메뉴 건너뛰기




Volumn 29, Issue 1, 2014, Pages 99-106

Microbial tolerance engineering toward biochemical production: From lignocellulose to products

Author keywords

[No Author keywords available]

Indexed keywords

CELLULOSE; CHEMICAL COMPOUNDS; CHEMICALS; LIGNIN;

EID: 84905757148     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2014.03.005     Document Type: Review
Times cited : (89)

References (67)
  • 1
    • 84886948663 scopus 로고    scopus 로고
    • Microbial production of short-chain alkanes
    • Choi Y.J., Lee S.Y. Microbial production of short-chain alkanes. Nature 2013, 502:571-574.
    • (2013) Nature , vol.502 , pp. 571-574
    • Choi, Y.J.1    Lee, S.Y.2
  • 2
    • 84877256074 scopus 로고    scopus 로고
    • Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols
    • Avalos J.L., Fink G.R., Stephanopoulos G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat Biotechnol 2013, 31:335-341.
    • (2013) Nat Biotechnol , vol.31 , pp. 335-341
    • Avalos, J.L.1    Fink, G.R.2    Stephanopoulos, G.3
  • 3
    • 84887618970 scopus 로고    scopus 로고
    • Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks
    • Chen Y., Nielsen J. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr Opin Biotechnol 2013, 24:965-972.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 965-972
    • Chen, Y.1    Nielsen, J.2
  • 4
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran K.A., Leavitt J.M., Karim A.S., Alper H.S. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 2013, 15:55-66.
    • (2013) Metab Eng , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.M.2    Karim, A.S.3    Alper, H.S.4
  • 6
    • 84872172091 scopus 로고    scopus 로고
    • Metabolic engineering of microorganisms for the synthesis of plant natural products
    • Marienhagen J., Bott M. Metabolic engineering of microorganisms for the synthesis of plant natural products. J Biotechnol 2013, 163:166-178.
    • (2013) J Biotechnol , vol.163 , pp. 166-178
    • Marienhagen, J.1    Bott, M.2
  • 7
    • 77953022341 scopus 로고    scopus 로고
    • A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation
    • Nicolaou S.A., Gaida S.M., Papoutsakis E.T. A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: from biofuels and chemicals, to biocatalysis and bioremediation. Metab Eng 2010, 12:307-331.
    • (2010) Metab Eng , vol.12 , pp. 307-331
    • Nicolaou, S.A.1    Gaida, S.M.2    Papoutsakis, E.T.3
  • 8
    • 84882604844 scopus 로고    scopus 로고
    • Microbial engineering strategies to improve cell viability for biochemical production
    • Lo T.M., Teo W.S., Ling H., Chen B., Kang A., Chang M.W. Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol Adv 2013, 31:903-914.
    • (2013) Biotechnol Adv , vol.31 , pp. 903-914
    • Lo, T.M.1    Teo, W.S.2    Ling, H.3    Chen, B.4    Kang, A.5    Chang, M.W.6
  • 9
    • 84882637876 scopus 로고    scopus 로고
    • Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals
    • Kim H.J., Turner T.L., Jin Y.S. Combinatorial genetic perturbation to refine metabolic circuits for producing biofuels and biochemicals. Biotechnol Adv 2013, 31:976-985.
    • (2013) Biotechnol Adv , vol.31 , pp. 976-985
    • Kim, H.J.1    Turner, T.L.2    Jin, Y.S.3
  • 10
    • 84867712304 scopus 로고    scopus 로고
    • Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering
    • Hasunuma T., Kondo A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol Adv 2012, 30:1207-1218.
    • (2012) Biotechnol Adv , vol.30 , pp. 1207-1218
    • Hasunuma, T.1    Kondo, A.2
  • 11
    • 84884791723 scopus 로고    scopus 로고
    • Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials
    • Ask M., Mapelli V., Hock H., Olsson L., Bettiga M. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials. Microb Cell Fact 2013, 12:87.
    • (2013) Microb Cell Fact , vol.12 , pp. 87
    • Ask, M.1    Mapelli, V.2    Hock, H.3    Olsson, L.4    Bettiga, M.5
  • 12
    • 84892374041 scopus 로고    scopus 로고
    • Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural
    • Hasunuma T., Ismail K.S., Nambu Y., Kondo A. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. J Biosci Bioeng 2014, 117:165-169.
    • (2014) J Biosci Bioeng , vol.117 , pp. 165-169
    • Hasunuma, T.1    Ismail, K.S.2    Nambu, Y.3    Kondo, A.4
  • 13
    • 84878836519 scopus 로고    scopus 로고
    • Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway
    • Ishii J., Yoshimura K., Hasunuma T., Kondo A. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Appl Microbiol Biotechnol 2013, 97:2597-2607.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 2597-2607
    • Ishii, J.1    Yoshimura, K.2    Hasunuma, T.3    Kondo, A.4
  • 14
    • 84880978562 scopus 로고    scopus 로고
    • Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress
    • Kim D., Hahn J.S. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol 2013, 79:5069-5077.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 5069-5077
    • Kim, D.1    Hahn, J.S.2
  • 15
    • 84867899766 scopus 로고    scopus 로고
    • Sm-like protein enhanced tolerance of recombinant Saccharomyces cerevisiae to inhibitors in hemicellulosic hydrolysate
    • Gao L., Xia L. Sm-like protein enhanced tolerance of recombinant Saccharomyces cerevisiae to inhibitors in hemicellulosic hydrolysate. Bioresour Technol 2012, 124:504-507.
    • (2012) Bioresour Technol , vol.124 , pp. 504-507
    • Gao, L.1    Xia, L.2
  • 16
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Tanaka K., Ishii Y., Ogawa J., Shima J. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol 2012, 78:8161-8163.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8161-8163
    • Tanaka, K.1    Ishii, Y.2    Ogawa, J.3    Shima, J.4
  • 17
    • 84858748257 scopus 로고    scopus 로고
    • Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural
    • Fujitomi K., Sanda T., Hasunuma T., Kondo A. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural. Bioresour Technol 2012, 111:161-166.
    • (2012) Bioresour Technol , vol.111 , pp. 161-166
    • Fujitomi, K.1    Sanda, T.2    Hasunuma, T.3    Kondo, A.4
  • 18
    • 84885439374 scopus 로고    scopus 로고
    • Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast
    • Wei N., Quarterman J., Kim S.R., Cate J.H., Jin Y.S. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nat Commun 2013, 4:2580.
    • (2013) Nat Commun , vol.4 , pp. 2580
    • Wei, N.1    Quarterman, J.2    Kim, S.R.3    Cate, J.H.4    Jin, Y.S.5
  • 19
    • 84864081563 scopus 로고    scopus 로고
    • Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA
    • Zheng H., Wang X., Yomano L.P., Shanmugam K.T., Ingram L.O. Increase in furfural tolerance in ethanologenic Escherichia coli LY180 by plasmid-based expression of thyA. Appl Environ Microbiol 2012, 78:4346-4352.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 4346-4352
    • Zheng, H.1    Wang, X.2    Yomano, L.P.3    Shanmugam, K.T.4    Ingram, L.O.5
  • 21
  • 22
    • 84879119602 scopus 로고    scopus 로고
    • Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering
    • Demeke M.M., Dietz H., Li Y., Foulquie-Moreno M.R., Mutturi S., Deprez S., Den Abt T., Bonini B.M., Liden G., Dumortier F., et al. Development of a d-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol Biofuels 2013, 6:89.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 89
    • Demeke, M.M.1    Dietz, H.2    Li, Y.3    Foulquie-Moreno, M.R.4    Mutturi, S.5    Deprez, S.6    Den Abt, T.7    Bonini, B.M.8    Liden, G.9    Dumortier, F.10
  • 23
    • 84883114857 scopus 로고    scopus 로고
    • Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
    • Demeke M.M., Dumortier F., Li Y., Broeckx T., Foulquie-Moreno M.R., Thevelein J.M. Combining inhibitor tolerance and d-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production. Biotechnol Biofuels 2013, 6:120.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 120
    • Demeke, M.M.1    Dumortier, F.2    Li, Y.3    Broeckx, T.4    Foulquie-Moreno, M.R.5    Thevelein, J.M.6
  • 24
    • 84864575136 scopus 로고    scopus 로고
    • Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass
    • Koppram R., Albers E., Olsson L. Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels 2012, 5:32.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 32
    • Koppram, R.1    Albers, E.2    Olsson, L.3
  • 25
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • Almario M.P., Reyes L.H., Kao K.C. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 2013, 110:2616-2623.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 2616-2623
    • Almario, M.P.1    Reyes, L.H.2    Kao, K.C.3
  • 26
    • 84874005730 scopus 로고    scopus 로고
    • 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production
    • Sehnem N.T., Machado Ada S., Leite F.C., Pita Wde B., de Morais M.A., Ayub M.A. 5-Hydroxymethylfurfural induces ADH7 and ARI1 expression in tolerant industrial Saccharomyces cerevisiae strain P6H9 during bioethanol production. Bioresour Technol 2013, 133:190-196.
    • (2013) Bioresour Technol , vol.133 , pp. 190-196
    • Sehnem, N.T.1    Machado Ada, S.2    Leite, F.C.3    Pita Wde, B.4    de Morais, M.A.5    Ayub, M.A.6
  • 27
    • 84868135591 scopus 로고    scopus 로고
    • Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates
    • Wang J., Zhang Y., Chen Y., Lin M., Lin Z. Global regulator engineering significantly improved Escherichia coli tolerances toward inhibitors of lignocellulosic hydrolysates. Biotechnol Bioeng 2012, 109:3133-3142.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 3133-3142
    • Wang, J.1    Zhang, Y.2    Chen, Y.3    Lin, M.4    Lin, Z.5
  • 28
    • 84877154575 scopus 로고    scopus 로고
    • Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions
    • Zheng H., Wang X., Yomano L.P., Geddes R.D., Shanmugam K.T., Ingram L.O. Improving Escherichia coli FucO for furfural tolerance by saturation mutagenesis of individual amino acid positions. Appl Environ Microbiol 2013, 79:3202-3208.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 3202-3208
    • Zheng, H.1    Wang, X.2    Yomano, L.P.3    Geddes, R.D.4    Shanmugam, K.T.5    Ingram, L.O.6
  • 29
    • 84876748183 scopus 로고    scopus 로고
    • Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process
    • Tomas A.F., Karagoz P., Karakashev D., Angelidaki I. Extreme thermophilic ethanol production from rapeseed straw: using the newly isolated Thermoanaerobacter pentosaceus and combining it with Saccharomyces cerevisiae in a two-step process. Biotechnol Bioeng 2013, 110:1574-1582.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 1574-1582
    • Tomas, A.F.1    Karagoz, P.2    Karakashev, D.3    Angelidaki, I.4
  • 30
    • 84885079037 scopus 로고    scopus 로고
    • Bacillus sp. strain P38: an efficient producer of l-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural
    • Peng L., Wang L., Che C., Yang G., Yu B., Ma Y. Bacillus sp. strain P38: an efficient producer of l-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Bioresour Technol 2013, 149:169-176.
    • (2013) Bioresour Technol , vol.149 , pp. 169-176
    • Peng, L.1    Wang, L.2    Che, C.3    Yang, G.4    Yu, B.5    Ma, Y.6
  • 32
    • 0034878313 scopus 로고    scopus 로고
    • Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene
    • Zhu M.M., Skraly F.A., Cameron D.C. Accumulation of methylglyoxal in anaerobically grown Escherichia coli and its detoxification by expression of the Pseudomonas putida glyoxalase I gene. Metab Eng 2001, 3:218-225.
    • (2001) Metab Eng , vol.3 , pp. 218-225
    • Zhu, M.M.1    Skraly, F.A.2    Cameron, D.C.3
  • 36
    • 79960697001 scopus 로고    scopus 로고
    • Organization of intracellular reactions with rationally designed RNA assemblies
    • Delebecque C.J., Lindner A.B., Silver P.A., Aldaye F.A. Organization of intracellular reactions with rationally designed RNA assemblies. Science 2011, 333:470-474.
    • (2011) Science , vol.333 , pp. 470-474
    • Delebecque, C.J.1    Lindner, A.B.2    Silver, P.A.3    Aldaye, F.A.4
  • 38
    • 84859780045 scopus 로고    scopus 로고
    • Spatial organization of enzymes for metabolic engineering
    • Lee H., DeLoache W.C., Dueber J.E. Spatial organization of enzymes for metabolic engineering. Metab Eng 2012, 14:242-251.
    • (2012) Metab Eng , vol.14 , pp. 242-251
    • Lee, H.1    DeLoache, W.C.2    Dueber, J.E.3
  • 39
    • 84869875863 scopus 로고    scopus 로고
    • Designing biological compartmentalization
    • Chen A.H., Silver P.A. Designing biological compartmentalization. Trends Cell Biol 2012, 22:662-670.
    • (2012) Trends Cell Biol , vol.22 , pp. 662-670
    • Chen, A.H.1    Silver, P.A.2
  • 40
    • 84864190737 scopus 로고    scopus 로고
    • Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation
    • Teixeira M.C., Godinho C.P., Cabrito T.R., Mira N.P., Sa-Correia I. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation. Microb Cell Fact 2012, 11:98.
    • (2012) Microb Cell Fact , vol.11 , pp. 98
    • Teixeira, M.C.1    Godinho, C.P.2    Cabrito, T.R.3    Mira, N.P.4    Sa-Correia, I.5
  • 41
    • 84872382030 scopus 로고    scopus 로고
    • GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns
    • Zingaro K.A., Terry Papoutsakis E. GroESL overexpression imparts Escherichia coli tolerance to i-, n-, and 2-butanol, 1,2,4-butanetriol and ethanol with complex and unpredictable patterns. Metab Eng 2013, 15:196-205.
    • (2013) Metab Eng , vol.15 , pp. 196-205
    • Zingaro, K.A.1    Terry Papoutsakis, E.2
  • 42
    • 84868351277 scopus 로고    scopus 로고
    • Toward a semisynthetic stress response system to engineer microbial solvent tolerance
    • e00308-12
    • Zingaro K.A., Papoutsakis E.T. Toward a semisynthetic stress response system to engineer microbial solvent tolerance. mBio 2012, 3. e00308-12.
    • (2012) mBio , vol.3
    • Zingaro, K.A.1    Papoutsakis, E.T.2
  • 44
    • 84863087495 scopus 로고    scopus 로고
    • Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum
    • Jia K., Zhang Y., Li Y. Identification and characterization of two functionally unknown genes involved in butanol tolerance of Clostridium acetobutylicum. PLoS ONE 2012, 7:e38815.
    • (2012) PLoS ONE , vol.7
    • Jia, K.1    Zhang, Y.2    Li, Y.3
  • 45
    • 84880334488 scopus 로고    scopus 로고
    • Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter
    • Lin L., Ji Y., Tu Q., Huang R., Teng L., Zeng X., Song H., Wang K., Zhou Q., Li Y., et al. Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter. Biotechnol Biofuels 2013, 6:103.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 103
    • Lin, L.1    Ji, Y.2    Tu, Q.3    Huang, R.4    Teng, L.5    Zeng, X.6    Song, H.7    Wang, K.8    Zhou, Q.9    Li, Y.10
  • 46
    • 85040956333 scopus 로고    scopus 로고
    • Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance
    • Ghiaci P., Norbeck J., Larsson C. Physiological adaptations of Saccharomyces cerevisiae evolved for improved butanol tolerance. Biotechnol Biofuels 2013, 6:101.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 101
    • Ghiaci, P.1    Norbeck, J.2    Larsson, C.3
  • 47
    • 84875642557 scopus 로고    scopus 로고
    • Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation
    • Gonzalez-Ramos D., van den Broek M., van Maris A.J., Pronk J.T., Daran J.M. Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnol Biofuels 2013, 6:48.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 48
    • Gonzalez-Ramos, D.1    van den Broek, M.2    van Maris, A.J.3    Pronk, J.T.4    Daran, J.M.5
  • 48
    • 84868103108 scopus 로고    scopus 로고
    • Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production
    • Kumari R., Pramanik K. Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production. J Biosci Bioeng 2012, 114:622-629.
    • (2012) J Biosci Bioeng , vol.114 , pp. 622-629
    • Kumari, R.1    Pramanik, K.2
  • 49
    • 84865711025 scopus 로고    scopus 로고
    • Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli
    • Reyes L.H., Almario M.P., Winkler J., Orozco M.M., Kao K.C. Visualizing evolution in real time to determine the molecular mechanisms of n-butanol tolerance in Escherichia coli. Metab Eng 2012, 14:579-590.
    • (2012) Metab Eng , vol.14 , pp. 579-590
    • Reyes, L.H.1    Almario, M.P.2    Winkler, J.3    Orozco, M.M.4    Kao, K.C.5
  • 50
    • 84884233339 scopus 로고    scopus 로고
    • Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors
    • Reyes L.H., Abdelaal A.S., Kao K.C. Genetic determinants for n-butanol tolerance in evolved Escherichia coli mutants: cross adaptation and antagonistic pleiotropy between n-butanol and other stressors. Appl Environ Microbiol 2013, 79:5313-5320.
    • (2013) Appl Environ Microbiol , vol.79 , pp. 5313-5320
    • Reyes, L.H.1    Abdelaal, A.S.2    Kao, K.C.3
  • 51
    • 84862853727 scopus 로고    scopus 로고
    • Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance
    • Zhang H., Chong H., Ching C.B., Song H., Jiang R. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Appl Microbiol Biotechnol 2012, 94:1107-1117.
    • (2012) Appl Microbiol Biotechnol , vol.94 , pp. 1107-1117
    • Zhang, H.1    Chong, H.2    Ching, C.B.3    Song, H.4    Jiang, R.5
  • 52
    • 84874571853 scopus 로고    scopus 로고
    • Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP)
    • Chong H., Huang L., Yeow J., Wang I., Zhang H., Song H., Jiang R. Improving ethanol tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS ONE 2013, 8:e57628.
    • (2013) PLoS ONE , vol.8
    • Chong, H.1    Huang, L.2    Yeow, J.3    Wang, I.4    Zhang, H.5    Song, H.6    Jiang, R.7
  • 53
    • 84874816614 scopus 로고    scopus 로고
    • Engineering improved ethanol production in Escherichia coli with a genome-wide approach
    • Woodruff L.B., Boyle N.R., Gill R.T. Engineering improved ethanol production in Escherichia coli with a genome-wide approach. Metab Eng 2013, 17:1-11.
    • (2013) Metab Eng , vol.17 , pp. 1-11
    • Woodruff, L.B.1    Boyle, N.R.2    Gill, R.T.3
  • 54
    • 84858441605 scopus 로고    scopus 로고
    • Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli
    • Warnecke T.E., Lynch M.D., Lipscomb M.L., Gill R.T. Identification of a 21 amino acid peptide conferring 3-hydroxypropionic acid stress-tolerance to Escherichia coli. Biotechnol Bioeng 2012, 109:1347-1352.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 1347-1352
    • Warnecke, T.E.1    Lynch, M.D.2    Lipscomb, M.L.3    Gill, R.T.4
  • 55
    • 80051664276 scopus 로고    scopus 로고
    • Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids
    • Cao Y., Lin X. Metabolically engineered Escherichia coli for biotechnological production of four-carbon 1,4-dicarboxylic acids. J Ind Microbiol Biotechnol 2011, 38:649-656.
    • (2011) J Ind Microbiol Biotechnol , vol.38 , pp. 649-656
    • Cao, Y.1    Lin, X.2
  • 56
    • 84861076549 scopus 로고    scopus 로고
    • Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress
    • Zhang J., Wu C.D., Du G.C., Chen J. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnol Bioprocess Eng 2012, 17:283-289.
    • (2012) Biotechnol Bioprocess Eng , vol.17 , pp. 283-289
    • Zhang, J.1    Wu, C.D.2    Du, G.C.3    Chen, J.4
  • 57
    • 84876466444 scopus 로고    scopus 로고
    • Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification
    • Ye L., Zhao H., Li Z., Wu J.C. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification. Bioresour Technol 2013, 135:459-463.
    • (2013) Bioresour Technol , vol.135 , pp. 459-463
    • Ye, L.1    Zhao, H.2    Li, Z.3    Wu, J.C.4
  • 58
    • 84856275260 scopus 로고    scopus 로고
    • A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance
    • Wu C.D., Zhang J., Chen W., Wang M., Du G.C., Chen J. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Appl Microbiol Biotechnol 2012, 93:707-722.
    • (2012) Appl Microbiol Biotechnol , vol.93 , pp. 707-722
    • Wu, C.D.1    Zhang, J.2    Chen, W.3    Wang, M.4    Du, G.C.5    Chen, J.6
  • 59
    • 84879802434 scopus 로고    scopus 로고
    • Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance
    • Ling H., Chen B., Kang A., Lee J.-M., Chang M.W. Transcriptome response to alkane biofuels in Saccharomyces cerevisiae: identification of efflux pumps involved in alkane tolerance. Biotechnol Biofuels 2013, 6:95.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 95
    • Ling, H.1    Chen, B.2    Kang, A.3    Lee, J.-M.4    Chang, M.W.5
  • 60
    • 84858016558 scopus 로고    scopus 로고
    • Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane
    • Kang A., Chang M.W. Identification and reconstitution of genetic regulatory networks for improved microbial tolerance to isooctane. Mol Biosyst 2012, 8:1350-1358.
    • (2012) Mol Biosyst , vol.8 , pp. 1350-1358
    • Kang, A.1    Chang, M.W.2
  • 61
    • 84874818199 scopus 로고    scopus 로고
    • Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae
    • Chen B.B., Ling H., Chang M.W. Transporter engineering for improved tolerance against alkane biofuels in Saccharomyces cerevisiae. Biotechnol Biofuels 2013, 6:21.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 21
    • Chen, B.B.1    Ling, H.2    Chang, M.W.3
  • 62
    • 84877878130 scopus 로고    scopus 로고
    • Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules
    • Foo J.L., Leong S.S. Directed evolution of an E. coli inner membrane transporter for improved efflux of biofuel molecules. Biotechnol Biofuels 2013, 6:81.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 81
    • Foo, J.L.1    Leong, S.S.2
  • 63
    • 84880893189 scopus 로고    scopus 로고
    • Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803
    • Zhu H., Ren X., Wang J., Song Z., Shi M., Qiao J., Tian X., Liu J., Chen L., Zhang W. Integrated OMICS guided engineering of biofuel butanol-tolerance in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 2013, 6:106.
    • (2013) Biotechnol Biofuels , vol.6 , pp. 106
    • Zhu, H.1    Ren, X.2    Wang, J.3    Song, Z.4    Shi, M.5    Qiao, J.6    Tian, X.7    Liu, J.8    Chen, L.9    Zhang, W.10
  • 64
    • 84872686526 scopus 로고    scopus 로고
    • Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol
    • Tian X.X., Chen L., Wang J.X., Qiao J.J., Zhang W.W. Quantitative proteomics reveals dynamic responses of Synechocystis sp. PCC 6803 to next-generation biofuel butanol. J Proteomics 2013, 78:326-345.
    • (2013) J Proteomics , vol.78 , pp. 326-345
    • Tian, X.X.1    Chen, L.2    Wang, J.X.3    Qiao, J.J.4    Zhang, W.W.5
  • 65
    • 84875542878 scopus 로고    scopus 로고
    • Towards a metabolic engineering strain "commons": an Escherichia coli platform strain for ethanol production
    • Woodruff L.B., May B.L., Warner J.R., Gill R.T. Towards a metabolic engineering strain "commons": an Escherichia coli platform strain for ethanol production. Biotechnol Bioeng 2013, 110:1520-1526.
    • (2013) Biotechnol Bioeng , vol.110 , pp. 1520-1526
    • Woodruff, L.B.1    May, B.L.2    Warner, J.R.3    Gill, R.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.