메뉴 건너뛰기




Volumn 82, Issue 1, 2016, Pages 174-183

Metabolic impact of redox cofactor perturbations on the formation of aroma compounds in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL COMPOUNDS; ETHANOL; METABOLISM; PHYSIOLOGY; PROPIONIC ACID; SYNTHESIS (CHEMICAL); VOLATILE ORGANIC COMPOUNDS;

EID: 84953882390     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.02429-15     Document Type: Article
Times cited : (48)

References (48)
  • 2
    • 0002774633 scopus 로고    scopus 로고
    • Yeast and its importance to wine aroma: a review
    • Lambrechts MG, Pretorius IS. 2001. Yeast and its importance to wine aroma: a review. S Afr J Enol Vitic 21:97-129.
    • (2001) S Afr J Enol Vitic , vol.21 , pp. 97-129
    • Lambrechts, M.G.1    Pretorius, I.S.2
  • 3
    • 77950685615 scopus 로고    scopus 로고
    • Evolution of S-cysteinylated and S-glutathionylated thiol precursors during oxidation of Melon B. and Sauvignon blanc musts
    • Roland A, Vialaret J, Razungles A, Rigou P, Schneider R. 2010. Evolution of S-cysteinylated and S-glutathionylated thiol precursors during oxidation of Melon B. and Sauvignon blanc musts. J Agric Food Chem 58: 4406-4413. http://dx.doi.org/10.1021/jf904164t.
    • (2010) J Agric Food Chem , vol.58 , pp. 4406-4413
    • Roland, A.1    Vialaret, J.2    Razungles, A.3    Rigou, P.4    Schneider, R.5
  • 4
    • 84897914716 scopus 로고    scopus 로고
    • Online-based kinetic analysis of higher alcohol and ester synthesis during winemaking fermentations
    • Mouret JR, Perez M, Angenieux M, Nicolle P, Farines V, Sablayrolles JM. 2014. Online-based kinetic analysis of higher alcohol and ester synthesis during winemaking fermentations. Food Bioprocess Technol 7:1235-1245. http://dx.doi.org/10.1007/s11947-013-1089-5.
    • (2014) Food Bioprocess Technol , vol.7 , pp. 1235-1245
    • Mouret, J.R.1    Perez, M.2    Angenieux, M.3    Nicolle, P.4    Farines, V.5    Sablayrolles, J.M.6
  • 5
    • 84925513829 scopus 로고    scopus 로고
    • Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation
    • Rollero S, Bloem A, Camarasa C, Sanchez I, Ortiz-Julien A, Sablayrolles JM, Dequin S, Mouret JR. 2015. Combined effects of nutrients and temperature on the production of fermentative aromas by Saccharomyces cerevisiae during wine fermentation. Appl Microbiol Biotechnol 99:2291-2304. doi:http://dx.doi.org/10.1007/s00253-014-6210-9.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 2291-2304
    • Rollero, S.1    Bloem, A.2    Camarasa, C.3    Sanchez, I.4    Ortiz-Julien, A.5    Sablayrolles, J.M.6    Dequin, S.7    Mouret, J.R.8
  • 6
    • 79952311579 scopus 로고    scopus 로고
    • Amino acid uptake by wild and commercial yeasts in single fermentations and co-fermentations
    • Barrajón-Simancas N, Giese E, Arévalo-Villena M, Ubeda J, Briones A. 2011. Amino acid uptake by wild and commercial yeasts in single fermentations and co-fermentations. Food Chem 127:441-446. http://dx.doi.org/10.1016/j.foodchem.2010.12.151.
    • (2011) Food Chem , vol.127 , pp. 441-446
    • Barrajón-Simancas, N.1    Giese, E.2    Arévalo-Villena, M.3    Ubeda, J.4    Briones, A.5
  • 7
    • 77956186941 scopus 로고    scopus 로고
    • Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content
    • Carrau FM, Medina K, Farina L, Boido E, Dellacassa E. 2010. Effect of Saccharomyces cerevisiae inoculum size on wine fermentation aroma compounds and its relation with assimilable nitrogen content. Int J Food Microbiol 143:81-85. http://dx.doi.org/10.1016/j.ijfoodmicro.2010.07.024.
    • (2010) Int J Food Microbiol , vol.143 , pp. 81-85
    • Carrau, F.M.1    Medina, K.2    Farina, L.3    Boido, E.4    Dellacassa, E.5
  • 8
    • 54149084999 scopus 로고    scopus 로고
    • Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains
    • Carrau FM, Medina K, Farina L, Boido E, Henschke PA, Dellacassa E. 2008. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res 8:1196-1207. http://dx.doi.org/10.1111/j.1567-1364.2008.00412.x.
    • (2008) FEMS Yeast Res , vol.8 , pp. 1196-1207
    • Carrau, F.M.1    Medina, K.2    Farina, L.3    Boido, E.4    Henschke, P.A.5    Dellacassa, E.6
  • 9
    • 54149113195 scopus 로고    scopus 로고
    • Wine yeasts for the future
    • Fleet G. 2008. Wine yeasts for the future. FEMS Yeast Res 8:979-995. http://dx.doi.org/10.1111/j.1567-1364.2008.00427.x.
    • (2008) FEMS Yeast Res , vol.8 , pp. 979-995
    • Fleet, G.1
  • 10
    • 1842760684 scopus 로고    scopus 로고
    • Changes in the contents of micro-and trace-elements in wine due to winemaking treatments
    • Nicolini G, Larcher P, Pangrazzi P, Bontempo L. 2004. Changes in the contents of micro-and trace-elements in wine due to winemaking treatments. Vitis 43:41-45.
    • (2004) Vitis , vol.43 , pp. 41-45
    • Nicolini, G.1    Larcher, P.2    Pangrazzi, P.3    Bontempo, L.4
  • 11
    • 79952535718 scopus 로고    scopus 로고
    • Comparison of inorganic and organic nitrogen supplementation of grape juice: effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast
    • Torrea D, Varela C, Ugliano M, Ancin-Azpilicueta C, Leigh Francis I, Henschke PA. 2011. Comparison of inorganic and organic nitrogen supplementation of grape juice: effect on volatile composition and aroma profile of a Chardonnay wine fermented with Saccharomyces cerevisiae yeast. Food Chem 127:1072-1083. http://dx.doi.org/10.1016/j.foodchem.2011.01.092.
    • (2011) Food Chem , vol.127 , pp. 1072-1083
    • Torrea, D.1    Varela, C.2    Ugliano, M.3    Ancin-Azpilicueta, C.4    Leigh Francis, I.5    Henschke, P.A.6
  • 12
    • 84865340607 scopus 로고    scopus 로고
    • Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae
    • Varela C, Torrea D, Schmidt SA, Ancin-Azpilicueta C, Henschke PA. 2012. Effect of oxygen and lipid supplementation on the volatile composition of chemically defined medium and Chardonnay wine fermented with Saccharomyces cerevisiae. Food Chem 135:2863-2871. http://dx.doi.org/10.1016/j.foodchem.2012.06.127.
    • (2012) Food Chem , vol.135 , pp. 2863-2871
    • Varela, C.1    Torrea, D.2    Schmidt, S.A.3    Ancin-Azpilicueta, C.4    Henschke, P.A.5
  • 13
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Forster J, Famili I, Fu P, Palsson BO, Nielsen J. 2003. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244-253. http://dx.doi.org/10.1101/gr.234503.
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Forster, J.1    Famili, I.2    Fu, P.3    Palsson, B.O.4    Nielsen, J.5
  • 14
    • 0347506028 scopus 로고    scopus 로고
    • It is all about metabolic fluxes
    • Nielsen J. 2003. It is all about metabolic fluxes. J Bacteriol 185:7031-7035. http://dx.doi.org/10.1128/JB.185.24.7031-7035.2003.
    • (2003) J Bacteriol , vol.185 , pp. 7031-7035
    • Nielsen, J.1
  • 15
    • 0034057725 scopus 로고    scopus 로고
    • In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria
    • Overkamp KM, Bakker BM, Kötter P, Van Tuijl A, de Vries S, Van Dijken JP, Pronk JT. 2000. In vivo analysis of the mechanisms for oxidation of cytosolic NADH by Saccharomyces cerevisiae mitochondria. J Bacteriol 182: 2823-2830. http://dx.doi.org/10.1128/JB.182.10.2823-2830.2000.
    • (2000) J Bacteriol , vol.182 , pp. 2823-2830
    • Overkamp, K.M.1    Bakker, B.M.2    Kötter, P.3    Van Tuijl, A.4    de Vries, S.5    Van Dijken, J.P.6    Pronk, J.T.7
  • 16
    • 0022507007 scopus 로고
    • Redox balances in the metabolism of sugar by yeast
    • van Dijken JP, Sheffers WA. 1986. Redox balances in the metabolism of sugar by yeast. FEMS Microbiol Rev 32:199-224. http://dx.doi.org/10.1111/j.1574-6968.1986.tb01188.x.
    • (1986) FEMS Microbiol Rev , vol.32 , pp. 199-224
    • van Dijken, J.P.1    Sheffers, W.A.2
  • 17
    • 49349100455 scopus 로고    scopus 로고
    • Redox control and oxidative stress in yeast cells
    • Herrero H, Ros J, Bellí G, Cabiscol E. 2008. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780:1217-1235. http://dx.doi.org/10.1016/j.bbagen.2007.12.004.
    • (2008) Biochim Biophys Acta , vol.1780 , pp. 1217-1235
    • Herrero, H.1    Ros, J.2    Bellí, G.3    Cabiscol, E.4
  • 18
    • 4344560522 scopus 로고    scopus 로고
    • +-dependent Ald6p and Ald5p isoforms play a major role in acetate formation
    • +-dependent Ald6p and Ald5p isoforms play a major role in acetate formation. Microbiology 150:2209-2220. http://dx.doi.org/10.1099/mic.0.26999-0.
    • (2004) Microbiology , vol.150 , pp. 2209-2220
    • Saint-Prix, F.1    Bönquist, L.2    Dequin, S.3
  • 19
    • 0344466725 scopus 로고    scopus 로고
    • Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway
    • Remize F, Cambon B, Barnavon L, Dequin S. 2003. Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 20:1243-1253. http://dx.doi.org/10.1002/yea.1041.
    • (2003) Yeast , vol.20 , pp. 1243-1253
    • Remize, F.1    Cambon, B.2    Barnavon, L.3    Dequin, S.4
  • 20
    • 33746891860 scopus 로고    scopus 로고
    • 2O-forming NADH oxidase and impact on redox metabolism
    • 2O-forming NADH oxidase and impact on redox metabolism. Metab Eng 8:303-314. http://dx.doi.org/10.1016/j.ymben.2005.12.003.
    • (2006) Metab Eng , vol.8 , pp. 303-314
    • Heux, S.1    Cachon, R.2    Dequin, S.3
  • 21
    • 70349319678 scopus 로고    scopus 로고
    • Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis
    • Ehsani M, Fernandez MR, Biosca JA, Dequin S. 2009. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisiae and in vivo functional analysis. Biotechnol Bioeng 104:381-389. http://dx.doi.org/10.1002/bit.22391.
    • (2009) Biotechnol Bioeng , vol.104 , pp. 381-389
    • Ehsani, M.1    Fernandez, M.R.2    Biosca, J.A.3    Dequin, S.4
  • 22
    • 84865574629 scopus 로고    scopus 로고
    • A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation
    • Celton M, Sanchez I, Goelzer A, Fromion V, Camarasa C, Dequin S. 2012. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation. BMC Genomics 13:317. http://dx.doi.org/10.1186/1471-2164-13-317.
    • (2012) BMC Genomics , vol.13 , pp. 317
    • Celton, M.1    Sanchez, I.2    Goelzer, A.3    Fromion, V.4    Camarasa, C.5    Dequin, S.6
  • 23
    • 84862182291 scopus 로고    scopus 로고
    • A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae
    • Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S. 2012. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng 14: 366-379. http://dx.doi.org/10.1016/j.ymben.2012.03.008.
    • (2012) Metab Eng , vol.14 , pp. 366-379
    • Celton, M.1    Goelzer, A.2    Camarasa, C.3    Fromion, V.4    Dequin, S.5
  • 24
    • 68049137324 scopus 로고    scopus 로고
    • Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae
    • Hou J, Lages NF, Oldiges M, Vemuri GN. 2009. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae. Metab Eng 11: 253-261. http://dx.doi.org/10.1016/j.ymben.2009.05.001.
    • (2009) Metab Eng , vol.11 , pp. 253-261
    • Hou, J.1    Lages, N.F.2    Oldiges, M.3    Vemuri, G.N.4
  • 25
    • 33745886499 scopus 로고    scopus 로고
    • The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavor profiles of wine and distillates
    • Lilly M, Bauer FF, Styger G, Lambrechts MG, Pretorius IS. 2006. The effect of increased branched-chain amino acid transaminase activity in yeast on the production of higher alcohols and on the flavor profiles of wine and distillates. FEMS Yeast Res 6:726-743. http://dx.doi.org/10.1111/j.1567-1364.2006.00057.x.
    • (2006) FEMS Yeast Res , vol.6 , pp. 726-743
    • Lilly, M.1    Bauer, F.F.2    Styger, G.3    Lambrechts, M.G.4    Pretorius, I.S.5
  • 26
    • 42349106782 scopus 로고    scopus 로고
    • The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism
    • Hazelwood LA, Daran JM, van Maris AJA, Pronk JT, Dickinson JR. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259-2266. http://dx.doi.org/10.1128/AEM.02625-07.
    • (2008) Appl Environ Microbiol , vol.74 , pp. 2259-2266
    • Hazelwood, L.A.1    Daran, J.M.2    van Maris, A.J.A.3    Pronk, J.T.4    Dickinson, J.R.5
  • 27
    • 84860277762 scopus 로고    scopus 로고
    • Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae
    • Fariña L, Medina K, Urruty M, Boido E, Dellacassa E, Carrau F. 2012. Redox effect on volatile compound formation in wine during fermentation by Saccharomyces cerevisiae. Food Chem 134:933-939. http://dx.doi.org/10.1016/j.foodchem.2012.02.209.
    • (2012) Food Chem , vol.134 , pp. 933-939
    • Fariña, L.1    Medina, K.2    Urruty, M.3    Boido, E.4    Dellacassa, E.5    Carrau, F.6
  • 28
    • 84856274909 scopus 로고    scopus 로고
    • +-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant
    • +-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Appl Microbiol Biotechnol 93:131-141. http://dx.doi.org/10.1007/s00253-011-3431-z.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 131-141
    • Jain, V.K.1    Divol, B.2    Prior, B.A.3    Bauer, F.F.4
  • 30
    • 66249090878 scopus 로고    scopus 로고
    • Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae
    • Ehsani M, Fernández MR, Biosca JA, Julien A, Dequin S. 2009. Engineering of 2,3-butanediol dehydrogenase to reduce acetoin formation by glycerol-overproducing, low-alcohol Saccharomyces cerevisiae. Appl Environ Microbiol 75:3196-3205. http://dx.doi.org/10.1128/AEM.02157-08.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3196-3205
    • Ehsani, M.1    Fernández, M.R.2    Biosca, J.A.3    Julien, A.4    Dequin, S.5
  • 31
    • 0025092445 scopus 로고
    • Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions
    • Bely M, Sablayrolles JM, Barre P. 1990. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferment Bioeng 70:246-252. http://dx.doi.org/10.1016/0922-338X(90)90057-4.
    • (1990) J Ferment Bioeng , vol.70 , pp. 246-252
    • Bely, M.1    Sablayrolles, J.M.2    Barre, P.3
  • 32
    • 84868623615 scopus 로고    scopus 로고
    • Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases
    • Crépin L, Nidelet T, Sanchez I, Dequin S, Camarasa C. 2012. Sequential use of nitrogen compounds by Saccharomyces cerevisiae during wine fermentation: a model based on kinetic and regulation characteristics of nitrogen permeases. Appl Environ Microbiol 78:8102-8111. http://dx.doi.org/10.1128/AEM.02294-12.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8102-8111
    • Crépin, L.1    Nidelet, T.2    Sanchez, I.3    Dequin, S.4    Camarasa, C.5
  • 36
    • 0029786406 scopus 로고    scopus 로고
    • Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation
    • Albers E, Larsson C, Liden G, Niklasson C, Gustafsson L. 1996. Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation. Appl Environ Microbiol 62:3187-3195.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 3187-3195
    • Albers, E.1    Larsson, C.2    Liden, G.3    Niklasson, C.4    Gustafsson, L.5
  • 39
    • 0036353078 scopus 로고    scopus 로고
    • Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics
    • Roustan JL, Sablayrolles JM. 2002. Modification of the acetaldehyde concentration during alcoholic fermentation and effects on fermentation kinetics. J Biosci Bioeng 93:367-375. http://dx.doi.org/10.1016/S1389-1723(02)80069-X.
    • (2002) J Biosci Bioeng , vol.93 , pp. 367-375
    • Roustan, J.L.1    Sablayrolles, J.M.2
  • 40
    • 0019323618 scopus 로고
    • Alpha-isopropylmalate synthase from yeast: a zinc metalloenzyme
    • Roeder PR, Kohlhaw GB. 1980. Alpha-isopropylmalate synthase from yeast: a zinc metalloenzyme. Biochim Biophys Acta 613:482-487. http://dx.doi.org/10.1016/0005-2744(80)90103-5.
    • (1980) Biochim Biophys Acta , vol.613 , pp. 482-487
    • Roeder, P.R.1    Kohlhaw, G.B.2
  • 41
    • 84901808659 scopus 로고    scopus 로고
    • Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains
    • Lian J, Si T, Nair N, Zhao H. 2014. Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metab Eng 24:139-149. http://dx.doi.org/10.1016/j.ymben.2014.05.010.
    • (2014) Metab Eng , vol.24 , pp. 139-149
    • Lian, J.1    Si, T.2    Nair, N.3    Zhao, H.4
  • 42
    • 0015352869 scopus 로고
    • α-Isopropylmalate synthase from yeast: purification, kinetic studies, and effect of ligands on stability
    • Ulm EH, Böhme R, Kohlhaw G. 1972. α-Isopropylmalate synthase from yeast: purification, kinetic studies, and effect of ligands on stability. J Bacteriol 110:1118-1126.
    • (1972) J Bacteriol , vol.110 , pp. 1118-1126
    • Ulm, E.H.1    Böhme, R.2    Kohlhaw, G.3
  • 43
    • 33947286240 scopus 로고    scopus 로고
    • Fatty acid synthesis and elongation in yeast
    • Tehlivets O, Scheuringer K, Kohlwein SD. 2007. Fatty acid synthesis and elongation in yeast. Biochim Biophys Acta 1771:255-270. http://dx.doi.org/10.1016/j.bbalip.2006.07.004.
    • (2007) Biochim Biophys Acta , vol.1771 , pp. 255-270
    • Tehlivets, O.1    Scheuringer, K.2    Kohlwein, S.D.3
  • 44
    • 77953604488 scopus 로고    scopus 로고
    • Production and biological function of volatile esters in Saccharomyces cerevisiae
    • Saerens SM, Delvaux FR, Verstrepen KJ, Thevelein JM. 2010. Production and biological function of volatile esters in Saccharomyces cerevisiae. Microb Biotechnol 3:165-177. http://dx.doi.org/10.1111/j.1751-7915.2009.00106.x.
    • (2010) Microb Biotechnol , vol.3 , pp. 165-177
    • Saerens, S.M.1    Delvaux, F.R.2    Verstrepen, K.J.3    Thevelein, J.M.4
  • 45
    • 33645236555 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity
    • Saerens SM, Verstrepen KJ, Van Laere SD, Van Dijck P, Delvaux FR, Thevelein JM. 2006. The Saccharomyces cerevisiae EHT1 and EEB1 genes encode novel enzymes with medium-chain fatty acid ethyl ester synthesis and hydrolysis capacity. J Biol Chem 281:4446-4456. http://dx.doi.org/10.1074/jbc.M512028200.
    • (2006) J Biol Chem , vol.281 , pp. 4446-4456
    • Saerens, S.M.1    Verstrepen, K.J.2    Van Laere, S.D.3    Van Dijck, P.4    Delvaux, F.R.5    Thevelein, J.M.6
  • 46
    • 0026012220 scopus 로고
    • Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway
    • Braus GH. 1991. Aromatic amino acid biosynthesis in the yeast Saccharomyces cerevisiae: a model system for the regulation of a eukaryotic biosynthetic pathway. Microbiol Rev 55:349-370.
    • (1991) Microbiol Rev , vol.55 , pp. 349-370
    • Braus, G.H.1
  • 47
    • 0024839980 scopus 로고
    • Purification and properties of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (phenylalanine-inhibitable) of Saccharomyces cerevisiae
    • Paravicini G, Schmidhetni T, Braus G. 1989. Purification and properties of the 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase (phenylalanine-inhibitable) of Saccharomyces cerevisiae. Eur J Biochem 186:361-366. http://dx.doi.org/10.1111/j.1432-1033.1989.tb15217.x.
    • (1989) Eur J Biochem , vol.186 , pp. 361-366
    • Paravicini, G.1    Schmidhetni, T.2    Braus, G.3
  • 48
    • 0031457095 scopus 로고    scopus 로고
    • Metabolism of sulfur amino acids in Saccharomyces cerevisiae
    • Thomas D, Surdin-Kerjan Y. 1997. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503-532.
    • (1997) Microbiol Mol Biol Rev , vol.61 , pp. 503-532
    • Thomas, D.1    Surdin-Kerjan, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.