-
1
-
-
0036433546
-
A model selection approach for the identification of quantitative trait loci in experimental crosses
-
Broman, K. W., and T. P. Speed, 2002 A model selection approach for the identification of quantitative trait loci in experimental crosses. J. R. Stat. Soc. B 64: 641-656.
-
(2002)
J. R. Stat. Soc. B
, vol.64
, pp. 641-656
-
-
Broman, K.W.1
Speed, T.P.2
-
2
-
-
0028151261
-
Empirical threshold values for quantitative trait mapping
-
Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold values for quantitative trait mapping. Genetics 138: 963-971.
-
(1994)
Genetics
, vol.138
, pp. 963-971
-
-
Churchill, G.A.1
Doerge, R.W.2
-
3
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A., N. Laird, and D. Rubin, 1977 Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39: 1-38.
-
(1977)
J. R. Stat. Soc. Ser. B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
4
-
-
33646942472
-
A simple regression method for mapping quantitative trait loci in line crosses using flanking markers
-
Haley, C. S., and S. A. Knott, 1992 A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.
-
(1992)
Heredity
, vol.69
, pp. 315-324
-
-
Haley, C.S.1
Knott, S.A.2
-
5
-
-
77953169216
-
Grofit: Fitting biological growth curves with R
-
Kahm, M., G. Hasenbrink, H. Lichtenberg-Fraté, J. Ludwig, and M. Kschischo, 2010 grofit: Fitting biological growth curves with R. J. Stat. Softw. 33: 1-21.
-
(2010)
J. Stat. Softw.
, vol.33
, pp. 1-21
-
-
Kahm, M.1
Hasenbrink, G.2
Lichtenberg-Fraté, H.3
Ludwig, J.4
Kschischo, M.5
-
6
-
-
0036236799
-
Mapping baroreceptor function to genome: A mathematical modeling approach
-
Kendziorski, C. M., A. W. Cowley, A. S. Greene, H. C. Salgado, H. J. Jacob et al., 2002 Mapping baroreceptor function to genome: a mathematical modeling approach. Genetics 160: 1687-1695.
-
(2002)
Genetics
, vol.160
, pp. 1687-1695
-
-
Kendziorski, C.M.1
Cowley, A.W.2
Greene, A.S.3
Salgado, H.C.4
Jacob, H.J.5
-
7
-
-
0033790231
-
Multitrait least squares for quantitative trait loci detection
-
Knott, S. A., and C. S. Haley, 2000 Multitrait least squares for quantitative trait loci detection. Genetics 156: 899-911.
-
(2000)
Genetics
, vol.156
, pp. 899-911
-
-
Knott, S.A.1
Haley, C.S.2
-
8
-
-
0024508964
-
Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps
-
Lander, E. S., and D. Botstein, 1989 Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185-199.
-
(1989)
Genetics
, vol.121
, pp. 185-199
-
-
Lander, E.S.1
Botstein, D.2
-
9
-
-
0036671301
-
Functional mapping of quantitative trait loci underlying the character process: A theoretical framework
-
Ma, C., G. Casella, and R. L. Wu, 2002 Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161: 1751-1762.
-
(2002)
Genetics
, vol.161
, pp. 1751-1762
-
-
Ma, C.1
Casella, G.2
Wu, R.L.3
-
10
-
-
62549088774
-
A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis
-
Manichaikul, A., J. Y. Moon, S. Sen, B. S. Yandell, and K.W. Broman, 2009 A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181: 1077-1086.
-
(2009)
Genetics
, vol.181
, pp. 1077-1086
-
-
Manichaikul, A.1
Moon, J.Y.2
Sen, S.3
Yandell, B.S.4
Broman, K.W.5
-
11
-
-
78650303736
-
Bayesian analysis for genetic architecture of dynamic traits
-
Min, L., R. Yang, X. Wang, and B. Wang, 2011 Bayesian analysis for genetic architecture of dynamic traits. Heredity 106: 124-133.
-
(2011)
Heredity
, vol.106
, pp. 124-133
-
-
Min, L.1
Yang, R.2
Wang, X.3
Wang, B.4
-
12
-
-
84887085019
-
High-throughput computer vision introduces the time axis to a quantitative trait map of a plant growth response
-
Moore, C. R., L. S. Johnson, I.-Y. Kwak, M. Livny, K. W. Broman et al., 2013 High-throughput computer vision introduces the time axis to a quantitative trait map of a plant growth response. Genetics 195: 1077-1086.
-
(2013)
Genetics
, vol.195
, pp. 1077-1086
-
-
Moore, C.R.1
Johnson, L.S.2
Kwak, I.-Y.3
Livny, M.4
Broman, K.W.5
-
14
-
-
84856066281
-
Simultaneous estimation of multiple quantitative trait loci and growth curve parameters through hierarchical Bayesian modeling
-
Sillanpää, M. J., P. Pikkuhookana, S. Abrahamsson, T. Knurr, A. Fries et al., 2012 Simultaneous estimation of multiple quantitative trait loci and growth curve parameters through hierarchical Bayesian modeling. Heredity 108: 134-146.
-
(2012)
Heredity
, vol.108
, pp. 134-146
-
-
Sillanpää, M.J.1
Pikkuhookana, P.2
Abrahamsson, S.3
Knurr, T.4
Fries, A.5
-
15
-
-
80052648285
-
A flexible estimating equations approach for mapping function-valued traits
-
Xiong, H., E. H. Goulding, E. J. Carlson, L. H. Tecott, C. E. McCulloch et al., 2011 A flexible estimating equations approach for mapping function-valued traits. Genetics 189: 305-316.
-
(2011)
Genetics
, vol.189
, pp. 305-316
-
-
Xiong, H.1
Goulding, E.H.2
Carlson, E.J.3
Tecott, L.H.4
McCulloch, C.E.5
-
16
-
-
62949157422
-
Nonparametric functional mapping of quantitative trait loci
-
Yang, J., R. L. Wu, and G. Casella, 2009 Nonparametric functional mapping of quantitative trait loci. Biometrics 65: 30-39.
-
(2009)
Biometrics
, vol.65
, pp. 30-39
-
-
Yang, J.1
Wu, R.L.2
Casella, G.3
-
17
-
-
70450278707
-
Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci
-
Yap, J. S., J. Fan, and R. Wu, 2009 Nonparametric modeling of longitudinal covariance structure in functional mapping of quantitative trait loci. Biometrics 65: 1068-1077.
-
(2009)
Biometrics
, vol.65
, pp. 1068-1077
-
-
Yap, J.S.1
Fan, J.2
Wu, R.3
-
18
-
-
0033954460
-
Genetic architecture of a morphological shape difference between two Drosophila species
-
Zeng, Z. B., J. J. Liu, L. F. Stam, C. H. Kao, J. M. Mercer et al., 2000 Genetic architecture of a morphological shape difference between two Drosophila species. Genetics 154: 299-310.
-
(2000)
Genetics
, vol.154
, pp. 299-310
-
-
Zeng, Z.B.1
Liu, J.J.2
Stam, L.F.3
Kao, C.H.4
Mercer, J.M.5
|