메뉴 건너뛰기




Volumn 13, Issue 1, 2014, Pages

Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose

Author keywords

DNA microarray; Ethanol production; Saccharomyces cerevisiae; Transcriptomics; Xylose fermentation

Indexed keywords

BATCH CELL CULTURE TECHNIQUES; BIOMASS; ERGOSTEROL; ETHANOL; GLUCOSE; GLUCOSYLTRANSFERASES; RECOMBINANT PROTEINS; SACCHAROMYCES CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEINS; SUBSTRATE SPECIFICITY; TRANSCRIPTOME; XYLOSE;

EID: 84892934934     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/1475-2859-13-16     Document Type: Article
Times cited : (60)

References (93)
  • 3
    • 68349109625 scopus 로고    scopus 로고
    • Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives
    • Matsushika A, Inoue H, Kodaki T, Sawayama S. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 2009, 84:37-53.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 37-53
    • Matsushika, A.1    Inoue, H.2    Kodaki, T.3    Sawayama, S.4
  • 4
    • 67649757165 scopus 로고    scopus 로고
    • Yeast metabolic engineering for hemicellulosic ethanol production
    • Van Vleet JH, Jeffries TW. Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol 2009, 20:300-306.
    • (2009) Curr Opin Biotechnol , vol.20 , pp. 300-306
    • Van Vleet, J.H.1    Jeffries, T.W.2
  • 5
    • 84862922807 scopus 로고    scopus 로고
    • Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives
    • Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: reflections and perspectives. Biotechnol J 2012, 7:34-46.
    • (2012) Biotechnol J , vol.7 , pp. 34-46
    • Cai, Z.1    Zhang, B.2    Li, Y.3
  • 6
    • 84883777615 scopus 로고    scopus 로고
    • Improving biomass sugar utilization by engineered Saccharomyces cerevisiae
    • Springer, Heidelberg, Germany: Microbiology Monographs, Liu ZL
    • Matsushika A, Liu ZL, Sawayama S, Moon J. Improving biomass sugar utilization by engineered Saccharomyces cerevisiae. Microbial Stress Tolerance for Biofuels. Volume 22 2012, 137-160. Springer, Heidelberg, Germany: Microbiology Monographs, Liu ZL.
    • (2012) Microbial Stress Tolerance for Biofuels. Volume 22 , pp. 137-160
    • Matsushika, A.1    Liu, Z.L.2    Sawayama, S.3    Moon, J.4
  • 7
    • 0027395082 scopus 로고
    • Xylose fermentation by Saccharomyces cerevisiae
    • Kötter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 1993, 38:776-783.
    • (1993) Appl Microbiol Biotechnol , vol.38 , pp. 776-783
    • Kötter, P.1    Ciriacy, M.2
  • 10
    • 0029909726 scopus 로고    scopus 로고
    • Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase
    • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 1996, 62:4648-4651.
    • (1996) Appl Environ Microbiol , vol.62 , pp. 4648-4651
    • Walfridsson, M.1    Bao, X.2    Anderlund, M.3    Lilius, G.4    Bülow, L.5    Hahn-Hägerdal, B.6
  • 12
    • 0242669383 scopus 로고    scopus 로고
    • Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus
    • Lönn A, Träff-Bjerre KL, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B. Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol 2003, 32:567-573.
    • (2003) Enzyme Microb Technol , vol.32 , pp. 567-573
    • Lönn, A.1    Träff-Bjerre, K.L.2    Cordero Otero, R.R.3    van Zyl, W.H.4    Hahn-Hägerdal, B.5
  • 13
    • 63949086429 scopus 로고    scopus 로고
    • Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol
    • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 2009, 82:1067-1078.
    • (2009) Appl Microbiol Biotechnol , vol.82 , pp. 1067-1078
    • Madhavan, A.1    Tamalampudi, S.2    Ushida, K.3    Kanai, D.4    Katahira, S.5    Srivastava, A.6    Fukuda, H.7    Bisaria, V.S.8    Kondo, A.9
  • 14
    • 33847202270 scopus 로고    scopus 로고
    • Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae
    • Karhumaa K, Garcia Sanchez R, Hahn-Hägerdal B, Gorwa-Grauslund MF. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 2007, 6:5.
    • (2007) Microb Cell Fact , vol.6 , pp. 5
    • Karhumaa, K.1    Garcia Sanchez, R.2    Hahn-Hägerdal, B.3    Gorwa-Grauslund, M.F.4
  • 16
    • 13244262739 scopus 로고    scopus 로고
    • Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation
    • Kuyper M, Hartog MM, Toirkens MJ, Almering MJ, Winkler AA, van Dijken JP, Pronk JT. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 2005, 5:399-409.
    • (2005) FEMS Yeast Res , vol.5 , pp. 399-409
    • Kuyper, M.1    Hartog, M.M.2    Toirkens, M.J.3    Almering, M.J.4    Winkler, A.A.5    van Dijken, J.P.6    Pronk, J.T.7
  • 17
    • 84869043924 scopus 로고    scopus 로고
    • Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae
    • Zhou H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metab Eng 2012, 14:611-622.
    • (2012) Metab Eng , vol.14 , pp. 611-622
    • Zhou, H.1    Cheng, J.S.2    Wang, B.L.3    Fink, G.R.4    Stephanopoulos, G.5
  • 19
    • 0037735189 scopus 로고    scopus 로고
    • DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast
    • Sedlak M, Edenberg HJ, Ho NWY. DNA microarray analysis of the expression of the genes encoding the major enzymes in ethanol production during glucose and xylose co-fermentation by metabolically engineered Saccharomyces yeast. Enzyme Microb Technol 2003, 33:19-28.
    • (2003) Enzyme Microb Technol , vol.33 , pp. 19-28
    • Sedlak, M.1    Edenberg, H.J.2    Ho, N.W.Y.3
  • 20
    • 0347297600 scopus 로고    scopus 로고
    • Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway
    • Wahlbom CF, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ. Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl Environ Microbiol 2003, 69:740-746.
    • (2003) Appl Environ Microbiol , vol.69 , pp. 740-746
    • Wahlbom, C.F.1    Cordero Otero, R.R.2    van Zyl, W.H.3    Hahn-Hägerdal, B.4    Jönsson, L.J.5
  • 22
    • 8744293844 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response
    • Jin YS, Laplaza JM, Jeffries TW. Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol 2004, 70:6816-6825.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 6816-6825
    • Jin, Y.S.1    Laplaza, J.M.2    Jeffries, T.W.3
  • 23
    • 2442641770 scopus 로고    scopus 로고
    • Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis
    • Sonderegger M, Jeppsson M, Hahn-Hägerdal B, Sauer U. Molecular basis for anaerobic growth of Saccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl Environ Microbiol 2004, 70:2307-2317.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 2307-2317
    • Sonderegger, M.1    Jeppsson, M.2    Hahn-Hägerdal, B.3    Sauer, U.4
  • 27
    • 70449428931 scopus 로고    scopus 로고
    • Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae
    • Runquist D, Hahn-Hägerdal B, Bettiga M. Increased expression of the oxidative pentose phosphate pathway and gluconeogenesis in anaerobically growing xylose-utilizing Saccharomyces cerevisiae. Microb Cell Fact 2009, 8:49.
    • (2009) Microb Cell Fact , vol.8 , pp. 49
    • Runquist, D.1    Hahn-Hägerdal, B.2    Bettiga, M.3
  • 28
    • 78649701348 scopus 로고    scopus 로고
    • Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis
    • Klimacek M, Krahulec S, Sauer U, Nidetzky B. Limitations in xylose-fermenting Saccharomyces cerevisiae, made evident through comprehensive metabolite profiling and thermodynamic analysis. Appl Environ Microbiol 2010, 76:7566-7574.
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7566-7574
    • Klimacek, M.1    Krahulec, S.2    Sauer, U.3    Nidetzky, B.4
  • 29
    • 84860907188 scopus 로고    scopus 로고
    • Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose
    • Bergdahl B, Heer D, Sauer U, Hahn-Hägerdal B, van Niel EW. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. Biotechnol Biofuels 2012, 5:34.
    • (2012) Biotechnol Biofuels , vol.5 , pp. 34
    • Bergdahl, B.1    Heer, D.2    Sauer, U.3    Hahn-Hägerdal, B.4    van Niel, E.W.5
  • 30
    • 84879993970 scopus 로고    scopus 로고
    • Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae
    • Matsushika A, Nagashima A, Goshima T, Hoshino T. Fermentation of xylose causes inefficient metabolic state due to carbon/energy starvation and reduced glycolytic flux in recombinant industrial Saccharomyces cerevisiae. PLoS ONE 2013, 8:e69005.
    • (2013) PLoS ONE , vol.8
    • Matsushika, A.1    Nagashima, A.2    Goshima, T.3    Hoshino, T.4
  • 31
    • 58649098156 scopus 로고    scopus 로고
    • Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae
    • Matsushika A, Inoue H, Murakami K, Takimura O, Sawayama S. Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol 2009, 100:2392-2398.
    • (2009) Bioresour Technol , vol.100 , pp. 2392-2398
    • Matsushika, A.1    Inoue, H.2    Murakami, K.3    Takimura, O.4    Sawayama, S.5
  • 32
    • 84879921223 scopus 로고    scopus 로고
    • Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production
    • Matsushika A, Sawayama S. Characterization of a recombinant flocculent Saccharomyces cerevisiae strain that co-ferments glucose and xylose: I. Influence of the ratio of glucose/xylose on ethanol production. Appl Biochem Biotechnol 2013, 169:712-721.
    • (2013) Appl Biochem Biotechnol , vol.169 , pp. 712-721
    • Matsushika, A.1    Sawayama, S.2
  • 33
    • 0027960968 scopus 로고
    • ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase
    • Hiser L, Basson ME, Rine J. ERG10 from Saccharomyces cerevisiae encodes acetoacetyl-CoA thiolase. J Biol Chem 1994, 269:31383-31389.
    • (1994) J Biol Chem , vol.269 , pp. 31383-31389
    • Hiser, L.1    Basson, M.E.2    Rine, J.3
  • 34
    • 1442283623 scopus 로고
    • Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase
    • Basson ME, Thorsness M, Rine J. Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Proc Natl Acad Sci U S A 1986, 83:5563-5567.
    • (1986) Proc Natl Acad Sci U S A , vol.83 , pp. 5563-5567
    • Basson, M.E.1    Thorsness, M.2    Rine, J.3
  • 35
    • 0029886899 scopus 로고    scopus 로고
    • ERG1, encoding squalene epoxidase, is located on the right arm of chromosome VII of Saccharomyces cerevisiae
    • Landl KM, Klösch B, Turnowsky F. ERG1, encoding squalene epoxidase, is located on the right arm of chromosome VII of Saccharomyces cerevisiae. Yeast 1996, 12:609-613.
    • (1996) Yeast , vol.12 , pp. 609-613
    • Landl, K.M.1    Klösch, B.2    Turnowsky, F.3
  • 37
    • 0002587184 scopus 로고
    • Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium
    • Andreasen AA, Stier TJ. Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirement for growth in a defined medium. J Cell Physiol 1953, 41:23-36.
    • (1953) J Cell Physiol , vol.41 , pp. 23-36
    • Andreasen, A.A.1    Stier, T.J.2
  • 38
    • 0034132303 scopus 로고    scopus 로고
    • Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast
    • Inoue T, Iefuji H, Fujii T, Soga H, Satoh K. Cloning and characterization of a gene complementing the mutation of an ethanol-sensitive mutant of sake yeast. Biosci Biotechnol Biochem 2000, 64:229-236.
    • (2000) Biosci Biotechnol Biochem , vol.64 , pp. 229-236
    • Inoue, T.1    Iefuji, H.2    Fujii, T.3    Soga, H.4    Satoh, K.5
  • 39
    • 0030763448 scopus 로고    scopus 로고
    • The effect of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cerevisiae
    • Mauricio JC, Moreno J, Zea L, Ortega JM, Medina M. The effect of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cerevisiae. J Sci Food Agr 1997, 75:155-160.
    • (1997) J Sci Food Agr , vol.75 , pp. 155-160
    • Mauricio, J.C.1    Moreno, J.2    Zea, L.3    Ortega, J.M.4    Medina, M.5
  • 40
    • 0024306198 scopus 로고
    • Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae
    • Thorsness M, Schafer W, D'Ari L, Rine J. Positive and negative transcriptional control by heme of genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Mol Cell Biol 1989, 9:5702-5712.
    • (1989) Mol Cell Biol , vol.9 , pp. 5702-5712
    • Thorsness, M.1    Schafer, W.2    D'Ari, L.3    Rine, J.4
  • 41
    • 0033553144 scopus 로고    scopus 로고
    • Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae
    • Kennedy MA, Barbuch R, Bard M. Transcriptional regulation of the squalene synthase gene (ERG9) in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1999, 1445:110-122.
    • (1999) Biochim Biophys Acta , vol.1445 , pp. 110-122
    • Kennedy, M.A.1    Barbuch, R.2    Bard, M.3
  • 42
    • 6944233429 scopus 로고    scopus 로고
    • A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast
    • Tamura K, Gu Y, Wang Q, Yamada T, Ito K, Shimoi H. A hap1 mutation in a laboratory strain of Saccharomyces cerevisiae results in decreased expression of ergosterol-related genes and cellular ergosterol content compared to sake yeast. J Biosci Bioeng 2004, 98:159-166.
    • (2004) J Biosci Bioeng , vol.98 , pp. 159-166
    • Tamura, K.1    Gu, Y.2    Wang, Q.3    Yamada, T.4    Ito, K.5    Shimoi, H.6
  • 43
    • 0035339662 scopus 로고    scopus 로고
    • The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae
    • Rodríguez A, De La Cera T, Herrero P, Moreno F. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae. Biochem J 2001, 355:625-631.
    • (2001) Biochem J , vol.355 , pp. 625-631
    • Rodríguez, A.1    De La Cera, T.2    Herrero, P.3    Moreno, F.4
  • 44
    • 0035137389 scopus 로고    scopus 로고
    • The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins
    • Delgado ML, O'Connor JE, Azorín I, Renau-Piqueras J, Gil ML, Gozalbo D. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the Saccharomyces cerevisiae TDH1, TDH2 and TDH3 genes are also cell wall proteins. Microbiology 2001, 147:411-417.
    • (2001) Microbiology , vol.147 , pp. 411-417
    • Delgado, M.L.1    O'Connor, J.E.2    Azorín, I.3    Renau-Piqueras, J.4    Gil, M.L.5    Gozalbo, D.6
  • 45
    • 0036799466 scopus 로고    scopus 로고
    • Putative xylose and arabinose reductases in Saccharomyces cerevisiae
    • Träff KL, Jönsson LJ, Hahn-Hägerdal B. Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 2002, 19:1233-1241.
    • (2002) Yeast , vol.19 , pp. 1233-1241
    • Träff, K.L.1    Jönsson, L.J.2    Hahn-Hägerdal, B.3
  • 46
    • 0032769768 scopus 로고    scopus 로고
    • Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase
    • Richard P, Toivari MH, Penttilä M. Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 1999, 457:135-138.
    • (1999) FEBS Lett , vol.457 , pp. 135-138
    • Richard, P.1    Toivari, M.H.2    Penttilä, M.3
  • 47
    • 0029829625 scopus 로고    scopus 로고
    • Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress
    • Juhnke H, Krems B, Kötter P, Entian KD. Mutants that show increased sensitivity to hydrogen peroxide reveal an important role for the pentose phosphate pathway in protection of yeast against oxidative stress. Mol Gen Genet 1996, 252:456-464.
    • (1996) Mol Gen Genet , vol.252 , pp. 456-464
    • Juhnke, H.1    Krems, B.2    Kötter, P.3    Entian, K.D.4
  • 48
    • 0029828902 scopus 로고    scopus 로고
    • The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection
    • Slekar KH, Kosman DJ, Culotta VC. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 1996, 271:28831-28836.
    • (1996) J Biol Chem , vol.271 , pp. 28831-28836
    • Slekar, K.H.1    Kosman, D.J.2    Culotta, V.C.3
  • 49
    • 84860836081 scopus 로고    scopus 로고
    • Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae
    • Matsushika A, Goshima T, Fujii T, Inoue H, Sawayama S, Yano S. Characterization of non-oxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 2012, 51:16-25.
    • (2012) Enzyme Microb Technol , vol.51 , pp. 16-25
    • Matsushika, A.1    Goshima, T.2    Fujii, T.3    Inoue, H.4    Sawayama, S.5    Yano, S.6
  • 50
    • 0033037610 scopus 로고    scopus 로고
    • The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons
    • Boy-Marcotte E, Lagniel G, Perrot M, Bussereau F, Boudsocq A, Jacquet M, Labarre J. The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol Microbiol 1999, 33:274-283.
    • (1999) Mol Microbiol , vol.33 , pp. 274-283
    • Boy-Marcotte, E.1    Lagniel, G.2    Perrot, M.3    Bussereau, F.4    Boudsocq, A.5    Jacquet, M.6    Labarre, J.7
  • 51
    • 67149094723 scopus 로고    scopus 로고
    • Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide
    • Kelley R, Ideker T. Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide. PLoS Genet 2009, 5:e1000488.
    • (2009) PLoS Genet , vol.5
    • Kelley, R.1    Ideker, T.2
  • 52
    • 0024713582 scopus 로고
    • Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer
    • Forsburg SL, Guarente L. Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 1989, 3:1166-1178.
    • (1989) Genes Dev , vol.3 , pp. 1166-1178
    • Forsburg, S.L.1    Guarente, L.2
  • 53
    • 0012739093 scopus 로고    scopus 로고
    • The Environmental Stress Response: a common yeast response to environmental stresses
    • Springer, Heidelberg, Germany: Topics in Current Genetics, Hohmann S
    • Gasch AP. The Environmental Stress Response: a common yeast response to environmental stresses. Yeast Stress Responses. Volume 1 2002, 11-70. Springer, Heidelberg, Germany: Topics in Current Genetics, Hohmann S.
    • (2002) Yeast Stress Responses. Volume 1 , pp. 11-70
    • Gasch, A.P.1
  • 54
    • 0037474301 scopus 로고    scopus 로고
    • The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur
    • Boer VM, de Winde JH, Pronk JT, Piper MD. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J Biol Chem 2003, 278:3265-3274.
    • (2003) J Biol Chem , vol.278 , pp. 3265-3274
    • Boer, V.M.1    de Winde, J.H.2    Pronk, J.T.3    Piper, M.D.4
  • 55
    • 0026606667 scopus 로고
    • Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1
    • Vallari RC, Cook WJ, Audino DC, Morgan MJ, Jensen DE, Laudano AP, Denis CL. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Mol Cell Biol 1992, 12:1663-1673.
    • (1992) Mol Cell Biol , vol.12 , pp. 1663-1673
    • Vallari, R.C.1    Cook, W.J.2    Audino, D.C.3    Morgan, M.J.4    Jensen, D.E.5    Laudano, A.P.6    Denis, C.L.7
  • 56
    • 0034875093 scopus 로고    scopus 로고
    • Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae
    • Walther K, Schüller HJ. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae. Microbiology 2001, 147:2037-2044.
    • (2001) Microbiology , vol.147 , pp. 2037-2044
    • Walther, K.1    Schüller, H.J.2
  • 57
    • 0030710569 scopus 로고    scopus 로고
    • Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6
    • Kratzer S, Schüller HJ. Transcriptional control of the yeast acetyl-CoA synthetase gene, ACS1, by the positive regulators CAT8 and ADR1 and the pleiotropic repressor UME6. Mol Microbiol 1997, 26:631-641.
    • (1997) Mol Microbiol , vol.26 , pp. 631-641
    • Kratzer, S.1    Schüller, H.J.2
  • 58
    • 0038269064 scopus 로고    scopus 로고
    • Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae
    • Buu LM, Chen YC, Lee FJ. Functional characterization and localization of acetyl-CoA hydrolase, Ach1p, in Saccharomyces cerevisiae. J Biol Chem 2003, 278:17203-17209.
    • (2003) J Biol Chem , vol.278 , pp. 17203-17209
    • Buu, L.M.1    Chen, Y.C.2    Lee, F.J.3
  • 59
    • 0033571212 scopus 로고    scopus 로고
    • Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion
    • Grauslund M, Lopes JM, Rønnow B. Expression of GUT1, which encodes glycerol kinase in Saccharomyces cerevisiae, is controlled by the positive regulators Adr1p, Ino2p and Ino4p and the negative regulator Opi1p in a carbon source-dependent fashion. Nucleic Acids Res 1999, 27:4391-4398.
    • (1999) Nucleic Acids Res , vol.27 , pp. 4391-4398
    • Grauslund, M.1    Lopes, J.M.2    Rønnow, B.3
  • 60
    • 0040951432 scopus 로고    scopus 로고
    • Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae
    • Grauslund M, Rønnow B. Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae. Can J Microbiol 2000, 46:1096-1100.
    • (2000) Can J Microbiol , vol.46 , pp. 1096-1100
    • Grauslund, M.1    Rønnow, B.2
  • 61
    • 0036738179 scopus 로고    scopus 로고
    • Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization
    • Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E. Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 2002, 148:2783-2788.
    • (2002) Microbiology , vol.148 , pp. 2783-2788
    • Hamacher, T.1    Becker, J.2    Gárdonyi, M.3    Hahn-Hägerdal, B.4    Boles, E.5
  • 62
    • 0030891998 scopus 로고    scopus 로고
    • Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
    • Reifenberger E, Boles E, Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 1997, 245:324-333.
    • (1997) Eur J Biochem , vol.245 , pp. 324-333
    • Reifenberger, E.1    Boles, E.2    Ciriacy, M.3
  • 63
    • 0035697196 scopus 로고    scopus 로고
    • Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae
    • Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K. Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 2001, 18:1515-1524.
    • (2001) Yeast , vol.18 , pp. 1515-1524
    • Diderich, J.A.1    Schuurmans, J.M.2    Van Gaalen, M.C.3    Kruckeberg, A.L.4    Van Dam, K.5
  • 64
    • 0032865543 scopus 로고    scopus 로고
    • Function and regulation of yeast hexose transporters
    • Ozcan S, Johnston M. Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 1999, 63:554-569.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 554-569
    • Ozcan, S.1    Johnston, M.2
  • 66
    • 12444258773 scopus 로고    scopus 로고
    • Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054
    • Wahlbom CF, van Zyl WH, Jönsson LJ, Hahn-Hägerdal B, Cordero Otero RR. Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 2003, 3:319-326.
    • (2003) FEMS Yeast Res , vol.3 , pp. 319-326
    • Wahlbom, C.F.1    van Zyl, W.H.2    Jönsson, L.J.3    Hahn-Hägerdal, B.4    Cordero Otero, R.R.5
  • 67
    • 0025004155 scopus 로고
    • Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins
    • Nehlin JO, Ronne H. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. EMBO J 1990, 9:2891-2898.
    • (1990) EMBO J , vol.9 , pp. 2891-2898
    • Nehlin, J.O.1    Ronne, H.2
  • 68
    • 0020047178 scopus 로고
    • Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation
    • Freese EB, Chu MI, Freese E. Initiation of yeast sporulation of partial carbon, nitrogen, or phosphate deprivation. J Bacteriol 1982, 149:840-851.
    • (1982) J Bacteriol , vol.149 , pp. 840-851
    • Freese, E.B.1    Chu, M.I.2    Freese, E.3
  • 69
    • 0023957764 scopus 로고
    • The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation
    • Law DT, Segall J. The SPS100 gene of Saccharomyces cerevisiae is activated late in the sporulation process and contributes to spore wall maturation. Mol Cell Biol 1988, 8:912-922.
    • (1988) Mol Cell Biol , vol.8 , pp. 912-922
    • Law, D.T.1    Segall, J.2
  • 70
    • 0028219588 scopus 로고
    • The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall
    • Briza P, Eckerstorfer M, Breitenbach M. The sporulation-specific enzymes encoded by the DIT1 and DIT2 genes catalyze a two-step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc Natl Acad Sci U S A 1994, 91:4524-4528.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 4524-4528
    • Briza, P.1    Eckerstorfer, M.2    Breitenbach, M.3
  • 71
    • 33847225551 scopus 로고    scopus 로고
    • Homologous subunits of 1,3-beta-glucan synthase are important for spore wall assembly in Saccharomyces cerevisiae
    • Ishihara S, Hirata A, Nogami S, Beauvais A, Latge JP, Ohya Y. Homologous subunits of 1,3-beta-glucan synthase are important for spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 2007, 6:143-156.
    • (2007) Eukaryot Cell , vol.6 , pp. 143-156
    • Ishihara, S.1    Hirata, A.2    Nogami, S.3    Beauvais, A.4    Latge, J.P.5    Ohya, Y.6
  • 72
    • 0036235137 scopus 로고    scopus 로고
    • Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae
    • Nickas ME, Neiman AM. Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae. Genetics 2002, 160:1439-1450.
    • (2002) Genetics , vol.160 , pp. 1439-1450
    • Nickas, M.E.1    Neiman, A.M.2
  • 74
    • 0029879360 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE)
    • Martínez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 1996, 15:2227-2235.
    • (1996) EMBO J , vol.15 , pp. 2227-2235
    • Martínez-Pastor, M.T.1    Marchler, G.2    Schüller, C.3    Marchler-Bauer, A.4    Ruis, H.5    Estruch, F.6
  • 75
    • 0030003064 scopus 로고    scopus 로고
    • Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae
    • Schmitt AP, McEntee K. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1996, 93:5777-5782.
    • (1996) Proc Natl Acad Sci U S A , vol.93 , pp. 5777-5782
    • Schmitt, A.P.1    McEntee, K.2
  • 76
    • 33751006150 scopus 로고    scopus 로고
    • The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives
    • Simões T, Mira NP, Fernandes AR, Sá-Correia I. The SPI1 gene, encoding a glycosylphosphatidylinositol-anchored cell wall protein, plays a prominent role in the development of yeast resistance to lipophilic weak-acid food preservatives. Appl Environ Microbiol 2006, 72:7168-7175.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 7168-7175
    • Simões, T.1    Mira, N.P.2    Fernandes, A.R.3    Sá-Correia, I.4
  • 77
    • 0030582719 scopus 로고    scopus 로고
    • Structure and functional analysis of the multistress response gene DDR2 from Saccharomyces cerevisiae
    • Kobayashi N, McClanahan TK, Simon JR, Treger JM, McEntee K. Structure and functional analysis of the multistress response gene DDR2 from Saccharomyces cerevisiae. Biochem Biophys Res Commun 1996, 229:540-547.
    • (1996) Biochem Biophys Res Commun , vol.229 , pp. 540-547
    • Kobayashi, N.1    McClanahan, T.K.2    Simon, J.R.3    Treger, J.M.4    McEntee, K.5
  • 78
    • 0029845539 scopus 로고    scopus 로고
    • Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control?
    • Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S, Van Dijck P, Thevelein JM. Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control?. Mol Gen Genet 1996, 252:470-482.
    • (1996) Mol Gen Genet , vol.252 , pp. 470-482
    • Winderickx, J.1    de Winde, J.H.2    Crauwels, M.3    Hino, A.4    Hohmann, S.5    Van Dijck, P.6    Thevelein, J.M.7
  • 79
    • 19044361932 scopus 로고    scopus 로고
    • Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae
    • Pereira MD, Eleutherio EC, Panek AD. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol 2001, 1:11.
    • (2001) BMC Microbiol , vol.1 , pp. 11
    • Pereira, M.D.1    Eleutherio, E.C.2    Panek, A.D.3
  • 80
    • 0031903291 scopus 로고    scopus 로고
    • GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae
    • Patton-Vogt JL, Henry SA. GIT1, a gene encoding a novel transporter for glycerophosphoinositol in Saccharomyces cerevisiae. Genetics 1998, 149:1707-1715.
    • (1998) Genetics , vol.149 , pp. 1707-1715
    • Patton-Vogt, J.L.1    Henry, S.A.2
  • 81
    • 27744505616 scopus 로고    scopus 로고
    • Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae
    • Fisher E, Almaguer C, Holic R, Griac P, Patton-Vogt J. Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae. J Biol Chem 2005, 280:36110-36117.
    • (2005) J Biol Chem , vol.280 , pp. 36110-36117
    • Fisher, E.1    Almaguer, C.2    Holic, R.3    Griac, P.4    Patton-Vogt, J.5
  • 82
    • 0030768746 scopus 로고    scopus 로고
    • Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae
    • Singleton CK. Identification and characterization of the thiamine transporter gene of Saccharomyces cerevisiae. Gene 1997, 199:111-121.
    • (1997) Gene , vol.199 , pp. 111-121
    • Singleton, C.K.1
  • 83
    • 0034995924 scopus 로고    scopus 로고
    • Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae
    • Hauser M, Narita V, Donhardt AM, Naider F, Becker JM. Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Mol Membr Biol 2001, 18:105-112.
    • (2001) Mol Membr Biol , vol.18 , pp. 105-112
    • Hauser, M.1    Narita, V.2    Donhardt, A.M.3    Naider, F.4    Becker, J.M.5
  • 84
    • 0025282180 scopus 로고
    • A third ADP/ATP translocator gene in yeast
    • Kolarov J, Kolarova N, Nelson N. A third ADP/ATP translocator gene in yeast. J Biol Chem 1990, 265:12711-12716.
    • (1990) J Biol Chem , vol.265 , pp. 12711-12716
    • Kolarov, J.1    Kolarova, N.2    Nelson, N.3
  • 86
    • 0024371971 scopus 로고
    • Mitochondrial H+-ATPase in mutants of Saccharomyces cerevisiae with defective subunit 8 of the enzyme complex
    • Marzuki S, Watkins LC, Choo WM. Mitochondrial H+-ATPase in mutants of Saccharomyces cerevisiae with defective subunit 8 of the enzyme complex. Biochim Biophys Acta 1989, 975:222-230.
    • (1989) Biochim Biophys Acta , vol.975 , pp. 222-230
    • Marzuki, S.1    Watkins, L.C.2    Choo, W.M.3
  • 87
    • 66249146380 scopus 로고    scopus 로고
    • Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene
    • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S. Efficient bioethanol production by recombinant flocculent Saccharomyces cerevisiae with genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol 2009, 75:3818-3822.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3818-3822
    • Matsushika, A.1    Inoue, H.2    Watanabe, S.3    Kodaki, T.4    Makino, K.5    Sawayama, S.6
  • 88
    • 55649111344 scopus 로고    scopus 로고
    • Expression of protein engineered NADP+-dependent xylitol dehydrogenase increase ethanol production from xylose in recombinant Saccharomyces cerevisiae
    • Matsushika A, Watanabe S, Kodaki T, Makino K, Inoue H, Murakami K, Takimura O, Sawayama S. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increase ethanol production from xylose in recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2008, 81:243-255.
    • (2008) Appl Microbiol Biotechnol , vol.81 , pp. 243-255
    • Matsushika, A.1    Watanabe, S.2    Kodaki, T.3    Makino, K.4    Inoue, H.5    Murakami, K.6    Takimura, O.7    Sawayama, S.8
  • 91
    • 70349684393 scopus 로고    scopus 로고
    • Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in L-lactate production by Saccharomyces cerevisiae
    • Hirasawa T, Ookubo A, Yoshikawa K, Nagahisa K, Furusawa C, Sawai H, Shimizu H. Investigating the effectiveness of DNA microarray analysis for identifying the genes involved in L-lactate production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2009, 84:1149-1159.
    • (2009) Appl Microbiol Biotechnol , vol.84 , pp. 1149-1159
    • Hirasawa, T.1    Ookubo, A.2    Yoshikawa, K.3    Nagahisa, K.4    Furusawa, C.5    Sawai, H.6    Shimizu, H.7
  • 92
    • 84860645101 scopus 로고    scopus 로고
    • Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes
    • Ueda Y, Ikushima S, Sugiyama M, Matoba R, Kaneko Y, Matsubara K, Harashima S. Large-scale genome reorganization in Saccharomyces cerevisiae through combinatorial loss of mini-chromosomes. J Biosci Bioeng 2012, 113:675-682.
    • (2012) J Biosci Bioeng , vol.113 , pp. 675-682
    • Ueda, Y.1    Ikushima, S.2    Sugiyama, M.3    Matoba, R.4    Kaneko, Y.5    Matsubara, K.6    Harashima, S.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.