-
2
-
-
77956696072
-
High-throughput generation, optimization and analysis of genome-scale metabolic models
-
Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL, High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28: 977–982. doi: 10.1038/nbt.1672 20802497
-
(2010)
Nat Biotechnol
, vol.28
, pp. 977-982
-
-
Henry, C.S.1
DeJongh, M.2
Best, A.A.3
Frybarger, P.M.4
Linsay, B.5
Stevens, R.L.6
-
3
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
Thiele I, Palsson BO, A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5: 93–121. doi: 10.1038/nprot.2009.203 20057383
-
(2010)
Nat Protoc
, vol.5
, pp. 93-121
-
-
Thiele, I.1
Palsson, B.O.2
-
4
-
-
84908323876
-
Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models
-
Benedict MN, Mundy MB, Henry CS, Chia N, Price ND, Maranas CD, Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models. PLoS Comput Biol. 2014;10: e1003882. doi: 10.1371/journal.pcbi.1003882 25329157
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Benedict, M.N.1
Mundy, M.B.2
Henry, C.S.3
Chia, N.4
Price, N.D.5
Maranas, C.D.6
-
5
-
-
84856038703
-
The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks
-
Swainston N, Smallbone K, Mendes P, Kell DB, Paton N, The SuBliMinaL Toolbox: automating steps in the reconstruction of metabolic networks. J Integr Bioinforma. 2011;8.
-
(2011)
J Integr Bioinforma
, vol.8
-
-
Swainston, N.1
Smallbone, K.2
Mendes, P.3
Kell, D.B.4
Paton, N.5
-
6
-
-
84886740491
-
Path2Models: large-scale generation of computational models from biochemical pathway maps
-
Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol. 2013;7: 116. doi: 10.1186/1752-0509-7-116 24180668
-
(2013)
BMC Syst Biol
, vol.7
, pp. 116
-
-
Büchel, F.1
Rodriguez, N.2
Swainston, N.3
Wrzodek, C.4
Czauderna, T.5
Keller, R.6
-
7
-
-
84920265598
-
Transparency in metabolic network reconstruction enables scalable biological discovery
-
Heavner BD, Price ND, Transparency in metabolic network reconstruction enables scalable biological discovery. Curr Opin Biotechnol. 2015;34: 105–109. doi: 10.1016/j.copbio.2014.12.010 25562137
-
(2015)
Curr Opin Biotechnol
, vol.34
, pp. 105-109
-
-
Heavner, B.D.1
Price, N.D.2
-
8
-
-
84900303762
-
Optimizing genome-scale network reconstructions
-
Monk J, Nogales J, Palsson BO, Optimizing genome-scale network reconstructions. Nat Biotechnol. 2014;32: 447–452. doi: 10.1038/nbt.2870 24811519
-
(2014)
Nat Biotechnol
, vol.32
, pp. 447-452
-
-
Monk, J.1
Nogales, J.2
Palsson, B.O.3
-
9
-
-
84879002382
-
Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
-
McCloskey D, Palsson BØ, Feist AM, Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol. 2013;9. doi: 10.1038/msb.2013.18
-
(2013)
Mol Syst Biol
, vol.9
-
-
McCloskey, D.1
Palsson, B.Ø.2
Feist, A.M.3
-
10
-
-
84857054573
-
Fifteen years of large scale metabolic modeling of yeast: Developments and impacts
-
Österlund T, Nookaew I, Nielsen J, Fifteen years of large scale metabolic modeling of yeast: Developments and impacts. Biotechnol Adv. 2011; 10.
-
(2011)
Biotechnol Adv
, vol.10
-
-
Österlund, T.1
Nookaew, I.2
Nielsen, J.3
-
11
-
-
0042816453
-
Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae
-
Förster J, Famili I, Palsson BO, Nielsen J, Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics J Integr Biol. 2003;7: 193–202.
-
(2003)
Omics J Integr Biol
, vol.7
, pp. 193-202
-
-
Förster, J.1
Famili, I.2
Palsson, B.O.3
Nielsen, J.4
-
12
-
-
84884522554
-
Dead End Metabolites—Defining the Known Unknowns of the E. coli Metabolic Network
-
Mackie A, Keseler IM, Nolan L, Karp PD, Paulsen IT, Parkinson J, Dead End Metabolites—Defining the Known Unknowns of the E. coli Metabolic Network. PLoS ONE. 2013;8: e75210. doi: 10.1371/journal.pone.0075210 24086468
-
(2013)
PLoS ONE
, vol.8
-
-
Mackie, A.1
Keseler, I.M.2
Nolan, L.3
Karp, P.D.4
Paulsen, I.T.5
Parkinson, J.6
-
13
-
-
84862159261
-
Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions
-
Orth JD, Palsson B, Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions. BMC Syst Biol. 2012;6: 30. doi: 10.1186/1752-0509-6-30 22548736
-
(2012)
BMC Syst Biol
, vol.6
, pp. 30
-
-
Orth, J.D.1
Palsson, B.2
-
14
-
-
77952886804
-
The biomass objective function
-
Feist AM, Palsson BO, The biomass objective function. Curr Opin Microbiol. 2010;13: 344–349. doi: 10.1016/j.mib.2010.03.003 20430689
-
(2010)
Curr Opin Microbiol
, vol.13
, pp. 344-349
-
-
Feist, A.M.1
Palsson, B.O.2
-
15
-
-
84944276294
-
Biomass composition: the “elephant in the room” of metabolic modelling
-
Dikicioglu D, Kırdar B, Oliver SG, Biomass composition: the “elephant in the room” of metabolic modelling. Metabolomics. 2015; doi: 10.1007/s11306-015-0819-2
-
(2015)
Metabolomics
-
-
Dikicioglu, D.1
Kırdar, B.2
Oliver, S.G.3
-
16
-
-
84867631468
-
Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth
-
Hanscho M, Ruckerbauer DE, Chauhan N, Hofbauer HF, Krahulec S, Nidetzky B, et al. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12: 796–808. doi: 10.1111/j.1567-1364.2012.00830.x 22780918
-
(2012)
FEMS Yeast Res
, vol.12
, pp. 796-808
-
-
Hanscho, M.1
Ruckerbauer, D.E.2
Chauhan, N.3
Hofbauer, H.F.4
Krahulec, S.5
Nidetzky, B.6
-
17
-
-
25844463806
-
Metabolic functions of duplicate genes in Saccharomyces cerevisiae
-
Kuepfer L, Sauer U, Blank LM, Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005;15: 1421–1430. doi: 10.1101/gr.3992505 16204195
-
(2005)
Genome Res
, vol.15
, pp. 1421-1430
-
-
Kuepfer, L.1
Sauer, U.2
Blank, L.M.3
-
18
-
-
84867379812
-
Gap Detection for Genome-Scale Constraint-Based Models
-
Brooks JP, Burns WP, Fong SS, Gowen CM, Roberts SB, Gap Detection for Genome-Scale Constraint-Based Models. Adv Bioinforma. 2012;2012: 1–10. doi: 10.1155/2012/323472
-
(2012)
Adv Bioinforma
, vol.2012
, pp. 1-10
-
-
Brooks, J.P.1
Burns, W.P.2
Fong, S.S.3
Gowen, C.M.4
Roberts, S.B.5
-
19
-
-
84907026934
-
fastGapFill: efficient gap filling in metabolic networks
-
Thiele I, Vlassis N, Fleming RMT, fastGapFill: efficient gap filling in metabolic networks. Bioinforma Oxf Engl. 2014;30: 2529–2531. doi: 10.1093/bioinformatics/btu321
-
(2014)
Bioinforma Oxf Engl
, vol.30
, pp. 2529-2531
-
-
Thiele, I.1
Vlassis, N.2
Fleming, R.M.T.3
-
20
-
-
78650595350
-
Improving the iMM 904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
-
Zomorrodi AR, Maranas CD, Improving the iMM 904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol. 2010;4: 178. doi: 10.1186/1752-0509-4-178 21190580
-
(2010)
BMC Syst Biol
, vol.4
, pp. 178
-
-
Zomorrodi, A.R.1
Maranas, C.D.2
-
21
-
-
0242487787
-
Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard AP, Pharkya P, Maranas CD, Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003;84: 647–657. 14595777
-
(2003)
Biotechnol Bioeng
, vol.84
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
22
-
-
84979849215
-
Genome scale models of yeast: towards standardized evaluation and consistent omic integration
-
Sánchez BJ, Nielsen J, Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol. 2015; doi: 10.1039/C5IB00083A
-
(2015)
Integr Biol
-
-
Sánchez, B.J.1
Nielsen, J.2
-
23
-
-
3843128481
-
Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
-
Duarte NC, Herrgård MJ, Palsson BO, Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004;14: 1298. doi: 10.1101/gr.2250904 15197165
-
(2004)
Genome Res
, vol.14
, pp. 1298
-
-
Duarte, N.C.1
Herrgård, M.J.2
Palsson, B.O.3
-
24
-
-
0346494819
-
MetaCyc: a multiorganism database of metabolic pathways and enzymes
-
Krieger CJ, Zhang P, Mueller LA, Wang A, Paley S, Arnaud M, et al. MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res. 2004;32: 438D–442. doi: 10.1093/nar/gkh100
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 438-442
-
-
Krieger, C.J.1
Zhang, P.2
Mueller, L.A.3
Wang, A.4
Paley, S.5
Arnaud, M.6
-
25
-
-
33745178476
-
Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
-
Herrgård MJ, Lee B-S, Portnoy V, Palsson BO, Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 2006;16: 627–635. doi: 10.1101/gr.4083206 16606697
-
(2006)
Genome Res
, vol.16
, pp. 627-635
-
-
Herrgård, M.J.1
Lee, B.-S.2
Portnoy, V.3
Palsson, B.O.4
-
26
-
-
33749996165
-
Optimization of Fed-Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models
-
Hjersted JL, Henson MA, Optimization of Fed-Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models. Biotechnol Prog. 2006;22: 1239–1248. doi: 10.1021/bp060059v 17022660
-
(2006)
Biotechnol Prog
, vol.22
, pp. 1239-1248
-
-
Hjersted, J.L.1
Henson, M.A.2
-
27
-
-
52649105455
-
The genome-scale metabolic model iIN 800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism
-
Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, et al. The genome-scale metabolic model iIN 800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol. 2008;2: 71. doi: 10.1186/1752-0509-2-71 18687109
-
(2008)
BMC Syst Biol
, vol.2
, pp. 71
-
-
Nookaew, I.1
Jewett, M.C.2
Meechai, A.3
Thammarongtham, C.4
Laoteng, K.5
Cheevadhanarak, S.6
-
28
-
-
53749085229
-
A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
-
Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotech. 2008;26: 1155–1160. doi: 10.1038/nbt1492
-
(2008)
Nat Biotech
, vol.26
, pp. 1155-1160
-
-
Herrgard, M.J.1
Swainston, N.2
Dobson, P.3
Dunn, W.B.4
Arga, K.Y.5
Arvas, M.6
-
29
-
-
65649126379
-
Connecting extracellular metabolomic measurements to intracellular flux states in yeast
-
Mo ML, Palsson BØ, Herrgård MJ, Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol. 2009;3: 37. doi: 10.1186/1752-0509-3-37 19321003
-
(2009)
BMC Syst Biol
, vol.3
, pp. 37
-
-
Mo, M.L.1
Palsson, B.Ø.2
Herrgård, M.J.3
-
30
-
-
77958597036
-
Further developments towards a genome-scale metabolic model of yeast
-
Dobson PD, Jameson D, Simeonidis E, Lanthaler K, Pir P, Lu C, et al. Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol. 2010;4: 145. doi: 10.1186/1752-0509-4-145 21029416
-
(2010)
BMC Syst Biol
, vol.4
, pp. 145
-
-
Dobson, P.D.1
Jameson, D.2
Simeonidis, E.3
Lanthaler, K.4
Pir, P.5
Lu, C.6
-
31
-
-
77956291961
-
Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network
-
Aho T, Almusa H, Matilainen J, Larjo A, Ruusuvuori P, Aho K-L, Goldman G, et al. Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network. PLoS ONE. 2010;5: e10662. doi: 10.1371/journal.pone.0010662 20498836
-
(2010)
PLoS ONE
, vol.5
-
-
Aho, T.1
Almusa, H.2
Matilainen, J.3
Larjo, A.4
Ruusuvuori, P.5
Aho, K.-L.6
Goldman, G.7
-
32
-
-
79959687662
-
An integrated approach to characterize genetic interaction networks in yeast metabolism
-
Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet. 2011;43: 656–662. doi: 10.1038/ng.846 21623372
-
(2011)
Nat Genet
, vol.43
, pp. 656-662
-
-
Szappanos, B.1
Kovács, K.2
Szamecz, B.3
Honti, F.4
Costanzo, M.5
Baryshnikova, A.6
-
33
-
-
80052600481
-
Engineering strategy of yeast metabolism for higher alcohol production
-
Matsuda F, Furusawa C, Kondo T, Ishii J, Shimizu H, Kondo A, Engineering strategy of yeast metabolism for higher alcohol production. Microb Cell Factories. 2011;10: 70.
-
(2011)
Microb Cell Factories
, vol.10
, pp. 70
-
-
Matsuda, F.1
Furusawa, C.2
Kondo, T.3
Ishii, J.4
Shimizu, H.5
Kondo, A.6
-
34
-
-
79551600149
-
Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics
-
Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, et al. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol. 2011;7. doi: 10.1038/msb.2010.122
-
(2011)
Mol Syst Biol
, vol.7
-
-
Costenoble, R.1
Picotti, P.2
Reiter, L.3
Stallmach, R.4
Heinemann, M.5
Sauer, U.6
-
35
-
-
84861744439
-
Yeast 5—an expanded reconstruction of the Saccharomyces Cerevisiae metabolic network
-
Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP, Yeast 5—an expanded reconstruction of the Saccharomyces Cerevisiae metabolic network. BMC Syst Biol. 2012;6: 55. doi: 10.1186/1752-0509-6-55 22663945
-
(2012)
BMC Syst Biol
, vol.6
, pp. 55
-
-
Heavner, B.D.1
Smallbone, K.2
Barker, B.3
Mendes, P.4
Walker, L.P.5
-
36
-
-
84862182291
-
A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae
-
Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S, A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng. 2012;14: 366–379. doi: 10.1016/j.ymben.2012.03.008 22709677
-
(2012)
Metab Eng
, vol.14
, pp. 366-379
-
-
Celton, M.1
Goelzer, A.2
Camarasa, C.3
Fromion, V.4
Dequin, S.5
-
37
-
-
84876789665
-
Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
-
Österlund T, Nookaew I, Bordel S, Nielsen J, Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol. 2013;7: 36. doi: 10.1186/1752-0509-7-36 23631471
-
(2013)
BMC Syst Biol
, vol.7
, pp. 36
-
-
Österlund, T.1
Nookaew, I.2
Bordel, S.3
Nielsen, J.4
-
38
-
-
84885911432
-
Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
-
bat059
-
Heavner BD, Smallbone K, Price ND, Walker LP, Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database. 2013;2013: bat059–bat059. doi: 10.1093/database/bat059 23935056
-
(2013)
Database
, vol.2013
-
-
Heavner, B.D.1
Smallbone, K.2
Price, N.D.3
Walker, L.P.4
-
39
-
-
84881540727
-
Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism
-
Aung HW, Henry SA, Walker LP, Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Ind Biotechnol. 2013;9: 215–228. doi: 10.1089/ind.2013.0013
-
(2013)
Ind Biotechnol
, vol.9
, pp. 215-228
-
-
Aung, H.W.1
Henry, S.A.2
Walker, L.P.3
-
40
-
-
84895735489
-
Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species
-
Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, Nielsen J, et al. Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species. PLoS Comput Biol. 2014;10: e1003465. doi: 10.1371/journal.pcbi.1003465 24516375
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Pitkänen, E.1
Jouhten, P.2
Hou, J.3
Syed, M.F.4
Blomberg, P.5
Kludas, J.6
Nielsen, J.7
-
41
-
-
73849090293
-
Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
-
Milne CB, Kim P-J, Eddy JA, Price ND, Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J. 2009;4: 1653–1670. doi: 10.1002/biot.200900234 19946878
-
(2009)
Biotechnol J
, vol.4
, pp. 1653-1670
-
-
Milne, C.B.1
Kim, P.-J.2
Eddy, J.A.3
Price, N.D.4
-
42
-
-
77957260797
-
Why does yeast ferment? A flux balance analysis study
-
Simeonidis E, Murabito E, Smallbone K, Westerhoff HV, Why does yeast ferment? A flux balance analysis study. Biochem Soc Trans. 2010;38: 1225. doi: 10.1042/BST0381225 20863289
-
(2010)
Biochem Soc Trans
, vol.38
, pp. 1225
-
-
Simeonidis, E.1
Murabito, E.2
Smallbone, K.3
Westerhoff, H.V.4
-
43
-
-
84899012698
-
d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities
-
Zomorrodi AR, Islam MM, Maranas CD, d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities. ACS Synth Biol. 2014; 140228131456008. doi: 10.1021/sb4001307
-
(2014)
ACS Synth Biol
-
-
Zomorrodi, A.R.1
Islam, M.M.2
Maranas, C.D.3
-
44
-
-
55349112223
-
Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions
-
Snitkin E, Dudley A, Janse D, Wong K, Church G, Segrè D, Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol. 2008;9: R140. doi: 10.1186/gb-2008-9-9-r140 18808699
-
(2008)
Genome Biol
, vol.9
, pp. R140
-
-
Snitkin, E.1
Dudley, A.2
Janse, D.3
Wong, K.4
Church, G.5
Segrè, D.6
-
45
-
-
84897382623
-
Assimilating genome-scale metabolic reconstructions with modelBorgifier
-
Sauls JT, Buescher JM, Assimilating genome-scale metabolic reconstructions with modelBorgifier. Bioinformatics. 2014;30: 1036–1038. doi: 10.1093/bioinformatics/btt747 24371155
-
(2014)
Bioinformatics
, vol.30
, pp. 1036-1038
-
-
Sauls, J.T.1
Buescher, J.M.2
-
46
-
-
84908654385
-
Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection
-
VanderSluis B, Hess DC, Pesyna C, Krumholz EW, Syed T, Szappanos B, et al. Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol. 2014;15: R64. doi: 10.1186/gb-2014-15-4-r64 24721214
-
(2014)
Genome Biol
, vol.15
, pp. R64
-
-
VanderSluis, B.1
Hess, D.C.2
Pesyna, C.3
Krumholz, E.W.4
Syed, T.5
Szappanos, B.6
-
47
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1261 ORFs and thermodynamic information
-
Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1261 ORFs and thermodynamic information. Mol Syst Biol. 2007;3: 121. 17593909
-
(2007)
Mol Syst Biol
, vol.3
, pp. 121
-
-
Feist, A.M.1
Henry, C.S.2
Reed, J.L.3
Krummenacker, M.4
Joyce, A.R.5
Karp, P.D.6
-
48
-
-
0033529707
-
Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
-
Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285: 901–906. 10436161
-
(1999)
Science
, vol.285
, pp. 901-906
-
-
Winzeler, E.A.1
Shoemaker, D.D.2
Astromoff, A.3
Liang, H.4
Anderson, K.5
Andre, B.6
-
49
-
-
84922020975
-
Understanding carbon catabolite repression in Escherichia coli using quantitative models
-
Kremling A, Geiselmann J, Ropers D, de Jong H, Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol. 2015;23: 99–109. doi: 10.1016/j.tim.2014.11.002 25475882
-
(2015)
Trends Microbiol
, vol.23
, pp. 99-109
-
-
Kremling, A.1
Geiselmann, J.2
Ropers, D.3
de Jong, H.4
-
50
-
-
34447523907
-
Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
-
Schuetz R, Kuepfer L, Sauer U, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007;3: 119. doi: 10.1038/msb4100162 17625511
-
(2007)
Mol Syst Biol
, vol.3
, pp. 119
-
-
Schuetz, R.1
Kuepfer, L.2
Sauer, U.3
-
51
-
-
10744230390
-
Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae: Yeast mitochondrial aspartate-glutamate carrier
-
Cavero S, Vozza A, Del Arco A, Palmieri L, Villa A, Blanco E, et al. Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae: Yeast mitochondrial aspartate-glutamate carrier. Mol Microbiol. 2003;50: 1257–1269.
-
(2003)
Mol Microbiol
, vol.50
, pp. 1257-1269
-
-
Cavero, S.1
Vozza, A.2
Del Arco, A.3
Palmieri, L.4
Villa, A.5
Blanco, E.6
-
52
-
-
84862262073
-
YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit
-
bar062
-
Balakrishnan R, Park J, Karra K, Hitz BC, Binkley G, Hong EL, et al. YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. Database. 2012;2012: bar062–bar062. doi: 10.1093/database/bar062 22434830
-
(2012)
Database
, vol.2012
-
-
Balakrishnan, R.1
Park, J.2
Karra, K.3
Hitz, B.C.4
Binkley, G.5
Hong, E.L.6
-
53
-
-
34249041230
-
Exploring genetic interactions and networks with yeast
-
Boone C, Bussey H, Andrews BJ, Exploring genetic interactions and networks with yeast. Nat Rev Genet. 2007;8: 437–449. doi: 10.1038/nrg2085 17510664
-
(2007)
Nat Rev Genet
, vol.8
, pp. 437-449
-
-
Boone, C.1
Bussey, H.2
Andrews, B.J.3
-
54
-
-
33748352373
-
Multiple knockout analysis of genetic robustness in the yeast metabolic network
-
Deutscher D, Meilijson I, Kupiec M, Ruppin E, Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet. 2006;38: 993–998. doi: 10.1038/ng1856 16941010
-
(2006)
Nat Genet
, vol.38
, pp. 993-998
-
-
Deutscher, D.1
Meilijson, I.2
Kupiec, M.3
Ruppin, E.4
-
56
-
-
0030669030
-
Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale
-
DeRisi JL, Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale. Science. 1997;278: 680–686. 9381177
-
(1997)
Science
, vol.278
, pp. 680-686
-
-
DeRisi, J.L.1
-
57
-
-
0032508638
-
Glucose Repression in Saccharomyces cerevisiae is Related to the Glucose Concentration Rather Than the Glucose Flux
-
Meijer MMC, Boonstra J, Verkleij AJ, Verrips CT, Glucose Repression in Saccharomyces cerevisiae is Related to the Glucose Concentration Rather Than the Glucose Flux. J Biol Chem. 1998;273: 24102–24107. doi: 10.1074/jbc.273.37.24102 9727030
-
(1998)
J Biol Chem
, vol.273
, pp. 24102-24107
-
-
Meijer, M.M.C.1
Boonstra, J.2
Verkleij, A.J.3
Verrips, C.T.4
-
58
-
-
11244328060
-
The Pathway Tools software
-
Karp PD, Paley S, Romero P, The Pathway Tools software. Bioinformatics. 2002;18: S225–S232. doi: 10.1093/bioinformatics/18.suppl_1.S225 12169551
-
(2002)
Bioinformatics
, vol.18
, pp. S225-S232
-
-
Karp, P.D.1
Paley, S.2
Romero, P.3
-
59
-
-
33646884848
-
SBMLToolbox: an SBML toolbox for MATLAB users
-
Keating SM, Bornstein BJ, Finney A, Hucka M, SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics. 2006;22: 1275. 16574696
-
(2006)
Bioinformatics
, vol.22
, pp. 1275
-
-
Keating, S.M.1
Bornstein, B.J.2
Finney, A.3
Hucka, M.4
-
60
-
-
79551662521
-
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
-
Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6: 1290–1307. doi: 10.1038/nprot.2011.308 21886097
-
(2011)
Nat Protoc
, vol.6
, pp. 1290-1307
-
-
Schellenberger, J.1
Que, R.2
Fleming, R.M.T.3
Thiele, I.4
Orth, J.D.5
Feist, A.M.6
-
61
-
-
77954291914
-
BioMet Toolbox: genome-wide analysis of metabolism
-
Cvijovic M, Olivares-Hernandez R, Agren R, Dahr N, Vongsangnak W, Nookaew I, et al. BioMet Toolbox: genome-wide analysis of metabolism. Nucleic Acids Res. 2010;38: W144–W149. doi: 10.1093/nar/gkq404 20483918
-
(2010)
Nucleic Acids Res
, vol.38
, pp. W144-W149
-
-
Cvijovic, M.1
Olivares-Hernandez, R.2
Agren, R.3
Dahr, N.4
Vongsangnak, W.5
Nookaew, I.6
-
62
-
-
77951612556
-
BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
-
Schellenberger J, Park J, Conrad T, Palsson B, BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics. 2010;11: 213. doi: 10.1186/1471-2105-11-213 20426874
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 213
-
-
Schellenberger, J.1
Park, J.2
Conrad, T.3
Palsson, B.4
-
63
-
-
33644877164
-
BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems
-
Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 2006;34: D689–D691. doi: 10.1093/nar/gkj092 16381960
-
(2006)
Nucleic Acids Res
, vol.34
, pp. D689-D691
-
-
Le Novere, N.1
Bornstein, B.2
Broicher, A.3
Courtot, M.4
Donizelli, M.5
Dharuri, H.6
-
64
-
-
0032540270
-
The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase of Saccharomyces cerevisiae
-
Chang S-C, The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase of Saccharomyces cerevisiae. J Biol Chem. 1998;273: 9829–9836. doi: 10.1074/jbc.273.16.9829 9545322
-
(1998)
J Biol Chem
, vol.273
, pp. 9829-9836
-
-
Chang, S.-C.1
-
66
-
-
70350443611
-
Systems-Level Engineering of Nonfermentative Metabolism in Yeast
-
Kennedy CJ, Boyle PM, Waks Z, Silver PA, Systems-Level Engineering of Nonfermentative Metabolism in Yeast. Genetics. 2009;183: 385–397. doi: 10.1534/genetics.109.105254 19564482
-
(2009)
Genetics
, vol.183
, pp. 385-397
-
-
Kennedy, C.J.1
Boyle, P.M.2
Waks, Z.3
Silver, P.A.4
-
67
-
-
0016772212
-
Comparison of the predicted and observed secondary structure of T4 phage lysozyme
-
Matthews BW, Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405: 442–451. 1180967
-
(1975)
Biochim Biophys Acta
, vol.405
, pp. 442-451
-
-
Matthews, B.W.1
-
68
-
-
77957117220
-
Computationally efficient flux variability analysis
-
Gudmundsson S, Thiele I, Computationally efficient flux variability analysis. BMC Bioinformatics. 2010;11: 489. doi: 10.1186/1471-2105-11-489 20920235
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 489
-
-
Gudmundsson, S.1
Thiele, I.2
-
69
-
-
38549127678
-
ChEBI: a database and ontology for chemical entities of biological interest
-
Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2007;36: D344–D350. doi: 10.1093/nar/gkm791 17932057
-
(2007)
Nucleic Acids Res
, vol.36
, pp. D344-D350
-
-
Degtyarenko, K.1
de Matos, P.2
Ennis, M.3
Hastings, J.4
Zbinden, M.5
McNaught, A.6
|