로고
    • Perspectives on: Ion selectivity: Ion selectivity in channels and transporters
    • Roux, B., S. Bernèche, B. Egwolf, B. Lev, S.Y. Noskov, C.N. Rowley, and H. Yu. 2011. Perspectives on: Ion selectivity: Ion selectivity in channels and transporters. J. Gen. Physiol. 137:415-426. http://dx.doi.org/10.1085/jgp.201010577
    • (2011) J. Gen. Physiol , vol.137 , pp. 415-426
    • Roux, B.1    Bernèche, S.2    Egwolf, B.3    Lev, B.4    Noskov, S.Y.5    Rowley, C.N.6    Yu, H.7
  • 86
    • 84887802264 scopus 로고    scopus 로고
    • Sodium and potassium competition in potassium-selective and non-selective channels
    • Sauer, D.B., W. Zeng, J. Canty, Y. Lam, and Y. Jiang. 2013. Sodium and potassium competition in potassium-selective and non-selective channels. Nat. Commun. 4:2721. http://dx.doi.org/10.1038/ncomms3721
    • (2013) Nat. Commun , vol.4 , pp. 2721
    • Sauer, D.B.1    Zeng, W.2    Canty, J.3    Lam, Y.4    Jiang, Y.5
  • 87
    • 0028969793 scopus 로고
    • TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli
    • Schlösser, A., M. Meldorf, S. Stumpe, E.P. Bakker, and W. Epstein. 1995. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 177:1908-1910.
    • (1995) J. Bacteriol , vol.177 , pp. 1908-1910
    • Schlösser, A.1    Meldorf, M.2    Stumpe, S.3    Bakker, E.P.4    Epstein, W.5
  • 88
    • 65249142851 scopus 로고    scopus 로고
    • Ion binding properties and structure stability of the NaK channel
    • Shen, R., and W. Guo. 2009. Ion binding properties and structure stability of the NaK channel. Biochim. Biophys. Acta. 1788:1024-1032. http://dx.doi.org/10.1016/j.bbamem.2009.01.008
    • (2009) Biochim. Biophys. Acta , vol.1788 , pp. 1024-1032
    • Shen, R.1    Guo, W.2
  • 91
    • 0019597007 scopus 로고
    • Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle
    • Spalding, B.C., O. Senyk, J.G. Swift, and P. Horowicz. 1981. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle. Am. J. Physiol. 241:C68-C75.
    • (1981) Am. J. Physiol , vol.241 , pp. C68-C75
    • Spalding, B.C.1    Senyk, O.2    Swift, J.G.3    Horowicz, P.4
  • 92
    • 0030706134 scopus 로고    scopus 로고
    • Ion conduction through C-type inactivated Shaker channels
    • Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110:539-550. http://dx.doi.org/10.1085/jgp.110.5.539
    • (1997) J. Gen. Physiol , vol.110 , pp. 539-550
    • Starkus, J.G.1    Kuschel, L.2    Rayner, M.D.3    Heinemann, S.H.4
  • 93
    • 0019907582 scopus 로고
    • Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycincation complexes
    • Steinrauf, L.K., J.A. Hamilton, and M.N. Sabesan. 1982. Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycincation complexes. J. Am. Chem. Soc. 104:4085-4091. http://dx.doi.org/10.1021/ja00379a008
    • (1982) J. Am. Chem. Soc , vol.104 , pp. 4085-4091
    • Steinrauf, L.K.1    Hamilton, J.A.2    Sabesan, M.N.3
  • 94
    • 72949091450 scopus 로고    scopus 로고
    • + channel Kir2.2 at 3.1 Å resolution
    • + channel Kir2.2 at 3.1 Å resolution. Science. 326:1668-1674. http://dx.doi.org/10.1126/science.1180310
    • (2009) Science , vol.326 , pp. 1668-1674
    • Tao, X.1    Avalos, J.L.2    Chen, J.3    MacKinnon, R.4
  • 97
    • 33748360106 scopus 로고    scopus 로고
    • Structural and functional consequences of an amideto-ester substitution in the selectivity filter of a potassium channel
    • Valiyaveetil, F.I., M. Sekedat, R. MacKinnon, and T.W. Muir. 2006. Structural and functional consequences of an amideto-ester substitution in the selectivity filter of a potassium channel. J. Am. Chem. Soc. 128:11591-11599. http://dx.doi.org/10.1021/ja0631955
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 11591-11599
    • Valiyaveetil, F.I.1    Sekedat, M.2    MacKinnon, R.3    Muir, T.W.4
  • 98
    • 34548262701 scopus 로고    scopus 로고
    • Tuning ion coordination architectures to enable selective partitioning
    • Varma, S., and S.B. Rempe. 2007. Tuning ion coordination architectures to enable selective partitioning. Biophys. J. 93:1093-1099. http://dx.doi.org/10.1529/biophysj.107.107482
    • (2007) Biophys. J , vol.93 , pp. 1093-1099
    • Varma, S.1    Rempe, S.B.2
  • 99
    • 38049095537 scopus 로고    scopus 로고
    • + selectivity in K channels and valinomycin: Over-coordination versus cavity-size constraints
    • + selectivity in K channels and valinomycin: Over-coordination versus cavity-size constraints. J. Mol. Biol. 376:13-22. http://dx.doi.org/10.1016/j.jmb.2007.11.059
    • (2008) J. Mol. Biol , vol.376 , pp. 13-22
    • Varma, S.1    Sabo, D.2    Rempe, S.B.3
  • 102
    • 84876273276 scopus 로고    scopus 로고
    • The structure of the KtrAB potassium transporter
    • Vieira-Pires, R.S., A. Szollosi, and J.H. Morais-Cabral. 2013. The structure of the KtrAB potassium transporter. Nature. 496:323-328. http://dx.doi.org/10.1038/nature12055
    • (2013) Nature , vol.496 , pp. 323-328
    • Vieira-Pires, R.S.1    Szollosi, A.2    Morais-Cabral, J.H.3
  • 103
    • 84896880064 scopus 로고    scopus 로고
    • Molecular strategies to achieve selective conductance in NaK channel variants
    • Wang, Y., A.C. Chamberlin, and S.Y. Noskov. 2014. Molecular strategies to achieve selective conductance in NaK channel variants. J. Phys. Chem. B. 118:2041-2049.
    • (2014) J. Phys. Chem. B , vol.118 , pp. 2041-2049
    • Wang, Y.1    Chamberlin, A.C.2    Noskov, S.Y.3
  • 105
    • 80053485088 scopus 로고    scopus 로고
    • + channel and gating regulation by G proteins, PIP2, and sodium
    • + channel and gating regulation by G proteins, PIP2, and sodium. Cell. 147:199-208. http://dx.doi.org/10.1016/j.cell.2011.07.046
    • (2011) Cell , vol.147 , pp. 199-208
    • Whorton, M.R.1    MacKinnon, R.2
  • 108
    • 84892783318 scopus 로고    scopus 로고
    • Structural basis of the alternatingaccess mechanism in a bile acid transporter
    • Zhou, X., E.J. Levin, Y. Pan, J.G. McCoy, R. Sharma, B. Kloss, R. Bruni, M. Quick, and M. Zhou. 2014. Structural basis of the alternatingaccess mechanism in a bile acid transporter. Nature. 505:569-573. http://dx.doi.org/10.1038/nature12811
    • (2014) Nature , vol.505 , pp. 569-573
    • Zhou, X.1    Levin, E.J.2    Pan, Y.3    McCoy, J.G.4    Sharma, R.5    Kloss, B.6    Bruni, R.7    Quick, M.8    Zhou, M.9
  • 109
    • 0142185496 scopus 로고    scopus 로고
    • + selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates
    • + selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965-975. http://dx.doi.org/10.1016/j.jmb.2003.09.022
    • (2003) J. Mol. Biol , vol.333 , pp. 965-975
    • Zhou, Y.1    MacKinnon, R.2
  • 110
    • 2142758648 scopus 로고    scopus 로고
    • Ion binding affinity in the cavity of the KcsA potassium channel
    • Zhou, Y., and R. MacKinnon. 2004. Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry. 43:4978-4982. http://dx.doi.org/10.1021/bi049876z
    • (2004) Biochemistry , vol.43 , pp. 4978-4982
    • Zhou, Y.1    MacKinnon, R.2
  • 112
    • 62649117352 scopus 로고    scopus 로고
    • Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: Theory versus experiment
    • Zilman, A. 2009. Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: Theory versus experiment. Biophys. J. 96:1235-1248. http://dx.doi.org/10.1016/j.bpj.2008.09.058
    • (2009) Biophys. J , vol.96 , pp. 1235-1248
    • Zilman, A.1
  • 113
  • 114
    • 79959775185 scopus 로고    scopus 로고
    • Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC
    • Zimmermann, I., and R. Dutzler. 2011. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol. 9:e1001101. http://dx.doi.org/10.1371/journal.pbio.1001101
    • (2011) PLoS Biol , vol.9
    • Zimmermann, I.1    Dutzler, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.