메뉴 건너뛰기




Volumn 20, Issue 12, 2015, Pages 822-833

Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data

Author keywords

Functional mapping; High throughput phenotyping; Multiple locus method; Plant growth and development; Quantitative trait loci; Timecourse

Indexed keywords

BIOLOGICAL MODEL; CHROMOSOMAL MAPPING; GENETICS; GENOMICS; HIGH THROUGHPUT SCREENING; PHENOTYPE; PLANT; PLANT DEVELOPMENT; PROCEDURES; QUANTITATIVE TRAIT LOCUS; SINGLE NUCLEOTIDE POLYMORPHISM;

EID: 84952639430     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2015.08.012     Document Type: Review
Times cited : (61)

References (78)
  • 1
    • 67651108806 scopus 로고    scopus 로고
    • The genetics of quantitative traits: challenges and prospects
    • Mackay T.F.C., et al. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 2009, 5:565-577.
    • (2009) Nat. Rev. Genet. , vol.5 , pp. 565-577
    • Mackay, T.F.C.1
  • 2
    • 40949130394 scopus 로고    scopus 로고
    • Marker-assisted selection: an approach for precision plant breeding in twenty-first century
    • Collard B.C., Mackill D.J. Marker-assisted selection: an approach for precision plant breeding in twenty-first century. Philos. Trans. R. Soc. B 2008, 363:557-572.
    • (2008) Philos. Trans. R. Soc. B , vol.363 , pp. 557-572
    • Collard, B.C.1    Mackill, D.J.2
  • 3
    • 84907485370 scopus 로고    scopus 로고
    • Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding
    • He J., et al. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014, 5:484.
    • (2014) Front. Plant Sci. , vol.5 , pp. 484
    • He, J.1
  • 4
    • 84899750824 scopus 로고    scopus 로고
    • Natural variations and genome-wide association studies in crop plants
    • Huang X., Han B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 2014, 65:531-551.
    • (2014) Annu. Rev. Plant Biol. , vol.65 , pp. 531-551
    • Huang, X.1    Han, B.2
  • 5
    • 84876687614 scopus 로고    scopus 로고
    • Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity
    • Tisné S., et al. Phenoscope: an automated large-scale phenotyping platform offering high spatial homogeneity. Plant 2013, 74:534-544.
    • (2013) Plant , vol.74 , pp. 534-544
    • Tisné, S.1
  • 6
    • 84875426911 scopus 로고    scopus 로고
    • Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement
    • Cobb J.N., et al. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 2013, 126:867-887.
    • (2013) Theor. Appl. Genet. , vol.126 , pp. 867-887
    • Cobb, J.N.1
  • 7
    • 84868007874 scopus 로고    scopus 로고
    • Advanced phenotyping offers opportunities for improved breeding of forage and turf species
    • Walter A., et al. Advanced phenotyping offers opportunities for improved breeding of forage and turf species. Ann. Bot. 2012, 110:1271-1279.
    • (2012) Ann. Bot. , vol.110 , pp. 1271-1279
    • Walter, A.1
  • 8
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: the new crop breeding frontier
    • Araus J.L., Carns J.E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014, 19:52-61.
    • (2014) Trends Plant Sci. , vol.19 , pp. 52-61
    • Araus, J.L.1    Carns, J.E.2
  • 9
    • 84922203325 scopus 로고    scopus 로고
    • Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice
    • Yang W., et al. Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat. Commun. 2014, 5:5087.
    • (2014) Nat. Commun. , vol.5 , pp. 5087
    • Yang, W.1
  • 10
    • 84876939112 scopus 로고    scopus 로고
    • 3D phentyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture
    • Topp C.N., et al. 3D phentyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E1695-E1704.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E1695-E1704
    • Topp, C.N.1
  • 11
    • 84923536786 scopus 로고    scopus 로고
    • Light, camera, action: high-throughput plant phenotyping is ready for a close-up
    • Fahlgren N., et al. Light, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24:93-99.
    • (2015) Curr. Opin. Plant Biol. , vol.24 , pp. 93-99
    • Fahlgren, N.1
  • 12
    • 84899904146 scopus 로고    scopus 로고
    • Advanced imaging techniques for the study of plant growth and development
    • Sozzani R., et al. Advanced imaging techniques for the study of plant growth and development. Trends Plant Sci. 2014, 19:304-310.
    • (2014) Trends Plant Sci. , vol.19 , pp. 304-310
    • Sozzani, R.1
  • 13
    • 84908530182 scopus 로고    scopus 로고
    • A review of imaging techniques for plant phenotyping
    • Li L., et al. A review of imaging techniques for plant phenotyping. Sensors 2014, 14:20078-20111.
    • (2014) Sensors , vol.14 , pp. 20078-20111
    • Li, L.1
  • 14
    • 84873420422 scopus 로고    scopus 로고
    • Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems
    • Brien C.J., et al. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems. Plant Methods 2013, 9:5.
    • (2013) Plant Methods , vol.9 , pp. 5
    • Brien, C.J.1
  • 15
    • 84859570340 scopus 로고    scopus 로고
    • Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana
    • Zhang X., et al. Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3 2012, 2:29-34.
    • (2012) G3 , vol.2 , pp. 29-34
    • Zhang, X.1
  • 16
    • 84903637193 scopus 로고    scopus 로고
    • Functional approach to high-thoughput plant growth analysis
    • Tessmer O.L., et al. Functional approach to high-thoughput plant growth analysis. BMC Syst. Biol. 2013, 7:S17.
    • (2013) BMC Syst. Biol. , vol.7 , pp. S17
    • Tessmer, O.L.1
  • 17
    • 84887085019 scopus 로고    scopus 로고
    • High-throughput computer vision introduces the time axis to a quantitative trait map of a plant growth response
    • Moore C.R., et al. High-throughput computer vision introduces the time axis to a quantitative trait map of a plant growth response. Genetics 2013, 195:1077-1086.
    • (2013) Genetics , vol.195 , pp. 1077-1086
    • Moore, C.R.1
  • 18
    • 84961290867 scopus 로고    scopus 로고
    • Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis
    • Chen D., et al. Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell 2014, 26:4636-4655.
    • (2014) Plant Cell , vol.26 , pp. 4636-4655
    • Chen, D.1
  • 19
    • 84896108501 scopus 로고    scopus 로고
    • TraitCapture: genomic and environment modelling of plant phenomic data
    • Brown T.B., et al. TraitCapture: genomic and environment modelling of plant phenomic data. Curr. Opin. Plant Biol. 2014, 18:73-79.
    • (2014) Curr. Opin. Plant Biol. , vol.18 , pp. 73-79
    • Brown, T.B.1
  • 20
    • 84901284679 scopus 로고    scopus 로고
    • High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines
    • Honsdorf N., et al. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 2014, 9:e97047.
    • (2014) PLoS ONE , vol.9 , pp. e97047
    • Honsdorf, N.1
  • 22
    • 0024508964 scopus 로고
    • Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps
    • Lander E.S., Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 1989, 121:185-199.
    • (1989) Genetics , vol.121 , pp. 185-199
    • Lander, E.S.1    Botstein, D.2
  • 23
    • 0029022716 scopus 로고
    • Multiple trait analysis of genetic mapping for quantitative trait loci
    • Jiang C., Zeng Z-B. Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics 1995, 140:1111-1127.
    • (1995) Genetics , vol.140 , pp. 1111-1127
    • Jiang, C.1    Zeng, Z.-B.2
  • 24
    • 0036671301 scopus 로고    scopus 로고
    • Functional mapping of quantitative trait loci underlying the character process: a theoretical framework
    • Ma C., et al. Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 2002, 161:1751-1762.
    • (2002) Genetics , vol.161 , pp. 1751-1762
    • Ma, C.1
  • 25
    • 33644845428 scopus 로고    scopus 로고
    • Functional mapping-how to map and study the genetic architecture of dynamical complex traits
    • Wu R., Lin M. Functional mapping-how to map and study the genetic architecture of dynamical complex traits. Nat. Rev. Genet. 2006, 7:229-237.
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 229-237
    • Wu, R.1    Lin, M.2
  • 26
    • 72449170639 scopus 로고    scopus 로고
    • Mapping genes for plant structure, development and evolution: functional mapping meets ontology
    • He Q., et al. Mapping genes for plant structure, development and evolution: functional mapping meets ontology. Trends Genet. 2010, 26:39-46.
    • (2010) Trends Genet. , vol.26 , pp. 39-46
    • He, Q.1
  • 27
    • 84890887865 scopus 로고    scopus 로고
    • Modeling phenotypic plasticity in growth trajectories: a statistical framework
    • Wang Z., et al. Modeling phenotypic plasticity in growth trajectories: a statistical framework. Evolution 2013, 68:81-91.
    • (2013) Evolution , vol.68 , pp. 81-91
    • Wang, Z.1
  • 28
    • 0032840463 scopus 로고    scopus 로고
    • The genetic analysis of age-dependent traits: modelling the character process
    • Pletcher S.D., Geyer C.J. The genetic analysis of age-dependent traits: modelling the character process. Genetics 1999, 151:825-835.
    • (1999) Genetics , vol.151 , pp. 825-835
    • Pletcher, S.D.1    Geyer, C.J.2
  • 31
    • 84862002107 scopus 로고    scopus 로고
    • Functional unfold principal component analysis for automatic plant-based stress detection in grapevine
    • Baert A., et al. Functional unfold principal component analysis for automatic plant-based stress detection in grapevine. Funct. Plant Biol. 2012, 39:519-530.
    • (2012) Funct. Plant Biol. , vol.39 , pp. 519-530
    • Baert, A.1
  • 32
    • 84939123183 scopus 로고    scopus 로고
    • Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice
    • Campbell M.T., et al. Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol. 2015, 168:1476-1489.
    • (2015) Plant Physiol. , vol.168 , pp. 1476-1489
    • Campbell, M.T.1
  • 33
    • 80052648285 scopus 로고    scopus 로고
    • A flexible estimating equations approach for mapping function valued traits
    • Xiong H., et al. A flexible estimating equations approach for mapping function valued traits. Genetics 2011, 189:305-316.
    • (2011) Genetics , vol.189 , pp. 305-316
    • Xiong, H.1
  • 34
    • 78049438930 scopus 로고    scopus 로고
    • Functional mapping of quantitative trait loci associated with rice tillering
    • Liu G.F., et al. Functional mapping of quantitative trait loci associated with rice tillering. Mol. Genet. Genomics 2010, 284:263-271.
    • (2010) Mol. Genet. Genomics , vol.284 , pp. 263-271
    • Liu, G.F.1
  • 35
    • 84856218067 scopus 로고    scopus 로고
    • Dynamics of senescence-related QTLs in potato
    • Hurtado P.X., et al. Dynamics of senescence-related QTLs in potato. Euphytica 2011, 183:289-302.
    • (2011) Euphytica , vol.183 , pp. 289-302
    • Hurtado, P.X.1
  • 36
    • 84916925232 scopus 로고    scopus 로고
    • Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits
    • Li Z., et al. Functional multi-locus QTL mapping of temporal trends in Scots pine wood traits. G3 (Bethesda) 2014, 4:2365-2379.
    • (2014) G3 (Bethesda) , vol.4 , pp. 2365-2379
    • Li, Z.1
  • 37
    • 84870954129 scopus 로고    scopus 로고
    • Fast linear mixed model computations for genome-wide association studies with longitudinal data
    • Sikorska K., et al. Fast linear mixed model computations for genome-wide association studies with longitudinal data. Stat. Med. 2012, 32:165-180.
    • (2012) Stat. Med. , vol.32 , pp. 165-180
    • Sikorska, K.1
  • 38
    • 84905670643 scopus 로고    scopus 로고
    • A simple regression-based method to map quantitative trait loci underlying function-valued phenotypes
    • Kwak I.Y., et al. A simple regression-based method to map quantitative trait loci underlying function-valued phenotypes. Genetics 2014, 197:1409-1416.
    • (2014) Genetics , vol.197 , pp. 1409-1416
    • Kwak, I.Y.1
  • 39
    • 84867969427 scopus 로고    scopus 로고
    • A stage-wise approach for the analysis of multi-environment trials
    • Piepho H.P., et al. A stage-wise approach for the analysis of multi-environment trials. Biom. J. 2012, 54:844-860.
    • (2012) Biom. J. , vol.54 , pp. 844-860
    • Piepho, H.P.1
  • 40
    • 84897542602 scopus 로고    scopus 로고
    • 1-penalized estimators or high-dimensional time-course data
    • 1-penalized estimators or high-dimensional time-course data. Electron. J. Statist. 2007, 1:597-615.
    • (2007) Electron. J. Statist. , vol.1 , pp. 597-615
    • Meier, L.1    Bühlmann, P.2
  • 41
    • 0027247860 scopus 로고
    • Interval mapping of multiple quantitative trait loci
    • Jansen R.C. Interval mapping of multiple quantitative trait loci. Genetics 1993, 135:205-211.
    • (1993) Genetics , vol.135 , pp. 205-211
    • Jansen, R.C.1
  • 42
    • 84920935072 scopus 로고    scopus 로고
    • Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits
    • Yi H., et al. Penalized multimarker vs. single-marker regression methods for genome-wide association studies of quantitative traits. Genetics 2015, 199:205-222.
    • (2015) Genetics , vol.199 , pp. 205-222
    • Yi, H.1
  • 43
    • 84881038756 scopus 로고    scopus 로고
    • A Bayesian nonparametric approach for mapping dynamic quantitative traits
    • Li Z., Sillanpää M.J. A Bayesian nonparametric approach for mapping dynamic quantitative traits. Genetics 2013, 194:997-1016.
    • (2013) Genetics , vol.194 , pp. 997-1016
    • Li, Z.1    Sillanpää, M.J.2
  • 44
    • 0036606954 scopus 로고    scopus 로고
    • Model choice in gene mapping: what and why
    • Sillanpää M.J., Corander J. Model choice in gene mapping: what and why. Trends Genet. 2002, 18:301-307.
    • (2002) Trends Genet. , vol.18 , pp. 301-307
    • Sillanpää, M.J.1    Corander, J.2
  • 45
    • 84862991434 scopus 로고    scopus 로고
    • An effcient multi-locus mixed-model approach for genome-wide association studies in structured populations
    • Segura V., et al. An effcient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 2012, 44:825-830.
    • (2012) Nat. Genet. , vol.44 , pp. 825-830
    • Segura, V.1
  • 46
    • 84866898119 scopus 로고    scopus 로고
    • Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection
    • Li Z., Sillanpää M.J. Overview of LASSO-related penalized regression methods for quantitative trait mapping and genomic selection. Theor. Appl. Genet. 2012, 125:419-435.
    • (2012) Theor. Appl. Genet. , vol.125 , pp. 419-435
    • Li, Z.1    Sillanpää, M.J.2
  • 47
    • 69249230467 scopus 로고    scopus 로고
    • A review of Bayesian variable selection methods: What, how, and which?
    • O'Hara R.B., Sillanpää M.J. A review of Bayesian variable selection methods: What, how, and which?. Bayesian Anal. 2009, 4:85-118.
    • (2009) Bayesian Anal. , vol.4 , pp. 85-118
    • O'Hara, R.B.1    Sillanpää, M.J.2
  • 50
    • 0036433546 scopus 로고    scopus 로고
    • A model selection approach for the identification of quantitative trait loci in experimental crosses
    • Broman K.W., Speed T.P. A model selection approach for the identification of quantitative trait loci in experimental crosses. J. Roy. Statist. Soc. B 2002, 64:641-656.
    • (2002) J. Roy. Statist. Soc. B , vol.64 , pp. 641-656
    • Broman, K.W.1    Speed, T.P.2
  • 51
    • 84859876027 scopus 로고    scopus 로고
    • A sparse structured shrinkage estimator for nonparametric varying-coefficient model with an application in genomics
    • Daye Z.J., et al. A sparse structured shrinkage estimator for nonparametric varying-coefficient model with an application in genomics. J. Comput. Graph. Stat. 2012, 21:110-133.
    • (2012) J. Comput. Graph. Stat. , vol.21 , pp. 110-133
    • Daye, Z.J.1
  • 53
    • 34250748097 scopus 로고    scopus 로고
    • Bayesian shrinkage analysis of quantitative trait loci for dynamic traits
    • Yang R., Xu S. Bayesian shrinkage analysis of quantitative trait loci for dynamic traits. Genetics 2007, 176:1169-1185.
    • (2007) Genetics , vol.176 , pp. 1169-1185
    • Yang, R.1    Xu, S.2
  • 54
    • 84856066281 scopus 로고    scopus 로고
    • Simultaneous estimation of multiple quantitative trait loci and growth curve parameters through hierarchical Bayesian modeling
    • Sillanpää M.J., et al. Simultaneous estimation of multiple quantitative trait loci and growth curve parameters through hierarchical Bayesian modeling. Heredity 2012, 108:134-146.
    • (2012) Heredity , vol.108 , pp. 134-146
    • Sillanpää, M.J.1
  • 55
    • 78049484065 scopus 로고    scopus 로고
    • Penalized regression, standard errors, and Bayesian Lassos
    • Kyung M., et al. Penalized regression, standard errors, and Bayesian Lassos. Bayesian Anal. 2010, 4:369-412.
    • (2010) Bayesian Anal. , vol.4 , pp. 369-412
    • Kyung, M.1
  • 56
    • 84895791592 scopus 로고    scopus 로고
    • High-dimensional statistics with a view towards applications in biology
    • Bühlmann P., et al. High-dimensional statistics with a view towards applications in biology. Annu. Rev. Statist. Appl. 2014, 1:255-278.
    • (2014) Annu. Rev. Statist. Appl. , vol.1 , pp. 255-278
    • Bühlmann, P.1
  • 57
    • 74049114503 scopus 로고    scopus 로고
    • P-values for high-dimensional regression
    • Meinshausen N., et al. P-values for high-dimensional regression. J. Am. Stat. Assoc. 2009, 104:1671-1681.
    • (2009) J. Am. Stat. Assoc. , vol.104 , pp. 1671-1681
    • Meinshausen, N.1
  • 59
    • 84855469824 scopus 로고    scopus 로고
    • Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms
    • Li Z., Sillanpää M.J. Estimation of quantitative trait locus effects with epistasis by variational Bayes algorithms. Genetics 2012, 190:231-249.
    • (2012) Genetics , vol.190 , pp. 231-249
    • Li, Z.1    Sillanpää, M.J.2
  • 60
    • 84879828044 scopus 로고    scopus 로고
    • Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models
    • Mulder H.A., et al. Estimation of genetic variance for macro- and micro-environmental sensitivity using double hierarchical generalized linear models. Genet. Sel. Evol. 2013, 45:23.
    • (2013) Genet. Sel. Evol. , vol.45 , pp. 23
    • Mulder, H.A.1
  • 62
    • 84905236343 scopus 로고    scopus 로고
    • Testing environmental and genetic effects in the presence of spatial autocorrelation
    • Rousset F., Ferdy J-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 2014, 37:781-790.
    • (2014) Ecography , vol.37 , pp. 781-790
    • Rousset, F.1    Ferdy, J.-B.2
  • 63
    • 79251546452 scopus 로고    scopus 로고
    • Functional mapping of reaction norms to multiple environmental signals through nonparametric covariance estimation
    • Yap J.S., et al. Functional mapping of reaction norms to multiple environmental signals through nonparametric covariance estimation. BMC Plant Biol. 2011, 11:23.
    • (2011) BMC Plant Biol. , vol.11 , pp. 23
    • Yap, J.S.1
  • 64
    • 34548329945 scopus 로고    scopus 로고
    • Varietal selection for perennial crops where data relate to multiple harvests from a series of field trials
    • Smith A.B., et al. Varietal selection for perennial crops where data relate to multiple harvests from a series of field trials. Euphytica 2007, 157:253-266.
    • (2007) Euphytica , vol.157 , pp. 253-266
    • Smith, A.B.1
  • 65
    • 84946846678 scopus 로고    scopus 로고
    • A robust multiple-locus method for quantitative trait locus analysis of non-normally distributed multiple traits
    • Li Z., et al. A robust multiple-locus method for quantitative trait locus analysis of non-normally distributed multiple traits. Heredity 2015, 115:556-564.
    • (2015) Heredity , vol.115 , pp. 556-564
    • Li, Z.1
  • 66
    • 58549100058 scopus 로고    scopus 로고
    • A robust automated system elucidates mouse home cage behavioral structure
    • Goulding E.H., et al. A robust automated system elucidates mouse home cage behavioral structure. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:20575-20582.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 20575-20582
    • Goulding, E.H.1
  • 69
    • 35748946021 scopus 로고    scopus 로고
    • TASSEL: software for association mapping of complex traits in diverse samples
    • Bradbury P.J., et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 2012, 23:2633-2635.
    • (2012) Bioinformatics , vol.23 , pp. 2633-2635
    • Bradbury, P.J.1
  • 70
    • 0034536309 scopus 로고    scopus 로고
    • A mixed-model approach to mapping quantitative trait loci in Barley on the basis of multiple environmental data
    • Piepho H.P. A mixed-model approach to mapping quantitative trait loci in Barley on the basis of multiple environmental data. Genetics 2000, 156:2043-2050.
    • (2000) Genetics , vol.156 , pp. 2043-2050
    • Piepho, H.P.1
  • 71
    • 79957440192 scopus 로고    scopus 로고
    • Statistical analysis of genetic interactions
    • Yi N. Statistical analysis of genetic interactions. Genet. Res. 2010, 92:443-459.
    • (2010) Genet. Res. , vol.92 , pp. 443-459
    • Yi, N.1
  • 72
    • 84906943620 scopus 로고    scopus 로고
    • Genomic selection: genome-wide prediction in plant improvement
    • Desta Z.A., Ortiz R. Genomic selection: genome-wide prediction in plant improvement. Trends Plant Sci. 2014, 19:592-601.
    • (2014) Trends Plant Sci. , vol.19 , pp. 592-601
    • Desta, Z.A.1    Ortiz, R.2
  • 73
    • 79953059853 scopus 로고    scopus 로고
    • On statistical methods for estimating heritability in wild populations
    • Sillanpää M.J. On statistical methods for estimating heritability in wild populations. Mol. Ecol. 2011, 20:1324-1332.
    • (2011) Mol. Ecol. , vol.20 , pp. 1324-1332
    • Sillanpää, M.J.1
  • 74
    • 84930482469 scopus 로고    scopus 로고
    • Mapping complex traits as a dynamic system
    • Sun L., Wu R. Mapping complex traits as a dynamic system. Phys. Life Rev. 2015, 13:155-185.
    • (2015) Phys. Life Rev. , vol.13 , pp. 155-185
    • Sun, L.1    Wu, R.2
  • 75
    • 33646942472 scopus 로고
    • A simple regression method for mapping quantitative trait loci in line crosses using flanking markers
    • Haley C.S., Knott S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992, 69:315-324.
    • (1992) Heredity , vol.69 , pp. 315-324
    • Haley, C.S.1    Knott, S.A.2
  • 76
    • 64349091037 scopus 로고    scopus 로고
    • SNP imputation in association studies
    • Halperin E., Stephan D.A. SNP imputation in association studies. Nat. Biotechnol. 2009, 27:349-351.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 349-351
    • Halperin, E.1    Stephan, D.A.2
  • 77
    • 77953808087 scopus 로고    scopus 로고
    • Genotype imputation for genome-wide association studies
    • Marchini J., Howie B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 2010, 11:499-511.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 499-511
    • Marchini, J.1    Howie, B.2
  • 78
    • 0034817026 scopus 로고    scopus 로고
    • A statistical framework for quantitative trait mapping
    • Sen S., Churchill G.A. A statistical framework for quantitative trait mapping. Genetics 2001, 159:371-387.
    • (2001) Genetics , vol.159 , pp. 371-387
    • Sen, S.1    Churchill, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.