-
1
-
-
58149250085
-
High-resolution structure of the open NaK channel
-
Alam, A., and Y. Jiang. 2009a. High-resolution structure of the open NaK channel. Nat. Struct. Mol. Biol. 16:30-34. http://dx.doi.org/10.1038/nsmb.1531
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 30-34
-
-
Alam, A.1
Jiang, Y.2
-
2
-
-
58149213832
-
Structural analysis of ion selectivity in the NaK channel
-
Alam, A., and Y. Jiang. 2009b. Structural analysis of ion selectivity in the NaK channel. Nat. Struct. Mol. Biol. 16:35-41. http://dx.doi.org/10.1038/nsmb.1537
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 35-41
-
-
Alam, A.1
Jiang, Y.2
-
3
-
-
79956123183
-
Structural studies of ion selectivity in tetrameric cation channels
-
Alam, A., and Y. Jiang. 2011. Structural studies of ion selectivity in tetrameric cation channels. J. Gen. Physiol. 137:397-403. http://dx.doi.org/10.1085/jgp.201010546
-
(2011)
J. Gen. Physiol
, vol.137
, pp. 397-403
-
-
Alam, A.1
Jiang, Y.2
-
4
-
-
0021284546
-
Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore
-
Almers, W., and E.W. McCleskey. 1984. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J. Physiol. 353:585-608. http://dx.doi.org/10.1113/jphysiol.1984.sp015352
-
(1984)
J. Physiol
, vol.353
, pp. 585-608
-
-
Almers, W.1
McCleskey, E.W.2
-
5
-
-
84866519244
-
Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes
-
Baconguis, I., and E. Gouaux. 2012. Structural plasticity and dynamic selectivity of acid-sensing ion channel-spider toxin complexes. Nature. 489:400-405. http://dx.doi.org/10.1038/nature11375
-
(2012)
Nature
, vol.489
, pp. 400-405
-
-
Baconguis, I.1
Gouaux, E.2
-
6
-
-
0030031856
-
+ channel
-
+ channel. Science. 271:653-656. http://dx.doi.org/10.1126/science.271.5249.653
-
(1996)
Science
, vol.271
, pp. 653-656
-
-
Baukrowitz, T.1
Yellen, G.2
-
7
-
-
0018886109
-
Potassium flux ratio in voltage-clamped squid giant axons
-
Begenisich, T., and P. De Weer. 1980. Potassium flux ratio in voltage-clamped squid giant axons. J. Gen. Physiol. 76:83-98. http://dx.doi.org/10.1085/jgp.76.1.83
-
(1980)
J. Gen. Physiol
, vol.76
, pp. 83-98
-
-
Begenisich, T.1
De Weer, P.2
-
8
-
-
0015424492
-
Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons
-
Bezanilla, F., and C.M. Armstrong. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. Gen. Physiol. 60:588-608. http://dx.doi.org/10.1085/jgp.60.5.588
-
(1972)
J. Gen. Physiol
, vol.60
, pp. 588-608
-
-
Bezanilla, F.1
Armstrong, C.M.2
-
9
-
-
77955087369
-
Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration
-
Bhate, M.P., B.J. Wylie, L. Tian, and A.E. McDermott. 2010. Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J. Mol. Biol. 401:155-166. http://dx.doi.org/10.1016/j.jmb.2010.06.031
-
(2010)
J. Mol. Biol
, vol.401
, pp. 155-166
-
-
Bhate, M.P.1
Wylie, B.J.2
Tian, L.3
McDermott, A.E.4
-
10
-
-
0021266783
-
Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle
-
Blatz, A.L., and K.L. Magleby. 1984. Ion conductance and selectivity of single calcium-activated potassium channels in cultured rat muscle. J. Gen. Physiol. 84:1-23. http://dx.doi.org/10.1085/jgp.84.1.1
-
(1984)
J. Gen. Physiol
, vol.84
, pp. 1-23
-
-
Blatz, A.L.1
Magleby, K.L.2
-
11
-
-
33846505059
-
Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter
-
Boudker, O., R.M. Ryan, D. Yernool, K. Shimamoto, and E. Gouaux. 2007. Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature. 445:387-393. http://dx.doi.org/10.1038/nature05455
-
(2007)
Nature
, vol.445
, pp. 387-393
-
-
Boudker, O.1
Ryan, R.M.2
Yernool, D.3
Shimamoto, K.4
Gouaux, E.5
-
13
-
-
79952818073
-
Crystal structure of a potassium ion transporter, TrkH
-
Cao, Y., X. Jin, H. Huang, M.G. Derebe, E.J. Levin, V. Kabaleeswaran, Y. Pan, M. Punta, J. Love, J. Weng, et al. 2011. Crystal structure of a potassium ion transporter, TrkH. Nature. 471:336-340. http://dx.doi.org/10.1038/nature09731
-
(2011)
Nature
, vol.471
, pp. 336-340
-
-
Cao, Y.1
Jin, X.2
Huang, H.3
Derebe, M.G.4
Levin, E.J.5
Kabaleeswaran, V.6
Pan, Y.7
Punta, M.8
Love, J.9
Weng, J.10
-
14
-
-
84876208373
-
Gating of the TrkH ion channel by its associated RCK protein TrkA
-
Cao, Y., Y. Pan, H. Huang, X. Jin, E.J. Levin, B. Kloss, and M. Zhou. 2013. Gating of the TrkH ion channel by its associated RCK protein TrkA. Nature. 496:317-322. http://dx.doi.org/10.1038/nature12056
-
(2013)
Nature
, vol.496
, pp. 317-322
-
-
Cao, Y.1
Pan, Y.2
Huang, H.3
Jin, X.4
Levin, E.J.5
Kloss, B.6
Zhou, M.7
-
15
-
-
3543066536
-
Crystal structure of (2.2.2-cryptand)lithium perchlorate
-
Chekhlov, A.N. 2003. Crystal structure of (2.2.2-cryptand)lithium perchlorate. Russ. J. Coord. Chem. 29:828-832. http://dx.doi.org/10.1023/B:RUCO.0000008393.57920.7d
-
(2003)
Russ. J. Coord. Chem
, vol.29
, pp. 828-832
-
-
Chekhlov, A.N.1
-
16
-
-
29144508841
-
Synthesis and crystal structure of (2.2.2-cryptand)potassium bicarbonate trihydrate
-
Chekhlov, A.N. 2005a. Synthesis and crystal structure of (2.2.2-cryptand)potassium bicarbonate trihydrate. Russ. J. Inorg. Chem. 50:1556-1560.
-
(2005)
Russ. J. Inorg. Chem
, vol.50
, pp. 1556-1560
-
-
Chekhlov, A.N.1
-
17
-
-
17144373247
-
Synthesis and crystal structure of (2.2.2-cryptand)sodium nitrate
-
Chekhlov, A.N. 2005b. Synthesis and crystal structure of (2.2.2-cryptand)sodium nitrate. Russ. J. Inorg. Chem. 50:418-422.
-
(2005)
Russ. J. Inorg. Chem
, vol.50
, pp. 418-422
-
-
Chekhlov, A.N.1
-
18
-
-
23844522601
-
Synthesis and crystal structure of aqua(18-crown-6)(triphenylphosphine oxide)potassium bromide
-
Chekhlov, A.N. 2005c. Synthesis and crystal structure of aqua(18-crown-6)(triphenylphosphine oxide)potassium bromide. Russ. J. Inorg. Chem. 50:888-893.
-
(2005)
Russ. J. Inorg. Chem
, vol.50
, pp. 888-893
-
-
Chekhlov, A.N.1
-
19
-
-
79951506090
-
+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension
-
+ channel mutations in adrenal aldosterone-producing adenomas and hereditary hypertension. Science. 331:768-772. http://dx.doi.org/10.1126/science.1198785
-
(2011)
Science
, vol.331
, pp. 768-772
-
-
Choi, M.1
Scholl, U.I.2
Yue, P.3
Björklund, P.4
Zhao, B.5
Nelson-Williams, C.6
Ji, W.7
Cho, Y.8
Patel, A.9
Men, C.J.10
-
20
-
-
77953714921
-
Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels
-
Clarke, O.B., A.T. Caputo, A.P. Hill, J.I. Vandenberg, B.J. Smith, and J.M. Gulbis. 2010. Domain reorientation and rotation of an intracellular assembly regulate conduction in Kir potassium channels. Cell. 141:1018-1029. http://dx.doi.org/10.1016/j.cell.2010.05.003
-
(2010)
Cell
, vol.141
, pp. 1018-1029
-
-
Clarke, O.B.1
Caputo, A.T.2
Hill, A.P.3
Vandenberg, J.I.4
Smith, B.J.5
Gulbis, J.M.6
-
21
-
-
33745041507
-
Molecular determinants of gating at the potassium-channel selectivity filter
-
Cordero-Morales, J.F., L.G. Cuello, Y. Zhao, V. Jogini, D.M. Cortes, B. Roux, and E. Perozo. 2006. Molecular determinants of gating at the potassium-channel selectivity filter. Nat. Struct. Mol. Biol. 13:311-318. http://dx.doi.org/10.1038/nsmb1069
-
(2006)
Nat. Struct. Mol. Biol
, vol.13
, pp. 311-318
-
-
Cordero-Morales, J.F.1
Cuello, L.G.2
Zhao, Y.3
Jogini, V.4
Cortes, D.M.5
Roux, B.6
Perozo, E.7
-
22
-
-
79959655732
-
A multipoint hydrogen-bond network underlying KcsA C-type inactivation
-
Cordero-Morales, J.F., V. Jogini, S. Chakrapani, and E. Perozo. 2011. A multipoint hydrogen-bond network underlying KcsA C-type inactivation. Biophys. J. 100:2387-2393. http://dx.doi.org/10.1016/j.bpj.2011.01.073
-
(2011)
Biophys. J
, vol.100
, pp. 2387-2393
-
-
Cordero-Morales, J.F.1
Jogini, V.2
Chakrapani, S.3
Perozo, E.4
-
23
-
-
0000917419
-
Host-guest complexation. 39. Cryptahemispherands are highly selective and strongly binding hosts for alkali metal ions
-
Cram, D.J., and S.P. Ho. 1986. Host-guest complexation. 39. Cryptahemispherands are highly selective and strongly binding hosts for alkali metal ions. J. Am. Chem. Soc. 108:2998-3005. http://dx.doi.org/10.1021/ja00271a032
-
(1986)
J. Am. Chem. Soc
, vol.108
, pp. 2998-3005
-
-
Cram, D.J.1
Ho, S.P.2
-
24
-
-
33645313112
-
CNG and HCN channels: Two peas, one pod
-
Craven, K.B., and W.N. Zagotta. 2006. CNG and HCN channels: Two peas, one pod. Annu. Rev. Physiol. 68:375-401. http://dx.doi.org/10.1146/annurev.physiol.68.040104.134728
-
(2006)
Annu. Rev. Physiol
, vol.68
, pp. 375-401
-
-
Craven, K.B.1
Zagotta, W.N.2
-
25
-
-
79551660280
-
Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites
-
Derebe, M.G., D.B. Sauer, W. Zeng, A. Alam, N. Shi, and Y. Jiang. 2011a. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites. Proc. Natl. Acad. Sci. USA. 108:598-602. http://dx.doi.org/10.1073/pnas.1013636108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 598-602
-
-
Derebe, M.G.1
Sauer, D.B.2
Zeng, W.3
Alam, A.4
Shi, N.5
Jiang, Y.6
-
26
-
-
79551680092
-
2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore
-
2+ blockage of a bacterial channel mimicking the cyclic nucleotide-gated channel pore. Proc. Natl. Acad. Sci. USA. 108:592-597. http://dx.doi.org/10.1073/pnas.1013643108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 592-597
-
-
Derebe, M.G.1
Zeng, W.2
Li, Y.3
Alam, A.4
Jiang, Y.5
-
27
-
-
33845378831
-
Coordination chemistry of alkali and alkalineearth cations with macrocyclic ligands
-
Dietrich, B. 1985. Coordination chemistry of alkali and alkalineearth cations with macrocyclic ligands. J. Chem. Educ. 62:954-964. http://dx.doi.org/10.1021/ed062p954
-
(1985)
J. Chem. Educ
, vol.62
, pp. 954-964
-
-
Dietrich, B.1
-
29
-
-
0016403071
-
The crystal structure of the NaNCS complex of nonactin
-
Dobler, M., and R.P. Phizackerley. 1974. The crystal structure of the NaNCS complex of nonactin. Helv. Chim. Acta. 57:664-674. http://dx.doi.org/10.1002/hlca.19740570319
-
(1974)
Helv. Chim. Acta
, vol.57
, pp. 664-674
-
-
Dobler, M.1
Phizackerley, R.P.2
-
30
-
-
0026098110
-
Genetic analysis of potassium transport loci in Escherichia coli: Evidence for three constitutive systems mediating uptake potassium
-
Dosch, D.C., G.L. Helmer, S.H. Sutton, F.F. Salvacion, and W. Epstein. 1991. Genetic analysis of potassium transport loci in Escherichia coli: Evidence for three constitutive systems mediating uptake potassium. J. Bacteriol. 173:687-696.
-
(1991)
J. Bacteriol
, vol.173
, pp. 687-696
-
-
Dosch, D.C.1
Helmer, G.L.2
Sutton, S.H.3
Salvacion, F.F.4
Epstein, W.5
-
31
-
-
0032478818
-
+ conduction and selectivity
-
+ conduction and selectivity. Science. 280:69-77. http://dx.doi.org/10.1126/science.280.5360.69
-
(1998)
Science
, vol.280
, pp. 69-77
-
-
Doyle, D.A.1
Morais Cabral, J.2
Pfuetzner, R.A.3
Kuo, A.4
Gulbis, J.M.5
Cohen, S.L.6
Chait, B.T.7
MacKinnon, R.8
-
32
-
-
0037122805
-
X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity
-
Dutzler, R., E.B. Campbell, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature. 415:287-294. http://dx.doi.org/10.1038/415287a
-
(2002)
Nature
, vol.415
, pp. 287-294
-
-
Dutzler, R.1
Campbell, E.B.2
Cadene, M.3
Chait, B.T.4
MacKinnon, R.5
-
33
-
-
77955550391
-
Ion selectivity of the KcsA channel: A perspective from multi-ion free energy landscapes
-
Egwolf, B., and B. Roux. 2010. Ion selectivity of the KcsA channel: A perspective from multi-ion free energy landscapes. J. Mol. Biol. 401:831-842. http://dx.doi.org/10.1016/j.jmb.2010.07.006
-
(2010)
J. Mol. Biol
, vol.401
, pp. 831-842
-
-
Egwolf, B.1
Roux, B.2
-
34
-
-
33750616752
-
Ionic selectivity of proteins: Lessons from molecular dynamics simulations of valinomycin
-
B.P. Gaber and K.R.K. Easwaran, editors. Adenine Press, Schenectady, NY
-
Eisenman, G., and O. Alvarez. 1992. Ionic selectivity of proteins: Lessons from molecular dynamics simulations of valinomycin. In Biomembrane Structure and Function: The State of the Art. B.P. Gaber and K.R.K. Easwaran, editors. Adenine Press, Schenectady, NY. 321-351.
-
(1992)
Biomembrane Structure and Function: The State of the Art
, pp. 321-351
-
-
Eisenman, G.1
Alvarez, O.2
-
36
-
-
67649200539
-
Structure and mechanism of an amino acid antiporter
-
Gao, X., F. Lu, L. Zhou, S. Dang, L. Sun, X. Li, J. Wang, and Y. Shi. 2009. Structure and mechanism of an amino acid antiporter. Science. 324:1565-1568. http://dx.doi.org/10.1126/science.1173654
-
(2009)
Science
, vol.324
, pp. 1565-1568
-
-
Gao, X.1
Lu, F.2
Zhou, L.3
Dang, S.4
Sun, L.5
Li, X.6
Wang, J.7
Shi, Y.8
-
37
-
-
28544453561
-
Principles of selective ion transport in channels and pumps
-
Gouaux, E., and R. Mackinnon. 2005. Principles of selective ion transport in channels and pumps. Science. 310:1461-1465. http://dx.doi.org/10.1126/science.1113666
-
(2005)
Science
, vol.310
, pp. 1461-1465
-
-
Gouaux, E.1
Mackinnon, R.2
-
38
-
-
0013903110
-
Antibiotics as tools for metabolic studies. VI. Damped oscillatory swelling of mitochondria induced by nonactin, monactin, dinactin, and trinactin
-
Graven, S.N., H.A. Lardy, and A. Rutter. 1966. Antibiotics as tools for metabolic studies. VI. Damped oscillatory swelling of mitochondria induced by nonactin, monactin, dinactin, and trinactin. Biochemistry. 5:1735-1742. http://dx.doi.org/10.1021/bi00869a041
-
(1966)
Biochemistry
, vol.5
, pp. 1735-1742
-
-
Graven, S.N.1
Lardy, H.A.2
Rutter, A.3
-
40
-
-
0036014793
-
Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium
-
Harding, M.M. 2002. Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. Acta Crystallogr. D Biol. Crystallogr. 58:872-874. http://dx.doi.org/10.1107/S0907444902003712
-
(2002)
Acta Crystallogr. D Biol. Crystallogr
, vol.58
, pp. 872-874
-
-
Harding, M.M.1
-
44
-
-
0021280815
-
Mechanism of ion permeation through calcium channels
-
Hess, P., and R.W. Tsien. 1984. Mechanism of ion permeation through calcium channels. Nature. 309:453-456. http://dx.doi.org/10.1038/309453a0
-
(1984)
Nature
, vol.309
, pp. 453-456
-
-
Hess, P.1
Tsien, R.W.2
-
45
-
-
0003443746
-
-
Third edition. Sinauer Associates, Sunderland, MA
-
Hille, B. 2001. Ion Channels of Excitable Membranes. Third edition. Sinauer Associates, Sunderland, MA. 814 pp.
-
(2001)
Ion Channels of Excitable Membranes
, pp. 814
-
-
Hille, B.1
-
46
-
-
0018117903
-
Potassium channels as multi-ion single-file pores
-
Hille, B., and W. Schwarz. 1978. Potassium channels as multi-ion single-file pores. J. Gen. Physiol. 72:409-442. http://dx.doi.org/10.1085/jgp.72.4.409
-
(1978)
J. Gen. Physiol
, vol.72
, pp. 409-442
-
-
Hille, B.1
Schwarz, W.2
-
47
-
-
33748263658
-
The potassium permeability of a giant nerve fibre
-
Hodgkin, A.L., and R.D. Keynes. 1955. The potassium permeability of a giant nerve fibre. J. Physiol. 128:61-88. http://dx.doi.org/10.1113/jphysiol.1955.sp005291
-
(1955)
J. Physiol
, vol.128
, pp. 61-88
-
-
Hodgkin, A.L.1
Keynes, R.D.2
-
48
-
-
84899784442
-
Permeation redux: Thermodynamics and kinetics of ion movement through potassium channels
-
Horn, R., B. Roux, and J. Åqvist. 2014. Permeation redux: Thermodynamics and kinetics of ion movement through potassium channels. Biophys. J. 106:1859-1863. http://dx.doi.org/10.1016/j.bpj.2014.03.039
-
(2014)
Biophys. J
, vol.106
, pp. 1859-1863
-
-
Horn, R.1
Roux, B.2
Åqvist, J.3
-
49
-
-
77950913923
-
Structural basis underlying the dual gate properties of KcsA
-
Imai, S., M. Osawa, K. Takeuchi, and I. Shimada. 2010. Structural basis underlying the dual gate properties of KcsA. Proc. Natl. Acad. Sci. USA. 107:6216-6221. http://dx.doi.org/10.1073/pnas.0911270107
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 6216-6221
-
-
Imai, S.1
Osawa, M.2
Takeuchi, K.3
Shimada, I.4
-
50
-
-
0040151766
-
Thermodynamic and kinetic data for cation macrocycle interaction
-
Izatt, R.M., J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, and J.J. Christensen. 1985. Thermodynamic and kinetic data for cation macrocycle interaction. Chem. Rev. 85:271-339. http://dx.doi.org/10.1021/cr00068a003
-
(1985)
Chem. Rev
, vol.85
, pp. 271-339
-
-
Izatt, R.M.1
Bradshaw, J.S.2
Nielsen, S.A.3
Lamb, J.D.4
Christensen, J.J.5
-
51
-
-
0037198626
-
Crystal structure and mechanism of a calcium-gated potassium channel
-
Jiang, Y., A. Lee, J. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Crystal structure and mechanism of a calcium-gated potassium channel. Nature. 417:515-522. http://dx.doi.org/10.1038/417515a
-
(2002)
Nature
, vol.417
, pp. 515-522
-
-
Jiang, Y.1
Lee, A.2
Chen, J.3
Cadene, M.4
Chait, B.T.5
MacKinnon, R.6
-
53
-
-
84986397838
-
Enthalpy and entropy of formation of alkali and alkaline-earth macrobicyclic cryptate complexes
-
Kauffmann, E., J.M. Lehn, and J.P. Sauvage. 1976. Enthalpy and entropy of formation of alkali and alkaline-earth macrobicyclic cryptate complexes. Helv. Chim. Acta. 59:1099-1111. http://dx.doi.org/10.1002/hlca.19760590414
-
(1976)
Helv. Chim. Acta
, vol.59
, pp. 1099-1111
-
-
Kauffmann, E.1
Lehn, J.M.2
Sauvage, J.P.3
-
55
-
-
81055126297
-
On the selective ion binding hypothesis for potassium channels
-
Kim, I., and T.W. Allen. 2011. On the selective ion binding hypothesis for potassium channels. Proc. Natl. Acad. Sci. USA. 108:17963-17968. http://dx.doi.org/10.1073/pnas.1110735108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 17963-17968
-
-
Kim, I.1
Allen, T.W.2
-
56
-
-
0029083687
-
Permeation selectivity by competition in a delayed rectifier potassium channel
-
Korn, S.J., and S.R. Ikeda. 1995. Permeation selectivity by competition in a delayed rectifier potassium channel. Science. 269:410-412. http://dx.doi.org/10.1126/science.7618108
-
(1995)
Science
, vol.269
, pp. 410-412
-
-
Korn, S.J.1
Ikeda, S.R.2
-
57
-
-
12444274301
-
Crystal structure of the potassium channel KirBac1.1 in the closed state
-
Kuo, A., J.M. Gulbis, J.F. Antcliff, T. Rahman, E.D. Lowe, J. Zimmer, J. Cuthbertson, F.M. Ashcroft, T. Ezaki, and D.A. Doyle. 2003. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science. 300:1922-1926. http://dx.doi.org/10.1126/science.1085028
-
(2003)
Science
, vol.300
, pp. 1922-1926
-
-
Kuo, A.1
Gulbis, J.M.2
Antcliff, J.F.3
Rahman, T.4
Lowe, E.D.5
Zimmer, J.6
Cuthbertson, J.7
Ashcroft, F.M.8
Ezaki, T.9
Doyle, D.A.10
-
58
-
-
84905366306
-
The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K
-
Lam, Y.L., W. Zeng, D.B. Sauer, and Y. Jiang. 2014. The conserved potassium channel filter can have distinct ion binding profiles: Structural analysis of rubidium, cesium, and barium binding in NaK2K. J. Gen. Physiol. 144:181-192. http://dx.doi.org/10.1085/jgp.201411191
-
(2014)
J. Gen. Physiol
, vol.144
, pp. 181-192
-
-
Lam, Y.L.1
Zeng, W.2
Sauer, D.B.3
Jiang, Y.4
-
59
-
-
84863012221
-
Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger
-
Liao, J., H. Li, W. Zeng, D.B. Sauer, R. Belmares, and Y. Jiang. 2012. Structural insight into the ion-exchange mechanism of the sodium/calcium exchanger. Science. 335:686-690. http://dx.doi.org/10.1126/science.1215759
-
(2012)
Science
, vol.335
, pp. 686-690
-
-
Liao, J.1
Li, H.2
Zeng, W.3
Sauer, D.B.4
Belmares, R.5
Jiang, Y.6
-
65
-
-
0035855251
-
+ selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations
-
+ selectivity of the KcsA potassium channel from microscopic free energy perturbation calculations. Biochim. Biophys. Acta. 1548:194-202. http://dx.doi.org/10.1016/S0167-4838(01)00213-8
-
(2001)
Biochim. Biophys. Acta
, vol.1548
, pp. 194-202
-
-
Luzhkov, V.B.1
Aqvist, J.2
-
66
-
-
84855517288
-
Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotidebinding domains
-
Mari, S.A., J. Pessoa, S. Altieri, U. Hensen, L. Thomas, J.H. Morais-Cabral, and D.J. Müller. 2011. Gating of the MlotiK1 potassium channel involves large rearrangements of the cyclic nucleotidebinding domains. Proc. Natl. Acad. Sci. USA. 108:20802-20807. http://dx.doi.org/10.1073/pnas.1111149108
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 20802-20807
-
-
Mari, S.A.1
Pessoa, J.2
Altieri, S.3
Hensen, U.4
Thomas, L.5
Morais-Cabral, J.H.6
Müller, D.J.7
-
68
-
-
84855467714
-
Structural correlates of selectivity and inactivation in potassium channels
-
McCoy, J.G., and C.M. Nimigean. 2012. Structural correlates of selectivity and inactivation in potassium channels. Biochim. Biophys. Acta. 1818:272-285. http://dx.doi.org/10.1016/j.bbamem.2011.09.007
-
(2012)
Biochim. Biophys. Acta
, vol.1818
, pp. 272-285
-
-
McCoy, J.G.1
Nimigean, C.M.2
-
69
-
-
84856297467
-
Crystal structure of the human two-pore domain potassium channel K2P1
-
Miller, A.N., and S.B. Long. 2012. Crystal structure of the human two-pore domain potassium channel K2P1. Science. 335:432-436. http://dx.doi.org/10.1126/science.1213274
-
(2012)
Science
, vol.335
, pp. 432-436
-
-
Miller, A.N.1
Long, S.B.2
-
70
-
-
0000652068
-
Mechanism of action of valinomycin on mitochondria
-
Moore, C., and B.C. Pressman. 1964. Mechanism of action of valinomycin on mitochondria. Biochem. Biophys. Res. Commun. 15:562-567. http://dx.doi.org/10.1016/0006-291X(64)90505-4
-
(1964)
Biochem. Biophys. Res. Commun
, vol.15
, pp. 562-567
-
-
Moore, C.1
Pressman, B.C.2
-
74
-
-
79956147579
-
Origins of ion selectivity in potassium channels from the perspective of channel block
-
Nimigean, C.M., and T.W. Allen. 2011. Origins of ion selectivity in potassium channels from the perspective of channel block. J. Gen. Physiol. 137:405-413. http://dx.doi.org/10.1085/jgp.201010551
-
(2011)
J. Gen. Physiol
, vol.137
, pp. 405-413
-
-
Nimigean, C.M.1
Allen, T.W.2
-
75
-
-
34548386717
-
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera
-
Nishida, M., M. Cadene, B.T. Chait, and R. MacKinnon. 2007. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 26:4005-4015. http://dx.doi.org/10.1038/sj.emboj.7601828
-
(2007)
EMBO J
, vol.26
, pp. 4005-4015
-
-
Nishida, M.1
Cadene, M.2
Chait, B.T.3
MacKinnon, R.4
-
76
-
-
33750609826
-
Ion selectivity in potassium channels
-
Noskov, S.Y., and B. Roux. 2006. Ion selectivity in potassium channels. Biophys. Chem. 124:279-291. http://dx.doi.org/10.1016/j.bpc.2006.05.033
-
(2006)
Biophys. Chem
, vol.124
, pp. 279-291
-
-
Noskov, S.Y.1
Roux, B.2
-
77
-
-
33846625994
-
Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels
-
Noskov, S.Y., and B. Roux. 2007. Importance of hydration and dynamics on the selectivity of the KcsA and NaK channels. J. Gen. Physiol. 129:135-143. http://dx.doi.org/10.1085/jgp.200609633
-
(2007)
J. Gen. Physiol
, vol.129
, pp. 135-143
-
-
Noskov, S.Y.1
Roux, B.2
-
78
-
-
7244251461
-
Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands
-
Noskov, S.Y., S. Bernèche, and B. Roux. 2004. Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature. 431:830-834. http://dx.doi.org/10.1038/nature02943
-
(2004)
Nature
, vol.431
, pp. 830-834
-
-
Noskov, S.Y.1
Bernèche, S.2
Roux, B.3
-
79
-
-
84885653302
-
+-bound state
-
+-bound state. Science. 342:123-127. http://dx.doi.org/10.1126/science.1243352
-
(2013)
Science
, vol.342
, pp. 123-127
-
-
Nyblom, M.1
Poulsen, H.2
Gourdon, P.3
Reinhard, L.4
Andersson, M.5
Lindahl, E.6
Fedosova, N.7
Nissen, P.8
-
80
-
-
80054028670
-
Potassiumselective block of barium permeation through single KcsA channels
-
Piasta, K.N., D.L. Theobald, and C. Miller. 2011. Potassiumselective block of barium permeation through single KcsA channels. J. Gen. Physiol. 138:421-436. http://dx.doi.org/10.1085/jgp.201110684
-
(2011)
J. Gen. Physiol
, vol.138
, pp. 421-436
-
-
Piasta, K.N.1
Theobald, D.L.2
Miller, C.3
-
81
-
-
71449123048
-
Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters
-
Picollo, A., M. Malvezzi, J.C. Houtman, and A. Accardi. 2009. Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat. Struct. Mol. Biol. 16:1294-1301. http://dx.doi.org/10.1038/nsmb.1704
-
(2009)
Nat. Struct. Mol. Biol
, vol.16
, pp. 1294-1301
-
-
Picollo, A.1
Malvezzi, M.2
Houtman, J.C.3
Accardi, A.4
-
83
-
-
85027948926
-
Binding thermodynamics of a glutamate transporter homolog
-
Reyes, N., S. Oh, and O. Boudker. 2013. Binding thermodynamics of a glutamate transporter homolog. Nat. Struct. Mol. Biol. 20:634-640. http://dx.doi.org/10.1038/nsmb.2548
-
(2013)
Nat. Struct. Mol. Biol
, vol.20
, pp. 634-640
-
-
Reyes, N.1
Oh, S.2
Boudker, O.3
-
84
-
-
79955711882
-
Perspectives on: Ion selectivity: Ion selectivity in channels and transporters
-
Roux, B., S. Bernèche, B. Egwolf, B. Lev, S.Y. Noskov, C.N. Rowley, and H. Yu. 2011. Perspectives on: Ion selectivity: Ion selectivity in channels and transporters. J. Gen. Physiol. 137:415-426. http://dx.doi.org/10.1085/jgp.201010577
-
(2011)
J. Gen. Physiol
, vol.137
, pp. 415-426
-
-
Roux, B.1
Bernèche, S.2
Egwolf, B.3
Lev, B.4
Noskov, S.Y.5
Rowley, C.N.6
Yu, H.7
-
86
-
-
84887802264
-
Sodium and potassium competition in potassium-selective and non-selective channels
-
Sauer, D.B., W. Zeng, J. Canty, Y. Lam, and Y. Jiang. 2013. Sodium and potassium competition in potassium-selective and non-selective channels. Nat. Commun. 4:2721. http://dx.doi.org/10.1038/ncomms3721
-
(2013)
Nat. Commun
, vol.4
, pp. 2721
-
-
Sauer, D.B.1
Zeng, W.2
Canty, J.3
Lam, Y.4
Jiang, Y.5
-
87
-
-
0028969793
-
TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli
-
Schlösser, A., M. Meldorf, S. Stumpe, E.P. Bakker, and W. Epstein. 1995. TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli. J. Bacteriol. 177:1908-1910.
-
(1995)
J. Bacteriol
, vol.177
, pp. 1908-1910
-
-
Schlösser, A.1
Meldorf, M.2
Stumpe, S.3
Bakker, E.P.4
Epstein, W.5
-
88
-
-
65249142851
-
Ion binding properties and structure stability of the NaK channel
-
Shen, R., and W. Guo. 2009. Ion binding properties and structure stability of the NaK channel. Biochim. Biophys. Acta. 1788:1024-1032. http://dx.doi.org/10.1016/j.bbamem.2009.01.008
-
(2009)
Biochim. Biophys. Acta
, vol.1788
, pp. 1024-1032
-
-
Shen, R.1
Guo, W.2
-
91
-
-
0019597007
-
Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle
-
Spalding, B.C., O. Senyk, J.G. Swift, and P. Horowicz. 1981. Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle. Am. J. Physiol. 241:C68-C75.
-
(1981)
Am. J. Physiol
, vol.241
, pp. C68-C75
-
-
Spalding, B.C.1
Senyk, O.2
Swift, J.G.3
Horowicz, P.4
-
92
-
-
0030706134
-
Ion conduction through C-type inactivated Shaker channels
-
Starkus, J.G., L. Kuschel, M.D. Rayner, and S.H. Heinemann. 1997. Ion conduction through C-type inactivated Shaker channels. J. Gen. Physiol. 110:539-550. http://dx.doi.org/10.1085/jgp.110.5.539
-
(1997)
J. Gen. Physiol
, vol.110
, pp. 539-550
-
-
Starkus, J.G.1
Kuschel, L.2
Rayner, M.D.3
Heinemann, S.H.4
-
93
-
-
0019907582
-
Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycincation complexes
-
Steinrauf, L.K., J.A. Hamilton, and M.N. Sabesan. 1982. Crystal structure of valinomycin-sodium picrate. Anion effects on valinomycincation complexes. J. Am. Chem. Soc. 104:4085-4091. http://dx.doi.org/10.1021/ja00379a008
-
(1982)
J. Am. Chem. Soc
, vol.104
, pp. 4085-4091
-
-
Steinrauf, L.K.1
Hamilton, J.A.2
Sabesan, M.N.3
-
96
-
-
66149127336
-
Crystal structure of full-length KcsA in its closed conformation
-
Uysal, S., V. Vásquez, V. Tereshko, K. Esaki, F.A. Fellouse, S.S. Sidhu, S. Koide, E. Perozo, and A. Kossiakoff. 2009. Crystal structure of full-length KcsA in its closed conformation. Proc. Natl. Acad. Sci. USA. 106:6644-6649. http://dx.doi.org/10.1073/pnas.0810663106
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 6644-6649
-
-
Uysal, S.1
Vásquez, V.2
Tereshko, V.3
Esaki, K.4
Fellouse, F.A.5
Sidhu, S.S.6
Koide, S.7
Perozo, E.8
Kossiakoff, A.9
-
97
-
-
33748360106
-
Structural and functional consequences of an amideto-ester substitution in the selectivity filter of a potassium channel
-
Valiyaveetil, F.I., M. Sekedat, R. MacKinnon, and T.W. Muir. 2006. Structural and functional consequences of an amideto-ester substitution in the selectivity filter of a potassium channel. J. Am. Chem. Soc. 128:11591-11599. http://dx.doi.org/10.1021/ja0631955
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 11591-11599
-
-
Valiyaveetil, F.I.1
Sekedat, M.2
MacKinnon, R.3
Muir, T.W.4
-
98
-
-
34548262701
-
Tuning ion coordination architectures to enable selective partitioning
-
Varma, S., and S.B. Rempe. 2007. Tuning ion coordination architectures to enable selective partitioning. Biophys. J. 93:1093-1099. http://dx.doi.org/10.1529/biophysj.107.107482
-
(2007)
Biophys. J
, vol.93
, pp. 1093-1099
-
-
Varma, S.1
Rempe, S.B.2
-
99
-
-
38049095537
-
+ selectivity in K channels and valinomycin: Over-coordination versus cavity-size constraints
-
+ selectivity in K channels and valinomycin: Over-coordination versus cavity-size constraints. J. Mol. Biol. 376:13-22. http://dx.doi.org/10.1016/j.jmb.2007.11.059
-
(2008)
J. Mol. Biol
, vol.376
, pp. 13-22
-
-
Varma, S.1
Sabo, D.2
Rempe, S.B.3
-
102
-
-
84876273276
-
The structure of the KtrAB potassium transporter
-
Vieira-Pires, R.S., A. Szollosi, and J.H. Morais-Cabral. 2013. The structure of the KtrAB potassium transporter. Nature. 496:323-328. http://dx.doi.org/10.1038/nature12055
-
(2013)
Nature
, vol.496
, pp. 323-328
-
-
Vieira-Pires, R.S.1
Szollosi, A.2
Morais-Cabral, J.H.3
-
103
-
-
84896880064
-
Molecular strategies to achieve selective conductance in NaK channel variants
-
Wang, Y., A.C. Chamberlin, and S.Y. Noskov. 2014. Molecular strategies to achieve selective conductance in NaK channel variants. J. Phys. Chem. B. 118:2041-2049.
-
(2014)
J. Phys. Chem. B
, vol.118
, pp. 2041-2049
-
-
Wang, Y.1
Chamberlin, A.C.2
Noskov, S.Y.3
-
104
-
-
55349092991
-
Structure and molecular mechanism of a nucleobase-cationsymport-1 family transporter
-
Weyand, S., T. Shimamura, S. Yajima, S. Suzuki, O. Mirza, K. Krusong, E.P. Carpenter, N.G. Rutherford, J.M. Hadden, J. O'Reilly, et al. 2008. Structure and molecular mechanism of a nucleobase-cationsymport-1 family transporter. Science. 322:709-713. http://dx.doi.org/10.1126/science.1164440
-
(2008)
Science
, vol.322
, pp. 709-713
-
-
Weyand, S.1
Shimamura, T.2
Yajima, S.3
Suzuki, S.4
Mirza, O.5
Krusong, K.6
Carpenter, E.P.7
Rutherford, N.G.8
Hadden, J.M.9
O'Reilly, J.10
-
105
-
-
80053485088
-
+ channel and gating regulation by G proteins, PIP2, and sodium
-
+ channel and gating regulation by G proteins, PIP2, and sodium. Cell. 147:199-208. http://dx.doi.org/10.1016/j.cell.2011.07.046
-
(2011)
Cell
, vol.147
, pp. 199-208
-
-
Whorton, M.R.1
MacKinnon, R.2
-
108
-
-
84892783318
-
Structural basis of the alternatingaccess mechanism in a bile acid transporter
-
Zhou, X., E.J. Levin, Y. Pan, J.G. McCoy, R. Sharma, B. Kloss, R. Bruni, M. Quick, and M. Zhou. 2014. Structural basis of the alternatingaccess mechanism in a bile acid transporter. Nature. 505:569-573. http://dx.doi.org/10.1038/nature12811
-
(2014)
Nature
, vol.505
, pp. 569-573
-
-
Zhou, X.1
Levin, E.J.2
Pan, Y.3
McCoy, J.G.4
Sharma, R.5
Kloss, B.6
Bruni, R.7
Quick, M.8
Zhou, M.9
-
109
-
-
0142185496
-
+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates
-
+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333:965-975. http://dx.doi.org/10.1016/j.jmb.2003.09.022
-
(2003)
J. Mol. Biol
, vol.333
, pp. 965-975
-
-
Zhou, Y.1
MacKinnon, R.2
-
110
-
-
2142758648
-
Ion binding affinity in the cavity of the KcsA potassium channel
-
Zhou, Y., and R. MacKinnon. 2004. Ion binding affinity in the cavity of the KcsA potassium channel. Biochemistry. 43:4978-4982. http://dx.doi.org/10.1021/bi049876z
-
(2004)
Biochemistry
, vol.43
, pp. 4978-4982
-
-
Zhou, Y.1
MacKinnon, R.2
-
112
-
-
62649117352
-
Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: Theory versus experiment
-
Zilman, A. 2009. Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: Theory versus experiment. Biophys. J. 96:1235-1248. http://dx.doi.org/10.1016/j.bpj.2008.09.058
-
(2009)
Biophys. J
, vol.96
, pp. 1235-1248
-
-
Zilman, A.1
-
113
-
-
77955497076
-
Enhancement of transport selectivity through nano-channels by non-specific competition
-
Zilman, A., S. Di Talia, T. Jovanovic-Talisman, B.T. Chait, M.P. Rout, and M.O. Magnasco. 2010. Enhancement of transport selectivity through nano-channels by non-specific competition. PLOS Comput. Biol. 6:e1000804. http://dx.doi.org/10.1371/journal.pcbi.1000804
-
(2010)
PLOS Comput. Biol
, vol.6
-
-
Zilman, A.1
Di Talia, S.2
Jovanovic-Talisman, T.3
Chait, B.T.4
Rout, M.P.5
Magnasco, M.O.6
-
114
-
-
79959775185
-
Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC
-
Zimmermann, I., and R. Dutzler. 2011. Ligand activation of the prokaryotic pentameric ligand-gated ion channel ELIC. PLoS Biol. 9:e1001101. http://dx.doi.org/10.1371/journal.pbio.1001101
-
(2011)
PLoS Biol
, vol.9
-
-
Zimmermann, I.1
Dutzler, R.2
|