메뉴 건너뛰기




Volumn 36, Issue , 2015, Pages 91-97

Facilitation of base excision repair by chromatin remodeling

Author keywords

AP endonuclease; BRG1; Chromatin remodeling; DNA damage; Glycosylase; INO80; ISWI; Ligase; Nucleosomes; PARP 1; Polymerase ; RSC; SNF2; SWI SNF

Indexed keywords

ADENOSINE TRIPHOSPHATE; DNA; HISTONE;

EID: 84945567423     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.09.011     Document Type: Review
Times cited : (24)

References (120)
  • 1
    • 84862732690 scopus 로고    scopus 로고
    • New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?
    • Luger K., Dechassa M.L., Tremethick D.J. New insights into nucleosome and chromatin structure: an ordered state or a disordered affair?. Nat. Rev. Mol. Cell. Biol. 2012, 13:436-447.
    • (2012) Nat. Rev. Mol. Cell. Biol. , vol.13 , pp. 436-447
    • Luger, K.1    Dechassa, M.L.2    Tremethick, D.J.3
  • 2
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • Clapier C.R., Cairns B.R. The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 2009, 78:273-304.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 4
    • 58149289691 scopus 로고    scopus 로고
    • Histone H1 and its isoforms: contribution to chromatin structure and function
    • Happel N., Doenecke D. Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 2009, 431:1-12.
    • (2009) Gene , vol.431 , pp. 1-12
    • Happel, N.1    Doenecke, D.2
  • 5
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993, 362:709-715.
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 6
    • 0022439229 scopus 로고
    • Background levels of DNA damage in the population
    • Saul R.L., Ames B.N. Background levels of DNA damage in the population. Basic Life Sci. 1986, 38:529-535.
    • (1986) Basic Life Sci. , vol.38 , pp. 529-535
    • Saul, R.L.1    Ames, B.N.2
  • 7
    • 84856278412 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling in the DNA-damage response
    • Lans H., Marteijn J.A., Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012, 5:4.
    • (2012) Epigenetics Chromatin , vol.5 , pp. 4
    • Lans, H.1    Marteijn, J.A.2    Vermeulen, W.3
  • 8
    • 0034930217 scopus 로고    scopus 로고
    • Base excision repair in a network of defence and tolerance
    • Nilsen H., Krokan H.E. Base excision repair in a network of defence and tolerance. Carcinogenesis 2001, 22:987-998.
    • (2001) Carcinogenesis , vol.22 , pp. 987-998
    • Nilsen, H.1    Krokan, H.E.2
  • 9
    • 50649108365 scopus 로고    scopus 로고
    • Base excision repair and its role in maintaining genome stability
    • Baute J., Depicker A. Base excision repair and its role in maintaining genome stability. Crit. Rev. Biochem. Mol Biol 2008, 43:239-276.
    • (2008) Crit. Rev. Biochem. Mol Biol , vol.43 , pp. 239-276
    • Baute, J.1    Depicker, A.2
  • 11
    • 62349120246 scopus 로고    scopus 로고
    • DNA repair in mammalian cells: Base excision repair: the long and short of it
    • Robertson A.B., Klungland A., Rognes T., Leiros I. DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell. Mol. Life. Sci. 2009, 66:981-993.
    • (2009) Cell. Mol. Life. Sci. , vol.66 , pp. 981-993
    • Robertson, A.B.1    Klungland, A.2    Rognes, T.3    Leiros, I.4
  • 12
    • 38049112778 scopus 로고    scopus 로고
    • Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells
    • Hegde M.L., Hazra T.K., Mitra S. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells. Cell Res. 2008, 18:27-47.
    • (2008) Cell Res. , vol.18 , pp. 27-47
    • Hegde, M.L.1    Hazra, T.K.2    Mitra, S.3
  • 13
    • 0031104841 scopus 로고    scopus 로고
    • The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair
    • Lieber M.R. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 1997, 19:233-240.
    • (1997) Bioessays , vol.19 , pp. 233-240
    • Lieber, M.R.1
  • 14
    • 50649116450 scopus 로고    scopus 로고
    • Eukaryotic DNA ligases: structural and functional insights
    • Ellenberger T., Tomkinson A.E. Eukaryotic DNA ligases: structural and functional insights. Annu. Rev. Biochem. 2008, 77:313-338.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 313-338
    • Ellenberger, T.1    Tomkinson, A.E.2
  • 15
    • 0026507413 scopus 로고
    • Role of poly(ADP-ribose) formation in DNA repair
    • Satoh M.S., Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature 1992, 356:356-358.
    • (1992) Nature , vol.356 , pp. 356-358
    • Satoh, M.S.1    Lindahl, T.2
  • 16
    • 0142009654 scopus 로고    scopus 로고
    • A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage
    • El-Khamisy S.F., Masutani M., Suzuki H., Caldecott K.W. A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. Nucleic Acids Res. 2003, 31:5526-5533.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 5526-5533
    • El-Khamisy, S.F.1    Masutani, M.2    Suzuki, H.3    Caldecott, K.W.4
  • 17
    • 0035980003 scopus 로고    scopus 로고
    • DNA polymerase beta -mediated long patch base excision repair: Poly(ADP-ribose) polymerase-1 stimulates strand displacement DNA synthesis
    • Prasad R., Lavrik O.I., Kim S.J., Kedar P., Yang X.P., Vande Berg B.J., Wilson S.H. DNA polymerase beta -mediated long patch base excision repair: Poly(ADP-ribose) polymerase-1 stimulates strand displacement DNA synthesis. J. Biol. Chem. 2001, 276:32411-32414.
    • (2001) J. Biol. Chem. , vol.276 , pp. 32411-32414
    • Prasad, R.1    Lavrik, O.I.2    Kim, S.J.3    Kedar, P.4    Yang, X.P.5    Vande Berg, B.J.6    Wilson, S.H.7
  • 18
    • 0042632806 scopus 로고    scopus 로고
    • Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair
    • Leppard J.B., Dong Z., Mackey Z.B., Tomkinson A.E. Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair. Mol. Cell. Biol. 2003, 23:5919-5927.
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 5919-5927
    • Leppard, J.B.1    Dong, Z.2    Mackey, Z.B.3    Tomkinson, A.E.4
  • 19
    • 84856233300 scopus 로고    scopus 로고
    • Balancing repair and tolerance of DNA damage caused by alkylating agents
    • Fu D., Calvo J.A., Samson L.D. Balancing repair and tolerance of DNA damage caused by alkylating agents. Nat. Rev. Cancer 2012, 12:104-120.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 104-120
    • Fu, D.1    Calvo, J.A.2    Samson, L.D.3
  • 20
    • 0032167424 scopus 로고    scopus 로고
    • Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA
    • Parikh S.S., Mol C.D., Slupphaug G., Bharati S., Krokan H.E., Tainer J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 1998, 17:5214-5226.
    • (1998) EMBO J. , vol.17 , pp. 5214-5226
    • Parikh, S.S.1    Mol, C.D.2    Slupphaug, G.3    Bharati, S.4    Krokan, H.E.5    Tainer, J.A.6
  • 21
    • 0032951710 scopus 로고    scopus 로고
    • Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1
    • Waters T.R., Gallinari P., Jiricny J., Swann P.F. Human thymine DNA glycosylase binds to apurinic sites in DNA but is displaced by human apurinic endonuclease 1. J. Biol. Chem. 1999, 274:67-74.
    • (1999) J. Biol. Chem. , vol.274 , pp. 67-74
    • Waters, T.R.1    Gallinari, P.2    Jiricny, J.3    Swann, P.F.4
  • 22
    • 0034093291 scopus 로고    scopus 로고
    • Passing the baton in base excision repair
    • Wilson S.H., Kunkel T.A. Passing the baton in base excision repair. Nat. Struct. Biol. 2000, 7:176-178.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 176-178
    • Wilson, S.H.1    Kunkel, T.A.2
  • 23
    • 0035863739 scopus 로고    scopus 로고
    • Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair
    • Hill J.W., Hazra T.K., Izumi T., Mitra S. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 2001, 29:430-438.
    • (2001) Nucleic Acids Res. , vol.29 , pp. 430-438
    • Hill, J.W.1    Hazra, T.K.2    Izumi, T.3    Mitra, S.4
  • 24
    • 84868035470 scopus 로고    scopus 로고
    • Rules of engagement for base excision repair in chromatin
    • Odell I.D., Wallace S.S., Pederson D.S. Rules of engagement for base excision repair in chromatin. J. Cell. Physiol. 2013, 228:258-266.
    • (2013) J. Cell. Physiol. , vol.228 , pp. 258-266
    • Odell, I.D.1    Wallace, S.S.2    Pederson, D.S.3
  • 25
    • 0037934742 scopus 로고    scopus 로고
    • Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes
    • Beard B.C., Wilson S.H., Smerdon M.J. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Proc. Natl. Acad. Sci. U. S. A. 2003, 100:7465-7470.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 7465-7470
    • Beard, B.C.1    Wilson, S.H.2    Smerdon, M.J.3
  • 26
    • 37549004382 scopus 로고    scopus 로고
    • Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1
    • Prasad A., Wallace S.S., Pederson D.S. Initiation of base excision repair of oxidative lesions in nucleosomes by the human, bifunctional DNA glycosylase NTH1. Mol. Cell. Biol. 2007, 27:8442-8453.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 8442-8453
    • Prasad, A.1    Wallace, S.S.2    Pederson, D.S.3
  • 27
    • 77449137042 scopus 로고    scopus 로고
    • Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets
    • Cole H.A., Tabor-Godwin J.M., Hayes J.J. Uracil DNA glycosylase activity on nucleosomal DNA depends on rotational orientation of targets. J. Biol. Chem. 2010, 285:2876-2885.
    • (2010) J. Biol. Chem. , vol.285 , pp. 2876-2885
    • Cole, H.A.1    Tabor-Godwin, J.M.2    Hayes, J.J.3
  • 28
    • 77949528928 scopus 로고    scopus 로고
    • Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme
    • Hinz J.M., Rodriguez Y., Smerdon M.J. Rotational dynamics of DNA on the nucleosome surface markedly impact accessibility to a DNA repair enzyme. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:4646-4651.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 4646-4651
    • Hinz, J.M.1    Rodriguez, Y.2    Smerdon, M.J.3
  • 29
    • 75149158767 scopus 로고    scopus 로고
    • Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1
    • Odell I.D., Newick K., Heintz N.H., Wallace S.S., Pederson D.S. Non-specific DNA binding interferes with the efficient excision of oxidative lesions from chromatin by the human DNA glycosylase, NEIL1. DNA Repair (Amst) 2010, 9:134-143.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 134-143
    • Odell, I.D.1    Newick, K.2    Heintz, N.H.3    Wallace, S.S.4    Pederson, D.S.5
  • 31
    • 84877696971 scopus 로고    scopus 로고
    • The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes
    • Rodriguez Y., Smerdon M.J. The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes. J. Biol. Chem. 2013, 288:13863-13875.
    • (2013) J. Biol. Chem. , vol.288 , pp. 13863-13875
    • Rodriguez, Y.1    Smerdon, M.J.2
  • 32
    • 84904705249 scopus 로고    scopus 로고
    • Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity
    • Hinz J.M. Impact of abasic site orientation within nucleosomes on human APE1 endonuclease activity. Mutat. Res. 2014, 766-767:19-24.
    • (2014) Mutat. Res. , pp. 19-24
    • Hinz, J.M.1
  • 33
    • 84939838730 scopus 로고    scopus 로고
    • Reduced nuclease activity of Apurinic/Apyrimidinic Endonuclease (APE1) variants on nucleosomes: identification of access residues
    • Hinz J.M., Mao P., McNeill D.R., Wilson D.M. Reduced nuclease activity of Apurinic/Apyrimidinic Endonuclease (APE1) variants on nucleosomes: identification of access residues. J. Biol. Chem. 2015, 290:21067-21075.
    • (2015) J. Biol. Chem. , vol.290 , pp. 21067-21075
    • Hinz, J.M.1    Mao, P.2    McNeill, D.R.3    Wilson, D.M.4
  • 34
    • 0036847501 scopus 로고    scopus 로고
    • DNA base excision repair of uracil residues in reconstituted nucleosome core particles
    • Nilsen H., Lindahl T., Verreault A. DNA base excision repair of uracil residues in reconstituted nucleosome core particles. EMBO J. 2002, 21:5943-5952.
    • (2002) EMBO J. , vol.21 , pp. 5943-5952
    • Nilsen, H.1    Lindahl, T.2    Verreault, A.3
  • 35
    • 34548239142 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A Bbd nucleosomes
    • Menoni H., Gasparutto D., Hamiche A., Cadet J., Dimitrov S., Bouvet P., Angelov D. ATP-dependent chromatin remodeling is required for base excision repair in conventional but not in variant H2A Bbd nucleosomes. Mol. Cell. Biol. 2007, 27:5949-5956.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 5949-5956
    • Menoni, H.1    Gasparutto, D.2    Hamiche, A.3    Cadet, J.4    Dimitrov, S.5    Bouvet, P.6    Angelov, D.7
  • 36
    • 77952564842 scopus 로고    scopus 로고
    • Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions
    • Amouroux R., Campalans A., Epe B., Radicella J.P. Oxidative stress triggers the preferential assembly of base excision repair complexes on open chromatin regions. Nucleic Acids Res. 2010, 38:2878-2890.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 2878-2890
    • Amouroux, R.1    Campalans, A.2    Epe, B.3    Radicella, J.P.4
  • 37
    • 84864752050 scopus 로고    scopus 로고
    • Condensins: universal organizers of chromosomes with diverse functions
    • Hirano T. Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 2012, 26:1659-1678.
    • (2012) Genes Dev. , vol.26 , pp. 1659-1678
    • Hirano, T.1
  • 38
    • 84872647982 scopus 로고    scopus 로고
    • The role of DNA repair in the pluripotency and differentiation of human stem cells
    • Rocha C.R., Lerner L.K., Okamoto O.K., Marchetto M.C., Menck C.F. The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutat. Res. 2013, 752:25-35.
    • (2013) Mutat. Res. , vol.752 , pp. 25-35
    • Rocha, C.R.1    Lerner, L.K.2    Okamoto, O.K.3    Marchetto, M.C.4    Menck, C.F.5
  • 39
    • 84877899886 scopus 로고    scopus 로고
    • The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1
    • Smith T.B., Dun M.D., Smith N.D., Curry B.J., Connaughton H.S., Aitken R.J. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J. Cell. Sci. 2013, 126:1488-1497.
    • (2013) J. Cell. Sci. , vol.126 , pp. 1488-1497
    • Smith, T.B.1    Dun, M.D.2    Smith, N.D.3    Curry, B.J.4    Connaughton, H.S.5    Aitken, R.J.6
  • 40
    • 79960037025 scopus 로고    scopus 로고
    • Epigenetic reprogramming in the germline: towards the ground state of the epigenome
    • Hajkova P. Epigenetic reprogramming in the germline: towards the ground state of the epigenome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366:2266-2273.
    • (2011) Philos. Trans. R. Soc. Lond. B Biol. Sci. , vol.366 , pp. 2266-2273
    • Hajkova, P.1
  • 42
    • 33646190728 scopus 로고    scopus 로고
    • Periodicity of SNP distribution around transcription start sites
    • Higasa K., Hayashi K. Periodicity of SNP distribution around transcription start sites. BMC Genom. 2006, 7:66.
    • (2006) BMC Genom. , vol.7 , pp. 66
    • Higasa, K.1    Hayashi, K.2
  • 44
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • Narlikar G.J., Sundaramoorthy R., Owen-Hughes T. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 2013, 154:490-503.
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 45
    • 84921715488 scopus 로고    scopus 로고
    • BRG1, a SWI/SNF chromatin remodeling enzyme ATPase, is required for maintenance of nuclear shape and integrity
    • Imbalzano A.N., Imbalzano K.M., Nickerson J.A. BRG1, a SWI/SNF chromatin remodeling enzyme ATPase, is required for maintenance of nuclear shape and integrity. Commun. Integr. Biol. 2013, 6:e25153.
    • (2013) Commun. Integr. Biol. , vol.6
    • Imbalzano, A.N.1    Imbalzano, K.M.2    Nickerson, J.A.3
  • 46
    • 84555204370 scopus 로고    scopus 로고
    • Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer
    • Wu J.I. Diverse functions of ATP-dependent chromatin remodeling complexes in development and cancer. Acta Biochim. Biophys. Sin. (Shanghai) 2012, 44:54-69.
    • (2012) Acta Biochim. Biophys. Sin. (Shanghai) , vol.44 , pp. 54-69
    • Wu, J.I.1
  • 49
    • 85047698593 scopus 로고    scopus 로고
    • Implication of p53 in base excision DNA repair: in vivo evidence
    • Seo Y.R., Fishel M.L., Amundson S., Kelley M.R., Smith M.L. Implication of p53 in base excision DNA repair: in vivo evidence. Oncogene 2002, 21:731-737.
    • (2002) Oncogene , vol.21 , pp. 731-737
    • Seo, Y.R.1    Fishel, M.L.2    Amundson, S.3    Kelley, M.R.4    Smith, M.L.5
  • 50
    • 47149101636 scopus 로고    scopus 로고
    • Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer
    • Medina P.P., Sanchez-Cespedes M. Involvement of the chromatin-remodeling factor BRG1/SMARCA4 in human cancer. Epigenetics 2008, 3:64-68.
    • (2008) Epigenetics , vol.3 , pp. 64-68
    • Medina, P.P.1    Sanchez-Cespedes, M.2
  • 51
    • 84916219812 scopus 로고    scopus 로고
    • Loss of function of SWI/SNF chromatin remodeling genes leads to genome instability of human lung cancer
    • Huang H.T., Chen S.M., Pan L.B., Yao J., Ma H.T. Loss of function of SWI/SNF chromatin remodeling genes leads to genome instability of human lung cancer. Oncol. Rep. 2015, 33:283-291.
    • (2015) Oncol. Rep. , vol.33 , pp. 283-291
    • Huang, H.T.1    Chen, S.M.2    Pan, L.B.3    Yao, J.4    Ma, H.T.5
  • 52
    • 84925945816 scopus 로고    scopus 로고
    • ISWI chromatin remodeling complexes in the DNA damage response
    • Aydin O.Z., Vermeulen W., Lans H. ISWI chromatin remodeling complexes in the DNA damage response. Cell Cycle 2014, 13:3016-3025.
    • (2014) Cell Cycle , vol.13 , pp. 3016-3025
    • Aydin, O.Z.1    Vermeulen, W.2    Lans, H.3
  • 53
    • 79953286186 scopus 로고    scopus 로고
    • SnapShot: Chromatin remodeling: CHD
    • Sims J.K., Wade P.A. SnapShot: Chromatin remodeling: CHD. Cell 2011, 626:e621.
    • (2011) Cell , vol.626
    • Sims, J.K.1    Wade, P.A.2
  • 54
    • 84886946145 scopus 로고    scopus 로고
    • CHD chromatin remodelling enzymes and the DNA damage response
    • Stanley F.K., Moore S., Goodarzi A.A. CHD chromatin remodelling enzymes and the DNA damage response. Mutat. Res. 2013, 750:31-44.
    • (2013) Mutat. Res. , vol.750 , pp. 31-44
    • Stanley, F.K.1    Moore, S.2    Goodarzi, A.A.3
  • 56
    • 33750741948 scopus 로고    scopus 로고
    • Purification and assay of the human INO80 and SRCAP chromatin remodeling complexes
    • Cai Y., Jin J., Gottschalk A.J., Yao T., Conaway J.W., Conaway R.C. Purification and assay of the human INO80 and SRCAP chromatin remodeling complexes. Methods 2006, 40:312-317.
    • (2006) Methods , vol.40 , pp. 312-317
    • Cai, Y.1    Jin, J.2    Gottschalk, A.J.3    Yao, T.4    Conaway, J.W.5    Conaway, R.C.6
  • 57
    • 83255185774 scopus 로고    scopus 로고
    • Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection
    • Gospodinov A., Vaissiere T., Krastev D.B., Legube G., Anachkova B., Herceg Z. Mammalian Ino80 mediates double-strand break repair through its role in DNA end strand resection. Mol. Cell. Biol. 2011, 31:4735-4745.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 4735-4745
    • Gospodinov, A.1    Vaissiere, T.2    Krastev, D.B.3    Legube, G.4    Anachkova, B.5    Herceg, Z.6
  • 59
    • 41649111513 scopus 로고    scopus 로고
    • The Ino80 chromatin-remodeling enzyme regulates replisome function and stability
    • Papamichos-Chronakis M., Peterson C.L. The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat. Struct. Mol. Biol. 2008, 15:338-345.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 338-345
    • Papamichos-Chronakis, M.1    Peterson, C.L.2
  • 60
    • 78049241459 scopus 로고    scopus 로고
    • INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway
    • Jiang Y., Wang X., Bao S., Guo R., Johnson D.G., Shen X., Li L. INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway. Proc. Natl. Acad. Sci. U. S. A. 2010, 107:17274-17279.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 17274-17279
    • Jiang, Y.1    Wang, X.2    Bao, S.3    Guo, R.4    Johnson, D.G.5    Shen, X.6    Li, L.7
  • 61
    • 34547850642 scopus 로고    scopus 로고
    • Different structural states in oligonucleosomes are required for early versus late steps of base excision repair
    • Nakanishi S., Prasad R., Wilson S.H., Smerdon M. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nucleic Acids Res. 2007, 35:4313-4321.
    • (2007) Nucleic Acids Res. , vol.35 , pp. 4313-4321
    • Nakanishi, S.1    Prasad, R.2    Wilson, S.H.3    Smerdon, M.4
  • 63
    • 23044479628 scopus 로고    scopus 로고
    • Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair
    • Chai B., Huang J., Cairns B.R., Laurent B.C. Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev. 2005, 19:1656-1661.
    • (2005) Genes Dev. , vol.19 , pp. 1656-1661
    • Chai, B.1    Huang, J.2    Cairns, B.R.3    Laurent, B.C.4
  • 64
    • 0037032422 scopus 로고    scopus 로고
    • Abundance of the RSC nucleosome-remodeling complex is important for the cells to tolerate DNA damage in Saccharomyces cerevisiae
    • Koyama H., Itoh M., Miyahara K., Tsuchiya E. Abundance of the RSC nucleosome-remodeling complex is important for the cells to tolerate DNA damage in Saccharomyces cerevisiae. FEBS Lett. 2002, 531:215-221.
    • (2002) FEBS Lett. , vol.531 , pp. 215-221
    • Koyama, H.1    Itoh, M.2    Miyahara, K.3    Tsuchiya, E.4
  • 65
    • 77955982287 scopus 로고    scopus 로고
    • Proficient repair in chromatin remodeling defective ino80 mutants of Saccharomyces cerevisiae highlights replication defects as the main contributor to DNA damage sensitivity
    • Czaja W., Bespalov V.A., Hinz J.M., Smerdon M.J. Proficient repair in chromatin remodeling defective ino80 mutants of Saccharomyces cerevisiae highlights replication defects as the main contributor to DNA damage sensitivity. DNA Repair (Amst) 2010, 9:976-984.
    • (2010) DNA Repair (Amst) , vol.9 , pp. 976-984
    • Czaja, W.1    Bespalov, V.A.2    Hinz, J.M.3    Smerdon, M.J.4
  • 66
    • 84894478467 scopus 로고    scopus 로고
    • Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae
    • Czaja W., Mao P., Smerdon M.J. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA Repair (Amst) 2014, 16:35-43.
    • (2014) DNA Repair (Amst) , vol.16 , pp. 35-43
    • Czaja, W.1    Mao, P.2    Smerdon, M.J.3
  • 67
    • 78650089978 scopus 로고    scopus 로고
    • The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair
    • Sarkar S., Kiely R., McHugh P.J. The Ino80 chromatin-remodeling complex restores chromatin structure during UV DNA damage repair. J. Cell. Biol. 2010, 191:1061-1068.
    • (2010) J. Cell. Biol. , vol.191 , pp. 1061-1068
    • Sarkar, S.1    Kiely, R.2    McHugh, P.J.3
  • 68
    • 47049126376 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation
    • Haldar D., Kamakaka R.T. Schizosaccharomyces pombe Hst4 functions in DNA damage response by regulating histone H3 K56 acetylation. Eukaryot. Cell. 2008, 7:800-813.
    • (2008) Eukaryot. Cell. , vol.7 , pp. 800-813
    • Haldar, D.1    Kamakaka, R.T.2
  • 69
    • 77956553913 scopus 로고    scopus 로고
    • P300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals
    • Vempati R.K., Jayani R.S., Notani D., Sengupta A., Galande S., Haldar D. p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J. Biol. Chem. 2010, 285:28553-28564.
    • (2010) J. Biol. Chem. , vol.285 , pp. 28553-28564
    • Vempati, R.K.1    Jayani, R.S.2    Notani, D.3    Sengupta, A.4    Galande, S.5    Haldar, D.6
  • 70
    • 18844413266 scopus 로고    scopus 로고
    • Acetylation in histone H3 globular domain regulates gene expression in yeast
    • Xu F., Zhang K., Grunstein M. Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 2005, 121:375-385.
    • (2005) Cell , vol.121 , pp. 375-385
    • Xu, F.1    Zhang, K.2    Grunstein, M.3
  • 72
    • 77956202908 scopus 로고    scopus 로고
    • UV damage in DNA promotes nucleosome unwrapping
    • Duan M.R., Smerdon M.J. UV damage in DNA promotes nucleosome unwrapping. J. Biol. Chem. 2010, 285:26295-26303.
    • (2010) J. Biol. Chem. , vol.285 , pp. 26295-26303
    • Duan, M.R.1    Smerdon, M.J.2
  • 73
  • 75
    • 0842281646 scopus 로고    scopus 로고
    • The yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA that is required for nucleotide excision repair
    • Yu S., Owen-Hughes T., Friedberg E.C., Waters R., Reed S.H. The yeast Rad7/Rad16/Abf1 complex generates superhelical torsion in DNA that is required for nucleotide excision repair. DNA Repair (Amst) 2004, 3:277-287.
    • (2004) DNA Repair (Amst) , vol.3 , pp. 277-287
    • Yu, S.1    Owen-Hughes, T.2    Friedberg, E.C.3    Waters, R.4    Reed, S.H.5
  • 76
    • 37849051645 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair
    • Teng Y., Liu H., Gill H.W., Yu Y., Waters R., Reed S.H. Saccharomyces cerevisiae Rad16 mediates ultraviolet-dependent histone H3 acetylation required for efficient global genome nucleotide-excision repair. EMBO Rep. 2008, 9:97-102.
    • (2008) EMBO Rep. , vol.9 , pp. 97-102
    • Teng, Y.1    Liu, H.2    Gill, H.W.3    Yu, Y.4    Waters, R.5    Reed, S.H.6
  • 77
    • 33749520485 scopus 로고    scopus 로고
    • Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair
    • Gong F., Fahy D., Smerdon M.J. Rad4-Rad23 interaction with SWI/SNF links ATP-dependent chromatin remodeling with nucleotide excision repair. Nat. Struct. Mol. Biol. 2006, 13:902-907.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 902-907
    • Gong, F.1    Fahy, D.2    Smerdon, M.J.3
  • 78
    • 74849120987 scopus 로고    scopus 로고
    • The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage
    • Zhang L., Zhang Q., Jones K., Patel M., Gong F. The chromatin remodeling factor BRG1 stimulates nucleotide excision repair by facilitating recruitment of XPC to sites of DNA damage. Cell Cycle 2009, 8:3953-3959.
    • (2009) Cell Cycle , vol.8 , pp. 3953-3959
    • Zhang, L.1    Zhang, Q.2    Jones, K.3    Patel, M.4    Gong, F.5
  • 79
    • 71049159100 scopus 로고    scopus 로고
    • Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex
    • Zhao Q., Wang Q.E., Ray A., Wani G., Han C., Milum K., Wani A.A. Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J. Biol. Chem. 2009, 284:30424-30432.
    • (2009) J. Biol. Chem. , vol.284 , pp. 30424-30432
    • Zhao, Q.1    Wang, Q.E.2    Ray, A.3    Wani, G.4    Han, C.5    Milum, K.6    Wani, A.A.7
  • 80
    • 1642308537 scopus 로고    scopus 로고
    • Poly(ADP-ribosyl) ated chromatin domains: access granted
    • Rouleau M., Aubin R.A., Poirier G.G. Poly(ADP-ribosyl) ated chromatin domains: access granted. J. Cell. Sci. 2004, 117:815-825.
    • (2004) J. Cell. Sci. , vol.117 , pp. 815-825
    • Rouleau, M.1    Aubin, R.A.2    Poirier, G.G.3
  • 81
    • 10944227347 scopus 로고    scopus 로고
    • NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1
    • Kim M.Y., Mauro S., Gevry N., Lis J.T., Kraus W.L. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 2004, 119:803-814.
    • (2004) Cell , vol.119 , pp. 803-814
    • Kim, M.Y.1    Mauro, S.2    Gevry, N.3    Lis, J.T.4    Kraus, W.L.5
  • 82
    • 77956526559 scopus 로고    scopus 로고
    • PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway
    • Krishnakumar R., Kraus W.L. PARP-1 regulates chromatin structure and transcription through a KDM5B-dependent pathway. Mol. Cell 2010, 39:736-749.
    • (2010) Mol. Cell , vol.39 , pp. 736-749
    • Krishnakumar, R.1    Kraus, W.L.2
  • 83
    • 85016349923 scopus 로고    scopus 로고
    • Functional Aspects of PARP1 in DNA repair and transcription
    • Ko H.L., Ren E.C. Functional Aspects of PARP1 in DNA repair and transcription. Biomolecules 2012, 2:524-548.
    • (2012) Biomolecules , vol.2 , pp. 524-548
    • Ko, H.L.1    Ren, E.C.2
  • 84
    • 0026181844 scopus 로고
    • DNA repair and the role of chromatin structure
    • Smerdon M.J. DNA repair and the role of chromatin structure. Curr. Opin. Cell. Biol. 1991, 3:422-428.
    • (1991) Curr. Opin. Cell. Biol. , vol.3 , pp. 422-428
    • Smerdon, M.J.1
  • 85
    • 0036166206 scopus 로고    scopus 로고
    • When repair meets chromatin: first in series on chromatin dynamics
    • Green C.M., Almouzni G. When repair meets chromatin: first in series on chromatin dynamics. EMBO Rep. 2002, 3:28-33.
    • (2002) EMBO Rep. , vol.3 , pp. 28-33
    • Green, C.M.1    Almouzni, G.2
  • 86
    • 34247178359 scopus 로고    scopus 로고
    • DNA repair in differentiated cells: some new answers to old questions
    • Nouspikel T. DNA repair in differentiated cells: some new answers to old questions. Neuroscience 2007, 145:1213-1221.
    • (2007) Neuroscience , vol.145 , pp. 1213-1221
    • Nouspikel, T.1
  • 87
    • 0036012794 scopus 로고    scopus 로고
    • DNA repair in terminally differentiated cells
    • Nouspikel T., Hanawalt P.C. DNA repair in terminally differentiated cells. DNA Repair (Amst) 2002, 1:59-75.
    • (2002) DNA Repair (Amst) , vol.1 , pp. 59-75
    • Nouspikel, T.1    Hanawalt, P.C.2
  • 88
    • 56749157389 scopus 로고    scopus 로고
    • Transcription-coupled DNA repair: two decades of progress and surprises
    • Hanawalt P.C., Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nat. Rev. Mol. Cell. Biol. 2008, 9:958-970.
    • (2008) Nat. Rev. Mol. Cell. Biol. , vol.9 , pp. 958-970
    • Hanawalt, P.C.1    Spivak, G.2
  • 89
    • 0242268065 scopus 로고    scopus 로고
    • Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage
    • Izumi T., Wiederhold L.R., Roy G., Roy R., Jaiswal A., Bhakat K.K., Mitra S., Hazra T.K. Mammalian DNA base excision repair proteins: their interactions and role in repair of oxidative DNA damage. Toxicology 2003, 193:43-65.
    • (2003) Toxicology , vol.193 , pp. 43-65
    • Izumi, T.1    Wiederhold, L.R.2    Roy, G.3    Roy, R.4    Jaiswal, A.5    Bhakat, K.K.6    Mitra, S.7    Hazra, T.K.8
  • 91
    • 0033135581 scopus 로고    scopus 로고
    • A role for the yeast SWI/SNF complex in DNA replication
    • Flanagan J.F., Peterson C.L. A role for the yeast SWI/SNF complex in DNA replication. Nucleic Acids Res. 1999, 27:2022-2028.
    • (1999) Nucleic Acids Res. , vol.27 , pp. 2022-2028
    • Flanagan, J.F.1    Peterson, C.L.2
  • 94
    • 38049055816 scopus 로고    scopus 로고
    • RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes
    • Parnell T.J., Huff J.T., Cairns B.R. RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes. EMBO J. 2008, 27:100-110.
    • (2008) EMBO J. , vol.27 , pp. 100-110
    • Parnell, T.J.1    Huff, J.T.2    Cairns, B.R.3
  • 95
    • 0037380161 scopus 로고    scopus 로고
    • Recent advances in understanding chromatin remodeling by Swi/Snf complexes
    • Martens J.A., Winston F. Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr. Opin. Genet. Dev. 2003, 13:136-142.
    • (2003) Curr. Opin. Genet. Dev. , vol.13 , pp. 136-142
    • Martens, J.A.1    Winston, F.2
  • 97
    • 43549092406 scopus 로고    scopus 로고
    • Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage
    • Gong F., Fahy D., Liu H., Wang W., Smerdon M.J. Role of the mammalian SWI/SNF chromatin remodeling complex in the cellular response to UV damage. Cell Cycle 2008, 7:1067-1074.
    • (2008) Cell Cycle , vol.7 , pp. 1067-1074
    • Gong, F.1    Fahy, D.2    Liu, H.3    Wang, W.4    Smerdon, M.J.5
  • 98
    • 71949103959 scopus 로고    scopus 로고
    • Human SNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex, promotes nucleotide excision repair by influencing ATM recruitment and downstream H2AX phosphorylation
    • Ray A., Mir S.N., Wani G., Zhao Q., Battu A., Zhu Q., Wang Q.E., Wani A.A. Human SNF5/INI1, a component of the human SWI/SNF chromatin remodeling complex, promotes nucleotide excision repair by influencing ATM recruitment and downstream H2AX phosphorylation. Mol. Cell. Biol. 2009, 29:6206-6219.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 6206-6219
    • Ray, A.1    Mir, S.N.2    Wani, G.3    Zhao, Q.4    Battu, A.5    Zhu, Q.6    Wang, Q.E.7    Wani, A.A.8
  • 99
    • 84866953868 scopus 로고    scopus 로고
    • The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair
    • Czaja W., Mao P., Smerdon M.J. The Emerging Roles of ATP-Dependent Chromatin Remodeling Enzymes in Nucleotide Excision Repair. Int. J. Mol. Sci. 2012, 13:11954-11973.
    • (2012) Int. J. Mol. Sci. , vol.13 , pp. 11954-11973
    • Czaja, W.1    Mao, P.2    Smerdon, M.J.3
  • 104
    • 1542358189 scopus 로고    scopus 로고
    • Multiple roles for ISWI in transcription, chromosome organization and DNA replication
    • Corona D.F., Tamkun J.W. Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim. Biophys. Acta 2004, 1677:113-119.
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 113-119
    • Corona, D.F.1    Tamkun, J.W.2
  • 105
    • 0035901558 scopus 로고    scopus 로고
    • ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes
    • Ura K., Araki M., Saeki H., Masutani C., Ito T., Iwai S., Mizukoshi T., Kaneda Y., Hanaoka F. ATP-dependent chromatin remodeling facilitates nucleotide excision repair of UV-induced DNA lesions in synthetic dinucleosomes. EMBO J. 2001, 20:2004-2014.
    • (2001) EMBO J. , vol.20 , pp. 2004-2014
    • Ura, K.1    Araki, M.2    Saeki, H.3    Masutani, C.4    Ito, T.5    Iwai, S.6    Mizukoshi, T.7    Kaneda, Y.8    Hanaoka, F.9
  • 106
    • 77953193047 scopus 로고    scopus 로고
    • Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development
    • Lans H., Marteijn J.A., Schumacher B., Hoeijmakers J.H., Jansen G., Vermeulen W. Involvement of global genome repair, transcription coupled repair, and chromatin remodeling in UV DNA damage response changes during development. PLoS Genet. 2010, 6:e1000941.
    • (2010) PLoS Genet. , vol.6
    • Lans, H.1    Marteijn, J.A.2    Schumacher, B.3    Hoeijmakers, J.H.4    Jansen, G.5    Vermeulen, W.6
  • 108
    • 84882655459 scopus 로고    scopus 로고
    • ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling
    • Torigoe S.E., Patel A., Khuong M.T., Bowman G.D., Kadonaga J.T. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. Elife 2013, 2:e00863.
    • (2013) Elife , vol.2
    • Torigoe, S.E.1    Patel, A.2    Khuong, M.T.3    Bowman, G.D.4    Kadonaga, J.T.5
  • 109
    • 77952570482 scopus 로고    scopus 로고
    • Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation
    • Persson J., Ekwall K. Chd1 remodelers maintain open chromatin and regulate the epigenetics of differentiation. Exp Cell Res 2010, 316:1316-1323.
    • (2010) Exp Cell Res , vol.316 , pp. 1316-1323
    • Persson, J.1    Ekwall, K.2
  • 110
    • 34147158728 scopus 로고    scopus 로고
    • The Chd family of chromatin remodelers
    • Marfella C.G., Imbalzano A.N. The Chd family of chromatin remodelers. Mutat. Res. 2007, 618:30-40.
    • (2007) Mutat. Res. , vol.618 , pp. 30-40
    • Marfella, C.G.1    Imbalzano, A.N.2
  • 111
    • 84855469822 scopus 로고    scopus 로고
    • Chromodomain helicase DNA-binding protein 2 affects the repair of X-ray and UV-induced DNA damage
    • Rajagopalan S., Nepa J., Venkatachalam S. Chromodomain helicase DNA-binding protein 2 affects the repair of X-ray and UV-induced DNA damage. Environ. Mol. Mutagen. 2012, 53:44-50.
    • (2012) Environ. Mol. Mutagen. , vol.53 , pp. 44-50
    • Rajagopalan, S.1    Nepa, J.2    Venkatachalam, S.3
  • 112
    • 79251545788 scopus 로고    scopus 로고
    • The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor
    • Udugama M., Sabri A., Bartholomew B. The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol. Cell. Biol. 2011, 31:662-673.
    • (2011) Mol. Cell. Biol. , vol.31 , pp. 662-673
    • Udugama, M.1    Sabri, A.2    Bartholomew, B.3
  • 114
    • 78651510784 scopus 로고    scopus 로고
    • Global regulation of H2A. Z. localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity
    • Papamichos-Chronakis M., Watanabe S., Rando O.J., Peterson C.L. Global regulation of H2A. Z. localization by the INO80 chromatin-remodeling enzyme is essential for genome integrity. Cell 2011, 144:200-213.
    • (2011) Cell , vol.144 , pp. 200-213
    • Papamichos-Chronakis, M.1    Watanabe, S.2    Rando, O.J.3    Peterson, C.L.4
  • 116
    • 77954060598 scopus 로고    scopus 로고
    • Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability
    • Hur S.K., Park E.J., Han J.E., Kim Y.A., Kim J.D., Kang D., Kwon J. Roles of human INO80 chromatin remodeling enzyme in DNA replication and chromosome segregation suppress genome instability. Cell. Mol. Life Sci. 2010, 67:2283-2296.
    • (2010) Cell. Mol. Life Sci. , vol.67 , pp. 2283-2296
    • Hur, S.K.1    Park, E.J.2    Han, J.E.3    Kim, Y.A.4    Kim, J.D.5    Kang, D.6    Kwon, J.7
  • 117
  • 119
    • 0034601464 scopus 로고    scopus 로고
    • A chromatin remodelling complex involved in transcription and DNA processing
    • Shen X., Mizuguchi G., Hamiche A., Wu C. A chromatin remodelling complex involved in transcription and DNA processing. Nature 2000, 406:541-544.
    • (2000) Nature , vol.406 , pp. 541-544
    • Shen, X.1    Mizuguchi, G.2    Hamiche, A.3    Wu, C.4
  • 120
    • 59649124959 scopus 로고    scopus 로고
    • The INO80 chromatin remodeling complex in transcription, replication and repair
    • Conaway R.C., Conaway J.W. The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci. 2009, 34:71-77.
    • (2009) Trends Biochem Sci. , vol.34 , pp. 71-77
    • Conaway, R.C.1    Conaway, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.