메뉴 건너뛰기




Volumn 37, Issue 8, 2014, Pages 781-790

Testing environmental and genetic effects in the presence of spatial autocorrelation

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84905236343     PISSN: 09067590     EISSN: 16000587     Source Type: Journal    
DOI: 10.1111/ecog.00566     Document Type: Article
Times cited : (240)

References (58)
  • 1
    • 84874746709 scopus 로고    scopus 로고
    • Niche incumbency, dispersal limitation and climate shape geographical distributions in a species- rich island adaptive radiation
    • Algar A. C. et al. 2013. Niche incumbency, dispersal limitation and climate shape geographical distributions in a species- rich island adaptive radiation. - Global Ecol. Biogeogr. 22: 391-402.
    • (2013) Global Ecol. Biogeogr. , vol.22 , pp. 391-402
    • Algar, A.C.1
  • 2
    • 54049133744 scopus 로고    scopus 로고
    • Mixed-effects modeling with crossed random effects for subjects and items
    • Baayen R. H. et al. 2008. Mixed-effects modeling with crossed random effects for subjects and items. - J. Mem. Lang. 59: 390-412.
    • (2008) J. Mem. Lang. , vol.59 , pp. 390-412
    • Baayen, R.H.1
  • 3
    • 0000223087 scopus 로고
    • Properties of sufficiency and statistical tests
    • Bartlett M. S . 1937. Properties of sufficiency and statistical tests. - Proc. R. Soc. A 160: 268-282.
    • (1937) Proc. R. Soc. A , vol.160 , pp. 268-282
    • Bartlett, M.S.1
  • 4
    • 84905225232 scopus 로고    scopus 로고
    • lme4: linear mixed-effects models using S4 classes. - R package ver. 0.999999-0.
    • Bates D. et al. 2012. lme4: linear mixed-effects models using S4 classes. - R package ver. 0.999999-0.
    • (2012)
    • Bates, D.1
  • 5
    • 62249098547 scopus 로고    scopus 로고
    • Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression
    • Bini L. M. et al. 2009. Coefficient shifts in geographical ecology: an empirical evaluation of spatial and non-spatial regression. - Ecography 32: 193-204.
    • (2009) Ecography , vol.32 , pp. 193-204
    • Bini, L.M.1
  • 6
    • 60949108998 scopus 로고    scopus 로고
    • Generalized linear mixed models: a practical guide for ecology and evolution
    • Bolker B. M. et al. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. - Trends Ecol. Evol. 24: 127-135.
    • (2009) Trends Ecol. Evol. , vol.24 , pp. 127-135
    • Bolker, B.M.1
  • 7
    • 84886235499 scopus 로고    scopus 로고
    • Disentangling the effects of geographic and ecological isolation on genetic differentiation
    • Bradburd G. S. et al. 2013. Disentangling the effects of geographic and ecological isolation on genetic differentiation. - Evolution. 67: 3258-3273.
    • (2013) Evolution. , vol.67 , pp. 3258-3273
    • Bradburd, G.S.1
  • 8
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow N. E. and Clayton D. G . 1993. Approximate inference in generalized linear mixed models. - J. Am. Stat. Assoc. 88: 9-25.
    • (1993) J. Am. Stat. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 9
    • 0003020981 scopus 로고
    • Bias correction in generalised linear mixed models with a single component of dispersion
    • Breslow N. E. and Lin X . 1995. Bias correction in generalised linear mixed models with a single component of dispersion. - Biometrika 82: 81-91.
    • (1995) Biometrika , vol.82 , pp. 81-91
    • Breslow, N.E.1    Lin, X.2
  • 10
    • 0034097493 scopus 로고    scopus 로고
    • Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution
    • Coull B. A. and Agresti A . 2000. Random effects modeling of multiple binomial responses using the multivariate binomial logit-normal distribution. - Biometrics 56: 73-80.
    • (2000) Biometrics , vol.56 , pp. 73-80
    • Coull, B.A.1    Agresti, A.2
  • 15
    • 0013028154 scopus 로고    scopus 로고
    • An introduction to model-based geostatistics
    • In: Møller J. (ed.), Springer -.
    • Diggle P. J. et al. 2003. An introduction to model-based geostatistics . - In: Møller J. (ed.), Spatial statistics and computational methods . Springer, pp. 43-86.
    • (2003) Spatial statistics and computational methods , pp. 43-86
    • Diggle, P.J.1
  • 16
    • 34748814298 scopus 로고    scopus 로고
    • Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty
    • Diggle P. J. et al. 2007. Spatial modelling and the prediction of Loa loa risk: decision making under uncertainty. - Ann. Trop. Med. Parasitol. 101: 499-509.
    • (2007) Ann. Trop. Med. Parasitol. , vol.101 , pp. 499-509
    • Diggle, P.J.1
  • 17
    • 35848930781 scopus 로고    scopus 로고
    • Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
    • Dormann C. F. et al. 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. - Ecography 30: 609-628.
    • (2007) Ecography , vol.30 , pp. 609-628
    • Dormann, C.F.1
  • 19
    • 84875799635 scopus 로고    scopus 로고
    • Dismantling the Mantel tests
    • Guillot G. and Rousset F . 2013. Dismantling the Mantel tests. - Methods Ecol. Evol. 4: 336-344.
    • (2013) Methods Ecol. Evol. , vol.4 , pp. 336-344
    • Guillot, G.1    Rousset, F.2
  • 20
    • 70449711248 scopus 로고    scopus 로고
    • Statistical methods in spatial genetics
    • Guillot G. et al. 2009. Statistical methods in spatial genetics. - Mol. Ecol. 18: 4734-4756.
    • (2009) Mol. Ecol. , vol.18 , pp. 4734-4756
    • Guillot, G.1
  • 21
    • 35348949341 scopus 로고    scopus 로고
    • Model selection for multi-component frailty models
    • Ha I. D. et al. 2007. Model selection for multi-component frailty models. - Stat. Med. 26: 4790-4807.
    • (2007) Stat. Med. , vol.26 , pp. 4790-4807
    • Ha, I.D.1
  • 22
    • 84871010366 scopus 로고    scopus 로고
    • Statistical evaluation of parameters estimating autocorrelation and individual heterogeneity in longitudinal studies
    • Hamel S. et al. 2012. Statistical evaluation of parameters estimating autocorrelation and individual heterogeneity in longitudinal studies. - Methods Ecol. Evol. 3: 731-742.
    • (2012) Methods Ecol. Evol. , vol.3 , pp. 731-742
    • Hamel, S.1
  • 23
    • 80053587873 scopus 로고    scopus 로고
    • Adaptation to climate across the Arabidopsis thaliana genome
    • Hancock A. M. et al. 2011. Adaptation to climate across the Arabidopsis thaliana genome. - Science 334: 83-86.
    • (2011) Science , vol.334 , pp. 83-86
    • Hancock, A.M.1
  • 24
    • 33645102809 scopus 로고    scopus 로고
    • Model selection for geostatistical models
    • Hoeting J. A. et al. 2006. Model selection for geostatistical models. - Ecol. Appl. 16: 87-98.
    • (2006) Ecol. Appl. , vol.16 , pp. 87-98
    • Hoeting, J.A.1
  • 25
    • 35349028796 scopus 로고    scopus 로고
    • A comparison of the hierarchical likelihood and Bayesian approaches to spatial epidemiological modelling
    • Jang M. J. et al. 2007. A comparison of the hierarchical likelihood and Bayesian approaches to spatial epidemiological modelling. - Environmetrics 18: 809-821.
    • (2007) Environmetrics , vol.18 , pp. 809-821
    • Jang, M.J.1
  • 26
    • 0036779345 scopus 로고    scopus 로고
    • Accounting for spatial pattern when modeling organism-environment interactions
    • Keitt T. H. et al. 2002. Accounting for spatial pattern when modeling organism-environment interactions. - Ecography 25: 616-625.
    • (2002) Ecography , vol.25 , pp. 616-625
    • Keitt, T.H.1
  • 27
    • 84905225228 scopus 로고    scopus 로고
    • safeBinaryRegression: safe binary regression. - R package ver. 0.1-2.
    • Konis K . 2009. safeBinaryRegression: safe binary regression. - R package ver. 0.1-2.
    • (2009)
    • Konis, K.1
  • 28
    • 84859777998 scopus 로고    scopus 로고
    • Modifications of REML algorithm for HGLMs
    • Lee W. and Lee Y . 2012. Modifications of REML algorithm for HGLMs. - Stat. Comput. 22: 959-966.
    • (2012) Stat. Comput. , vol.22 , pp. 959-966
    • Lee, W.1    Lee, Y.2
  • 29
    • 85199986075 scopus 로고    scopus 로고
    • Hierarchical generalized linear models
    • Lee Y. and Nelder J. A . 1996. Hierarchical generalized linear models. - J. R. Stat. Soc. B 58: 619-678.
    • (1996) J. R. Stat. Soc. B , vol.58 , pp. 619-678
    • Lee, Y.1    Nelder, J.A.2
  • 30
    • 0012342630 scopus 로고    scopus 로고
    • Hierarchical generalised linear models: a synthesis of generalised linear models, random- effect models and structured dispersions
    • Lee Y. and Nelder J. A . 2001a. Hierarchical generalised linear models: a synthesis of generalised linear models, random- effect models and structured dispersions. - Biometrika 88: 987-1006.
    • (2001) Biometrika , vol.88 , pp. 987-1006
    • Lee, Y.1    Nelder, J.A.2
  • 31
    • 84993725170 scopus 로고    scopus 로고
    • Modelling and analysing correlated non-normal data
    • Lee Y. and Nelder J. A . 2001b. Modelling and analysing correlated non-normal data. - Stat. Model. 1: 3-16.
    • (2001) Stat. Model. , vol.1 , pp. 3-16
    • Lee, Y.1    Nelder, J.A.2
  • 33
    • 77955765927 scopus 로고    scopus 로고
    • Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data
    • Legendre P. and Fortin M.-J. 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. - Mol. Ecol. Resour. 10: 831-844.
    • (2010) Mol. Ecol. Resour. , vol.10 , pp. 831-844
    • Legendre, P.1    Fortin, M.-J.2
  • 34
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility
    • Lunn D. J. et al. 2000. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. - Stat. Comput. 10: 325-337.
    • (2000) Stat. Comput. , vol.10 , pp. 325-337
    • Lunn, D.J.1
  • 35
    • 84905225229 scopus 로고    scopus 로고
    • Methods for non-linear least squares problems . - Technical report, Informatics and Mathematical Modelling, Technical Univ. of Denmark.
    • Madsen K. et al. 2004. Methods for non-linear least squares problems . - Technical report, Informatics and Mathematical Modelling, Technical Univ. of Denmark.
    • (2004)
    • Madsen, K.1
  • 36
    • 84869018692 scopus 로고    scopus 로고
    • The correlation structure of spatial auto regressions
    • Martellosio F . 2012. The correlation structure of spatial auto regressions. - Econ. Theory 28: 1373-1391.
    • (2012) Econ. Theory , vol.28 , pp. 1373-1391
    • Martellosio, F.1
  • 39
    • 23744477287 scopus 로고    scopus 로고
    • The Matérn function as a general model for soil variograms
    • Minasny B. and McBratney A. B . 2005. The Matérn function as a general model for soil variograms. - Geoderma 128: 192-207.
    • (2005) Geoderma , vol.128 , pp. 192-207
    • Minasny, B.1    McBratney, A.B.2
  • 40
    • 79952975538 scopus 로고    scopus 로고
    • Hierarchical generalized linear models: the R package HGLMMM
    • Molas M. and Lesaffre E . 2011. Hierarchical generalized linear models: the R package HGLMMM. - J. Stat. Softw. 39: 1-20.
    • (2011) J. Stat. Softw. , vol.39 , pp. 1-20
    • Molas, M.1    Lesaffre, E.2
  • 41
    • 80051541579 scopus 로고    scopus 로고
    • Identification of a gene associated with avian migratory behaviour
    • Mueller J. C. et al. 2011. Identification of a gene associated with avian migratory behaviour. - Proc. R. Soc. B 278: 2848-2856.
    • (2011) Proc. R. Soc. B , vol.278 , pp. 2848-2856
    • Mueller, J.C.1
  • 43
    • 33947127673 scopus 로고    scopus 로고
    • REML estimation for binary data in GLMMs
    • Noh M. and Lee Y . 2007. REML estimation for binary data in GLMMs. - J. Multivariate Anal. 98: 896-915.
    • (2007) J. Multivariate Anal. , vol.98 , pp. 896-915
    • Noh, M.1    Lee, Y.2
  • 44
    • 30344483969 scopus 로고    scopus 로고
    • Multicomponent variance estimation for binary traits in family-based studies
    • Noh M. et al. 2006. Multicomponent variance estimation for binary traits in family-based studies. - Genet. Epidemiol. 30: 37-47.
    • (2006) Genet. Epidemiol. , vol.30 , pp. 37-47
    • Noh, M.1
  • 45
    • 21144461624 scopus 로고
    • An investigation of three-matrix permutation tests
    • Oden N. L. and Sokal R. R . 1992. An investigation of three-matrix permutation tests. - J. Classification 9: 275-290.
    • (1992) J. Classification , vol.9 , pp. 275-290
    • Oden, N.L.1    Sokal, R.R.2
  • 47
    • 33645565987 scopus 로고    scopus 로고
    • Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models
    • Pinheiro J. C. and Chao E. C . 2006. Efficient Laplacian and adaptive Gaussian quadrature algorithms for multilevel generalized linear mixed models. - J. Comput. Graph. Stat. 15: 58-81.
    • (2006) J. Comput. Graph. Stat. , vol.15 , pp. 58-81
    • Pinheiro, J.C.1    Chao, E.C.2
  • 48
    • 0034789828 scopus 로고    scopus 로고
    • Are partial Mantel tests adequate?
    • Raufaste N. and Rousset F . 2001. Are partial Mantel tests adequate? - Evolution 55: 1703-1705.
    • (2001) Evolution , vol.55 , pp. 1703-1705
    • Raufaste, N.1    Rousset, F.2
  • 49
    • 38249019979 scopus 로고
    • Bartlett's correction and the boostrap in normal linear regression models
    • Rayner R. K . 1990. Bartlett's correction and the boostrap in normal linear regression models. - Econ. Lett. 33: 255-258.
    • (1990) Econ. Lett. , vol.33 , pp. 255-258
    • Rayner, R.K.1
  • 50
    • 0028975383 scopus 로고
    • The spatial distribution of nematode trophic groups across a cultivated ecosystem
    • Robertson G. P. and Freckman D. W . 1995. The spatial distribution of nematode trophic groups across a cultivated ecosystem. - Ecology 76: 1425-1432.
    • (1995) Ecology , vol.76 , pp. 1425-1432
    • Robertson, G.P.1    Freckman, D.W.2
  • 51
    • 84916541776 scopus 로고
    • Bootstrap Bartlett adjustment in seemingly unrelated regression
    • Rocke D. M . 1989. Bootstrap Bartlett adjustment in seemingly unrelated regression. - J. Am. Stat. Assoc. 84: 598-601.
    • (1989) J. Am. Stat. Assoc. , vol.84 , pp. 598-601
    • Rocke, D.M.1
  • 52
    • 84880945680 scopus 로고    scopus 로고
    • hglm: a package for fitting hierarchical generalized linear models
    • Rönnegård L. et al. 2010. hglm: a package for fitting hierarchical generalized linear models. - R J. 2: 20-27.
    • (2010) R J. , vol.2 , pp. 20-27
    • Rönnegård, L.1
  • 53
    • 0036751892 scopus 로고    scopus 로고
    • Partial Mantel tests: reply to Castellano and Balletto
    • Rousset F . 2002. Partial Mantel tests: reply to Castellano and Balletto. - Evolution 56: 1874-1875.
    • (2002) Evolution , vol.56 , pp. 1874-1875
    • Rousset, F.1
  • 54
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with Discussion)
    • Rue H. et al. 2009. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with Discussion). - J. R. Stat. Soc. B 71: 319-392.
    • (2009) J. R. Stat. Soc. B , vol.71 , pp. 319-392
    • Rue, H.1
  • 56
    • 84864300430 scopus 로고    scopus 로고
    • Shared spatial effects on quantitative genetic parameters: accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer
    • Stopher K. V. et al. 2012. Shared spatial effects on quantitative genetic parameters: accounting for spatial autocorrelation and home range overlap reduces estimates of heritability in wild red deer. - Evolution 66: 2411-2426.
    • (2012) Evolution , vol.66 , pp. 2411-2426
    • Stopher, K.V.1
  • 57
    • 77952095770 scopus 로고    scopus 로고
    • Landscape genetics: where are we now?
    • Storfer A. et al. 2010. Landscape genetics: where are we now? - Mol. Ecol. 19: 3496-3514.
    • (2010) Mol. Ecol. , vol.19 , pp. 3496-3514
    • Storfer, A.1
  • 58
    • 0742271656 scopus 로고    scopus 로고
    • A close look at the spatial structure implied by the CAR and SAR models
    • Wall M. M . 2004. A close look at the spatial structure implied by the CAR and SAR models. - J. Stat. Plan. Inference 121: 311-324.
    • (2004) J. Stat. Plan. Inference , vol.121 , pp. 311-324
    • Wall, M.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.