메뉴 건너뛰기




Volumn 11, Issue 11, 2015, Pages

Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; GENES; ITERATIVE METHODS; METABOLISM;

EID: 84949239513     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1004530     Document Type: Article
Times cited : (61)

References (69)
  • 2
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models
    • Henry CS, DeJongh M, Best AA, Frybarger PM, Linsay B, Stevens RL, High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol. 2010;28: 977–982. doi: 10.1038/nbt.1672 20802497
    • (2010) Nat Biotechnol , vol.28 , pp. 977-982
    • Henry, C.S.1    DeJongh, M.2    Best, A.A.3    Frybarger, P.M.4    Linsay, B.5    Stevens, R.L.6
  • 3
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele I, Palsson BO, A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc. 2010;5: 93–121. doi: 10.1038/nprot.2009.203 20057383
    • (2010) Nat Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.O.2
  • 4
    • 84908323876 scopus 로고    scopus 로고
    • Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models
    • Benedict MN, Mundy MB, Henry CS, Chia N, Price ND, Maranas CD, Likelihood-Based Gene Annotations for Gap Filling and Quality Assessment in Genome-Scale Metabolic Models. PLoS Comput Biol. 2014;10: e1003882. doi: 10.1371/journal.pcbi.1003882 25329157
    • (2014) PLoS Comput Biol , vol.10
    • Benedict, M.N.1    Mundy, M.B.2    Henry, C.S.3    Chia, N.4    Price, N.D.5    Maranas, C.D.6
  • 6
    • 84886740491 scopus 로고    scopus 로고
    • Path2Models: large-scale generation of computational models from biochemical pathway maps
    • Büchel F, Rodriguez N, Swainston N, Wrzodek C, Czauderna T, Keller R, et al. Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst Biol. 2013;7: 116. doi: 10.1186/1752-0509-7-116 24180668
    • (2013) BMC Syst Biol , vol.7 , pp. 116
    • Büchel, F.1    Rodriguez, N.2    Swainston, N.3    Wrzodek, C.4    Czauderna, T.5    Keller, R.6
  • 7
    • 84920265598 scopus 로고    scopus 로고
    • Transparency in metabolic network reconstruction enables scalable biological discovery
    • Heavner BD, Price ND, Transparency in metabolic network reconstruction enables scalable biological discovery. Curr Opin Biotechnol. 2015;34: 105–109. doi: 10.1016/j.copbio.2014.12.010 25562137
    • (2015) Curr Opin Biotechnol , vol.34 , pp. 105-109
    • Heavner, B.D.1    Price, N.D.2
  • 8
    • 84900303762 scopus 로고    scopus 로고
    • Optimizing genome-scale network reconstructions
    • Monk J, Nogales J, Palsson BO, Optimizing genome-scale network reconstructions. Nat Biotechnol. 2014;32: 447–452. doi: 10.1038/nbt.2870 24811519
    • (2014) Nat Biotechnol , vol.32 , pp. 447-452
    • Monk, J.1    Nogales, J.2    Palsson, B.O.3
  • 9
    • 84879002382 scopus 로고    scopus 로고
    • Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli
    • McCloskey D, Palsson BØ, Feist AM, Basic and applied uses of genome-scale metabolic network reconstructions of Escherichia coli. Mol Syst Biol. 2013;9. doi: 10.1038/msb.2013.18
    • (2013) Mol Syst Biol , vol.9
    • McCloskey, D.1    Palsson, B.Ø.2    Feist, A.M.3
  • 10
    • 84857054573 scopus 로고    scopus 로고
    • Fifteen years of large scale metabolic modeling of yeast: Developments and impacts
    • Österlund T, Nookaew I, Nielsen J, Fifteen years of large scale metabolic modeling of yeast: Developments and impacts. Biotechnol Adv. 2011; 10.
    • (2011) Biotechnol Adv , vol.10
    • Österlund, T.1    Nookaew, I.2    Nielsen, J.3
  • 11
    • 0042816453 scopus 로고    scopus 로고
    • Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae
    • Förster J, Famili I, Palsson BO, Nielsen J, Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. Omics J Integr Biol. 2003;7: 193–202.
    • (2003) Omics J Integr Biol , vol.7 , pp. 193-202
    • Förster, J.1    Famili, I.2    Palsson, B.O.3    Nielsen, J.4
  • 12
    • 84884522554 scopus 로고    scopus 로고
    • Dead End Metabolites—Defining the Known Unknowns of the E. coli Metabolic Network
    • Mackie A, Keseler IM, Nolan L, Karp PD, Paulsen IT, Parkinson J, Dead End Metabolites—Defining the Known Unknowns of the E. coli Metabolic Network. PLoS ONE. 2013;8: e75210. doi: 10.1371/journal.pone.0075210 24086468
    • (2013) PLoS ONE , vol.8
    • Mackie, A.1    Keseler, I.M.2    Nolan, L.3    Karp, P.D.4    Paulsen, I.T.5    Parkinson, J.6
  • 13
    • 84862159261 scopus 로고    scopus 로고
    • Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions
    • Orth JD, Palsson B, Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions. BMC Syst Biol. 2012;6: 30. doi: 10.1186/1752-0509-6-30 22548736
    • (2012) BMC Syst Biol , vol.6 , pp. 30
    • Orth, J.D.1    Palsson, B.2
  • 14
    • 77952886804 scopus 로고    scopus 로고
    • The biomass objective function
    • Feist AM, Palsson BO, The biomass objective function. Curr Opin Microbiol. 2010;13: 344–349. doi: 10.1016/j.mib.2010.03.003 20430689
    • (2010) Curr Opin Microbiol , vol.13 , pp. 344-349
    • Feist, A.M.1    Palsson, B.O.2
  • 15
    • 84944276294 scopus 로고    scopus 로고
    • Biomass composition: the “elephant in the room” of metabolic modelling
    • Dikicioglu D, Kırdar B, Oliver SG, Biomass composition: the “elephant in the room” of metabolic modelling. Metabolomics. 2015; doi: 10.1007/s11306-015-0819-2
    • (2015) Metabolomics
    • Dikicioglu, D.1    Kırdar, B.2    Oliver, S.G.3
  • 16
    • 84867631468 scopus 로고    scopus 로고
    • Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth
    • Hanscho M, Ruckerbauer DE, Chauhan N, Hofbauer HF, Krahulec S, Nidetzky B, et al. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum growth. FEMS Yeast Res. 2012;12: 796–808. doi: 10.1111/j.1567-1364.2012.00830.x 22780918
    • (2012) FEMS Yeast Res , vol.12 , pp. 796-808
    • Hanscho, M.1    Ruckerbauer, D.E.2    Chauhan, N.3    Hofbauer, H.F.4    Krahulec, S.5    Nidetzky, B.6
  • 17
    • 25844463806 scopus 로고    scopus 로고
    • Metabolic functions of duplicate genes in Saccharomyces cerevisiae
    • Kuepfer L, Sauer U, Blank LM, Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 2005;15: 1421–1430. doi: 10.1101/gr.3992505 16204195
    • (2005) Genome Res , vol.15 , pp. 1421-1430
    • Kuepfer, L.1    Sauer, U.2    Blank, L.M.3
  • 19
    • 84907026934 scopus 로고    scopus 로고
    • fastGapFill: efficient gap filling in metabolic networks
    • Thiele I, Vlassis N, Fleming RMT, fastGapFill: efficient gap filling in metabolic networks. Bioinforma Oxf Engl. 2014;30: 2529–2531. doi: 10.1093/bioinformatics/btu321
    • (2014) Bioinforma Oxf Engl , vol.30 , pp. 2529-2531
    • Thiele, I.1    Vlassis, N.2    Fleming, R.M.T.3
  • 20
    • 78650595350 scopus 로고    scopus 로고
    • Improving the iMM 904 S. cerevisiae metabolic model using essentiality and synthetic lethality data
    • Zomorrodi AR, Maranas CD, Improving the iMM 904 S. cerevisiae metabolic model using essentiality and synthetic lethality data. BMC Syst Biol. 2010;4: 178. doi: 10.1186/1752-0509-4-178 21190580
    • (2010) BMC Syst Biol , vol.4 , pp. 178
    • Zomorrodi, A.R.1    Maranas, C.D.2
  • 21
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard AP, Pharkya P, Maranas CD, Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003;84: 647–657. 14595777
    • (2003) Biotechnol Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 22
    • 84979849215 scopus 로고    scopus 로고
    • Genome scale models of yeast: towards standardized evaluation and consistent omic integration
    • Sánchez BJ, Nielsen J, Genome scale models of yeast: towards standardized evaluation and consistent omic integration. Integr Biol. 2015; doi: 10.1039/C5IB00083A
    • (2015) Integr Biol
    • Sánchez, B.J.1    Nielsen, J.2
  • 23
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model
    • Duarte NC, Herrgård MJ, Palsson BO, Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res. 2004;14: 1298. doi: 10.1101/gr.2250904 15197165
    • (2004) Genome Res , vol.14 , pp. 1298
    • Duarte, N.C.1    Herrgård, M.J.2    Palsson, B.O.3
  • 24
  • 25
    • 33745178476 scopus 로고    scopus 로고
    • Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae
    • Herrgård MJ, Lee B-S, Portnoy V, Palsson BO, Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae. Genome Res. 2006;16: 627–635. doi: 10.1101/gr.4083206 16606697
    • (2006) Genome Res , vol.16 , pp. 627-635
    • Herrgård, M.J.1    Lee, B.-S.2    Portnoy, V.3    Palsson, B.O.4
  • 26
    • 33749996165 scopus 로고    scopus 로고
    • Optimization of Fed-Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models
    • Hjersted JL, Henson MA, Optimization of Fed-Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models. Biotechnol Prog. 2006;22: 1239–1248. doi: 10.1021/bp060059v 17022660
    • (2006) Biotechnol Prog , vol.22 , pp. 1239-1248
    • Hjersted, J.L.1    Henson, M.A.2
  • 27
    • 52649105455 scopus 로고    scopus 로고
    • The genome-scale metabolic model iIN 800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism
    • Nookaew I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, et al. The genome-scale metabolic model iIN 800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol. 2008;2: 71. doi: 10.1186/1752-0509-2-71 18687109
    • (2008) BMC Syst Biol , vol.2 , pp. 71
    • Nookaew, I.1    Jewett, M.C.2    Meechai, A.3    Thammarongtham, C.4    Laoteng, K.5    Cheevadhanarak, S.6
  • 28
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
    • Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotech. 2008;26: 1155–1160. doi: 10.1038/nbt1492
    • (2008) Nat Biotech , vol.26 , pp. 1155-1160
    • Herrgard, M.J.1    Swainston, N.2    Dobson, P.3    Dunn, W.B.4    Arga, K.Y.5    Arvas, M.6
  • 29
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo ML, Palsson BØ, Herrgård MJ, Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol. 2009;3: 37. doi: 10.1186/1752-0509-3-37 19321003
    • (2009) BMC Syst Biol , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.Ø.2    Herrgård, M.J.3
  • 30
    • 77958597036 scopus 로고    scopus 로고
    • Further developments towards a genome-scale metabolic model of yeast
    • Dobson PD, Jameson D, Simeonidis E, Lanthaler K, Pir P, Lu C, et al. Further developments towards a genome-scale metabolic model of yeast. BMC Syst Biol. 2010;4: 145. doi: 10.1186/1752-0509-4-145 21029416
    • (2010) BMC Syst Biol , vol.4 , pp. 145
    • Dobson, P.D.1    Jameson, D.2    Simeonidis, E.3    Lanthaler, K.4    Pir, P.5    Lu, C.6
  • 31
    • 77956291961 scopus 로고    scopus 로고
    • Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network
    • Aho T, Almusa H, Matilainen J, Larjo A, Ruusuvuori P, Aho K-L, Goldman G, et al. Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network. PLoS ONE. 2010;5: e10662. doi: 10.1371/journal.pone.0010662 20498836
    • (2010) PLoS ONE , vol.5
    • Aho, T.1    Almusa, H.2    Matilainen, J.3    Larjo, A.4    Ruusuvuori, P.5    Aho, K.-L.6    Goldman, G.7
  • 32
    • 79959687662 scopus 로고    scopus 로고
    • An integrated approach to characterize genetic interaction networks in yeast metabolism
    • Szappanos B, Kovács K, Szamecz B, Honti F, Costanzo M, Baryshnikova A, et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat Genet. 2011;43: 656–662. doi: 10.1038/ng.846 21623372
    • (2011) Nat Genet , vol.43 , pp. 656-662
    • Szappanos, B.1    Kovács, K.2    Szamecz, B.3    Honti, F.4    Costanzo, M.5    Baryshnikova, A.6
  • 34
    • 79551600149 scopus 로고    scopus 로고
    • Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics
    • Costenoble R, Picotti P, Reiter L, Stallmach R, Heinemann M, Sauer U, et al. Comprehensive quantitative analysis of central carbon and amino-acid metabolism in Saccharomyces cerevisiae under multiple conditions by targeted proteomics. Mol Syst Biol. 2011;7. doi: 10.1038/msb.2010.122
    • (2011) Mol Syst Biol , vol.7
    • Costenoble, R.1    Picotti, P.2    Reiter, L.3    Stallmach, R.4    Heinemann, M.5    Sauer, U.6
  • 35
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5—an expanded reconstruction of the Saccharomyces Cerevisiae metabolic network
    • Heavner BD, Smallbone K, Barker B, Mendes P, Walker LP, Yeast 5—an expanded reconstruction of the Saccharomyces Cerevisiae metabolic network. BMC Syst Biol. 2012;6: 55. doi: 10.1186/1752-0509-6-55 22663945
    • (2012) BMC Syst Biol , vol.6 , pp. 55
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 36
    • 84862182291 scopus 로고    scopus 로고
    • A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae
    • Celton M, Goelzer A, Camarasa C, Fromion V, Dequin S, A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae. Metab Eng. 2012;14: 366–379. doi: 10.1016/j.ymben.2012.03.008 22709677
    • (2012) Metab Eng , vol.14 , pp. 366-379
    • Celton, M.1    Goelzer, A.2    Camarasa, C.3    Fromion, V.4    Dequin, S.5
  • 37
    • 84876789665 scopus 로고    scopus 로고
    • Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling
    • Österlund T, Nookaew I, Bordel S, Nielsen J, Mapping condition-dependent regulation of metabolism in yeast through genome-scale modeling. BMC Syst Biol. 2013;7: 36. doi: 10.1186/1752-0509-7-36 23631471
    • (2013) BMC Syst Biol , vol.7 , pp. 36
    • Österlund, T.1    Nookaew, I.2    Bordel, S.3    Nielsen, J.4
  • 38
    • 84885911432 scopus 로고    scopus 로고
    • Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance
    • bat059
    • Heavner BD, Smallbone K, Price ND, Walker LP, Version 6 of the consensus yeast metabolic network refines biochemical coverage and improves model performance. Database. 2013;2013: bat059–bat059. doi: 10.1093/database/bat059 23935056
    • (2013) Database , vol.2013
    • Heavner, B.D.1    Smallbone, K.2    Price, N.D.3    Walker, L.P.4
  • 39
    • 84881540727 scopus 로고    scopus 로고
    • Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism
    • Aung HW, Henry SA, Walker LP, Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism. Ind Biotechnol. 2013;9: 215–228. doi: 10.1089/ind.2013.0013
    • (2013) Ind Biotechnol , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 40
    • 84895735489 scopus 로고    scopus 로고
    • Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species
    • Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J, Nielsen J, et al. Comparative Genome-Scale Reconstruction of Gapless Metabolic Networks for Present and Ancestral Species. PLoS Comput Biol. 2014;10: e1003465. doi: 10.1371/journal.pcbi.1003465 24516375
    • (2014) PLoS Comput Biol , vol.10
    • Pitkänen, E.1    Jouhten, P.2    Hou, J.3    Syed, M.F.4    Blomberg, P.5    Kludas, J.6    Nielsen, J.7
  • 41
    • 73849090293 scopus 로고    scopus 로고
    • Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology
    • Milne CB, Kim P-J, Eddy JA, Price ND, Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J. 2009;4: 1653–1670. doi: 10.1002/biot.200900234 19946878
    • (2009) Biotechnol J , vol.4 , pp. 1653-1670
    • Milne, C.B.1    Kim, P.-J.2    Eddy, J.A.3    Price, N.D.4
  • 43
    • 84899012698 scopus 로고    scopus 로고
    • d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities
    • Zomorrodi AR, Islam MM, Maranas CD, d-OptCom: Dynamic Multi-level and Multi-objective Metabolic Modeling of Microbial Communities. ACS Synth Biol. 2014; 140228131456008. doi: 10.1021/sb4001307
    • (2014) ACS Synth Biol
    • Zomorrodi, A.R.1    Islam, M.M.2    Maranas, C.D.3
  • 44
    • 55349112223 scopus 로고    scopus 로고
    • Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions
    • Snitkin E, Dudley A, Janse D, Wong K, Church G, Segrè D, Model-driven analysis of experimentally determined growth phenotypes for 465 yeast gene deletion mutants under 16 different conditions. Genome Biol. 2008;9: R140. doi: 10.1186/gb-2008-9-9-r140 18808699
    • (2008) Genome Biol , vol.9 , pp. R140
    • Snitkin, E.1    Dudley, A.2    Janse, D.3    Wong, K.4    Church, G.5    Segrè, D.6
  • 45
    • 84897382623 scopus 로고    scopus 로고
    • Assimilating genome-scale metabolic reconstructions with modelBorgifier
    • Sauls JT, Buescher JM, Assimilating genome-scale metabolic reconstructions with modelBorgifier. Bioinformatics. 2014;30: 1036–1038. doi: 10.1093/bioinformatics/btt747 24371155
    • (2014) Bioinformatics , vol.30 , pp. 1036-1038
    • Sauls, J.T.1    Buescher, J.M.2
  • 46
    • 84908654385 scopus 로고    scopus 로고
    • Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection
    • VanderSluis B, Hess DC, Pesyna C, Krumholz EW, Syed T, Szappanos B, et al. Broad metabolic sensitivity profiling of a prototrophic yeast deletion collection. Genome Biol. 2014;15: R64. doi: 10.1186/gb-2014-15-4-r64 24721214
    • (2014) Genome Biol , vol.15 , pp. R64
    • VanderSluis, B.1    Hess, D.C.2    Pesyna, C.3    Krumholz, E.W.4    Syed, T.5    Szappanos, B.6
  • 47
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1261 ORFs and thermodynamic information
    • Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1261 ORFs and thermodynamic information. Mol Syst Biol. 2007;3: 121. 17593909
    • (2007) Mol Syst Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4    Joyce, A.R.5    Karp, P.D.6
  • 48
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
    • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285: 901–906. 10436161
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3    Liang, H.4    Anderson, K.5    Andre, B.6
  • 49
    • 84922020975 scopus 로고    scopus 로고
    • Understanding carbon catabolite repression in Escherichia coli using quantitative models
    • Kremling A, Geiselmann J, Ropers D, de Jong H, Understanding carbon catabolite repression in Escherichia coli using quantitative models. Trends Microbiol. 2015;23: 99–109. doi: 10.1016/j.tim.2014.11.002 25475882
    • (2015) Trends Microbiol , vol.23 , pp. 99-109
    • Kremling, A.1    Geiselmann, J.2    Ropers, D.3    de Jong, H.4
  • 50
    • 34447523907 scopus 로고    scopus 로고
    • Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli
    • Schuetz R, Kuepfer L, Sauer U, Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol. 2007;3: 119. doi: 10.1038/msb4100162 17625511
    • (2007) Mol Syst Biol , vol.3 , pp. 119
    • Schuetz, R.1    Kuepfer, L.2    Sauer, U.3
  • 51
    • 10744230390 scopus 로고    scopus 로고
    • Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae: Yeast mitochondrial aspartate-glutamate carrier
    • Cavero S, Vozza A, Del Arco A, Palmieri L, Villa A, Blanco E, et al. Identification and metabolic role of the mitochondrial aspartate-glutamate transporter in Saccharomyces cerevisiae: Yeast mitochondrial aspartate-glutamate carrier. Mol Microbiol. 2003;50: 1257–1269.
    • (2003) Mol Microbiol , vol.50 , pp. 1257-1269
    • Cavero, S.1    Vozza, A.2    Del Arco, A.3    Palmieri, L.4    Villa, A.5    Blanco, E.6
  • 52
    • 84862262073 scopus 로고    scopus 로고
    • YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit
    • bar062
    • Balakrishnan R, Park J, Karra K, Hitz BC, Binkley G, Hong EL, et al. YeastMine—an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. Database. 2012;2012: bar062–bar062. doi: 10.1093/database/bar062 22434830
    • (2012) Database , vol.2012
    • Balakrishnan, R.1    Park, J.2    Karra, K.3    Hitz, B.C.4    Binkley, G.5    Hong, E.L.6
  • 53
    • 34249041230 scopus 로고    scopus 로고
    • Exploring genetic interactions and networks with yeast
    • Boone C, Bussey H, Andrews BJ, Exploring genetic interactions and networks with yeast. Nat Rev Genet. 2007;8: 437–449. doi: 10.1038/nrg2085 17510664
    • (2007) Nat Rev Genet , vol.8 , pp. 437-449
    • Boone, C.1    Bussey, H.2    Andrews, B.J.3
  • 54
    • 33748352373 scopus 로고    scopus 로고
    • Multiple knockout analysis of genetic robustness in the yeast metabolic network
    • Deutscher D, Meilijson I, Kupiec M, Ruppin E, Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet. 2006;38: 993–998. doi: 10.1038/ng1856 16941010
    • (2006) Nat Genet , vol.38 , pp. 993-998
    • Deutscher, D.1    Meilijson, I.2    Kupiec, M.3    Ruppin, E.4
  • 56
    • 0030669030 scopus 로고    scopus 로고
    • Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale
    • DeRisi JL, Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale. Science. 1997;278: 680–686. 9381177
    • (1997) Science , vol.278 , pp. 680-686
    • DeRisi, J.L.1
  • 57
    • 0032508638 scopus 로고    scopus 로고
    • Glucose Repression in Saccharomyces cerevisiae is Related to the Glucose Concentration Rather Than the Glucose Flux
    • Meijer MMC, Boonstra J, Verkleij AJ, Verrips CT, Glucose Repression in Saccharomyces cerevisiae is Related to the Glucose Concentration Rather Than the Glucose Flux. J Biol Chem. 1998;273: 24102–24107. doi: 10.1074/jbc.273.37.24102 9727030
    • (1998) J Biol Chem , vol.273 , pp. 24102-24107
    • Meijer, M.M.C.1    Boonstra, J.2    Verkleij, A.J.3    Verrips, C.T.4
  • 58
    • 11244328060 scopus 로고    scopus 로고
    • The Pathway Tools software
    • Karp PD, Paley S, Romero P, The Pathway Tools software. Bioinformatics. 2002;18: S225–S232. doi: 10.1093/bioinformatics/18.suppl_1.S225 12169551
    • (2002) Bioinformatics , vol.18 , pp. S225-S232
    • Karp, P.D.1    Paley, S.2    Romero, P.3
  • 60
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    • Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc. 2011;6: 1290–1307. doi: 10.1038/nprot.2011.308 21886097
    • (2011) Nat Protoc , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.T.3    Thiele, I.4    Orth, J.D.5    Feist, A.M.6
  • 62
    • 77951612556 scopus 로고    scopus 로고
    • BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions
    • Schellenberger J, Park J, Conrad T, Palsson B, BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics. 2010;11: 213. doi: 10.1186/1471-2105-11-213 20426874
    • (2010) BMC Bioinformatics , vol.11 , pp. 213
    • Schellenberger, J.1    Park, J.2    Conrad, T.3    Palsson, B.4
  • 63
    • 33644877164 scopus 로고    scopus 로고
    • BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems
    • Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, et al. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 2006;34: D689–D691. doi: 10.1093/nar/gkj092 16381960
    • (2006) Nucleic Acids Res , vol.34 , pp. D689-D691
    • Le Novere, N.1    Bornstein, B.2    Broicher, A.3    Courtot, M.4    Donizelli, M.5    Dharuri, H.6
  • 64
    • 0032540270 scopus 로고    scopus 로고
    • The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase of Saccharomyces cerevisiae
    • Chang S-C, The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase of Saccharomyces cerevisiae. J Biol Chem. 1998;273: 9829–9836. doi: 10.1074/jbc.273.16.9829 9545322
    • (1998) J Biol Chem , vol.273 , pp. 9829-9836
    • Chang, S.-C.1
  • 66
    • 70350443611 scopus 로고    scopus 로고
    • Systems-Level Engineering of Nonfermentative Metabolism in Yeast
    • Kennedy CJ, Boyle PM, Waks Z, Silver PA, Systems-Level Engineering of Nonfermentative Metabolism in Yeast. Genetics. 2009;183: 385–397. doi: 10.1534/genetics.109.105254 19564482
    • (2009) Genetics , vol.183 , pp. 385-397
    • Kennedy, C.J.1    Boyle, P.M.2    Waks, Z.3    Silver, P.A.4
  • 67
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Matthews BW, Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975;405: 442–451. 1180967
    • (1975) Biochim Biophys Acta , vol.405 , pp. 442-451
    • Matthews, B.W.1
  • 68
    • 77957117220 scopus 로고    scopus 로고
    • Computationally efficient flux variability analysis
    • Gudmundsson S, Thiele I, Computationally efficient flux variability analysis. BMC Bioinformatics. 2010;11: 489. doi: 10.1186/1471-2105-11-489 20920235
    • (2010) BMC Bioinformatics , vol.11 , pp. 489
    • Gudmundsson, S.1    Thiele, I.2
  • 69
    • 38549127678 scopus 로고    scopus 로고
    • ChEBI: a database and ontology for chemical entities of biological interest
    • Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A, et al. ChEBI: a database and ontology for chemical entities of biological interest. Nucleic Acids Res. 2007;36: D344–D350. doi: 10.1093/nar/gkm791 17932057
    • (2007) Nucleic Acids Res , vol.36 , pp. D344-D350
    • Degtyarenko, K.1    de Matos, P.2    Ennis, M.3    Hastings, J.4    Zbinden, M.5    McNaught, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.