메뉴 건너뛰기




Volumn 16, Issue 5, 2015, Pages 2209-2229

A probabilistic wavelet-support vector regression model for streamflow forecasting with rainfall and climate information input

Author keywords

Bayesian methods; Ensembles; Forecasting; Neural networks; Probability forecasts models distribution; Runoff

Indexed keywords

ARTIFICIAL NEURAL NETWORK; EL NINO-SOUTHERN OSCILLATION; ENSEMBLE FORECASTING; FORECASTING METHOD; FUZZY MATHEMATICS; PROBABILITY; RUNOFF; STREAMFLOW; WAVELET ANALYSIS;

EID: 84945467223     PISSN: 1525755X     EISSN: 15257541     Source Type: Journal    
DOI: 10.1175/JHM-D-14-0210.1     Document Type: Article
Times cited : (39)

References (78)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski, J., and K. Sun, 2010: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol., 390, 85-91, doi:10.1016/j.jhydrol.2010.06.033.
    • (2010) J. Hydrol. , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 2
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • Ajami, N. K., Q. Duan, and S. Sorooshian, 2007: An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745.
    • (2007) Water Resour. Res. , vol.43
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 3
    • 0022823251 scopus 로고
    • A homogeneity test applied to precipitation data
    • Alexandersson, H., 1986: A homogeneity test applied to precipitation data. J. Climatol., 6, 661-675, doi:10.1002/joc.3370060607.
    • (1986) J. Climatol. , vol.6 , pp. 661-675
    • Alexandersson, H.1
  • 4
    • 78751638074 scopus 로고    scopus 로고
    • Support vector machine approach for longitudinal dispersion coefficients in natural streams
    • Azamathulla, H. M., and F. C. Wu, 2011: Support vector machine approach for longitudinal dispersion coefficients in natural streams. Appl. Soft Comput., 11, 2902-2905, doi:10.1016/j.asoc.2010.11.026.
    • (2011) Appl. Soft Comput. , vol.11 , pp. 2902-2905
    • Azamathulla, H.M.1    Wu, F.C.2
  • 5
    • 0002581844 scopus 로고
    • The rank version of von Neumann's ratio test for randomness
    • Bartels, R., 1982: The rank version of von Neumann's ratio test for randomness. J. Amer. Stat. Assoc., 77, 40-46, doi:10.1080/01621459.1982.10477764.
    • (1982) J. Amer. Stat. Assoc. , vol.77 , pp. 40-46
    • Bartels, R.1
  • 6
    • 84871801369 scopus 로고    scopus 로고
    • Characterising performance of environmental models
    • Bennett, N. D., and Coauthors, 2013: Characterising performance of environmental models. Environ. Modell. Software, 40, 1-20, doi:10.1016/j.envsoft.2012.09.011.
    • (2013) Environ. Modell. Software , vol.40 , pp. 1-20
    • Bennett, N.D.1
  • 7
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modeling
    • Bray, M., and D. Han, 2004: Identification of support vector machines for runoff modeling. J. Hydroinform., 6, 265-280.
    • (2004) J. Hydroinform. , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 8
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Accessed 10 January 2015
    • Chang, C. C., and C. J. Lin, 2001: LIBSVM: A library for support vector machines. Accessed 10 January 2015. [Available online at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.]
    • (2001)
    • Chang, C.C.1    Lin, C.J.2
  • 9
    • 80053385175 scopus 로고    scopus 로고
    • Precipitation variability (1956-2002) in the Dongjiang River (Zhujiang River basin, China) and associated large-scale circulation
    • Chen, Y. D., Q. Zhang, X. Lu, S. R. Zhang, and Z. X. Zhang, 2011: Precipitation variability (1956-2002) in the Dongjiang River (Zhujiang River basin, China) and associated large-scale circulation. Quat. Int., 244, 130-137, doi:10.1016/j.quaint.2010.08.013.
    • (2011) Quat. Int. , vol.244 , pp. 130-137
    • Chen, Y.D.1    Zhang, Q.2    Lu, X.3    Zhang, S.R.4    Zhang, Z.X.5
  • 10
    • 33845633383 scopus 로고    scopus 로고
    • Applying multi-resolution analysis to differential hydrological grey models with dual series
    • Chou, C. M., 2007: Applying multi-resolution analysis to differential hydrological grey models with dual series. J. Hydrol., 332, 174-186, doi:10.1016/j.jhydrol.2006.06.031.
    • (2007) J. Hydrol. , vol.332 , pp. 174-186
    • Chou, C.M.1
  • 11
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies, I., 1990: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory, 36, 961-1005, doi:10.1109/18.57199.
    • (1990) IEEE Trans. Inf. Theory , vol.36 , pp. 961-1005
    • Daubechies, I.1
  • 12
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: A webbased toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson, C. W., R. Abrahart, and L. See, 2007: HydroTest: A webbased toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Modell. Software, 22, 1034-1052, doi:10.1016/j.envsoft.2006.06.008.
    • (2007) Environ. Modell. Software , vol.22 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.2    See, L.3
  • 13
    • 33646407315 scopus 로고    scopus 로고
    • Discrete wavelet analysis to assess long-term trends in geomagnetic activity
    • de Artigas, M. Z., A. G. Elias, and P. F. de Campra, 2006: Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Phys. Chem. Earth, 31, 77-80, doi:10.1016/j.pce.2005.03.009.
    • (2006) Phys. Chem. Earth , vol.31 , pp. 77-80
    • de Artigas, M.Z.1    Elias, A.G.2    de Campra, P.F.3
  • 14
    • 79956340139 scopus 로고    scopus 로고
    • Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach
    • Dhanya, C. T., and D. N. Kumar, 2011: Predictive uncertainty of chaotic daily streamflow using ensemble wavelet networks approach. Water Resour. Res., 47, W06507, doi:10.1029/2010WR010173.
    • (2011) Water Resour. Res. , vol.47
    • Dhanya, C.T.1    Kumar, D.N.2
  • 15
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: introduction and applications
    • Dibike, Y. B., S. Velickov, D. P. Solomatine, and M. B. Abbott, 2001: Model induction with support vector machines: introduction and applications. J. Comput. Civil Eng., 15, 208-216, doi:10.1061/(ASCE)0887-3801(2001)15:3(208).
    • (2001) J. Comput. Civil Eng. , vol.15 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.P.3    Abbott, M.B.4
  • 17
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan, Q., S. Sorooshian, and V. K. Gupta, 1992: Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour. Res., 28, 265-284, doi:10.1029/91WR02985.
    • (1992) Water Resour. Res. , vol.28 , pp. 265-284
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 18
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian, 2007: Multi-model ensemble hydrologic prediction using Bayesian model averaging. Adv. Water Resour., 30, 1371-1386, doi:10.1016/j.advwatres.2006.11.014.
    • (2007) Adv. Water Resour. , vol.30 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 19
    • 77955013276 scopus 로고    scopus 로고
    • Addressing snow model uncertainty for hydrologic prediction
    • Franz, K. J., P. Butcher, and N. K. Ajami, 2010: Addressing snow model uncertainty for hydrologic prediction. Adv. Water Resour., 33, 820-832, doi:10.1016/j.advwatres.2010.05.004.
    • (2010) Adv. Water Resour. , vol.33 , pp. 820-832
    • Franz, K.J.1    Butcher, P.2    Ajami, N.K.3
  • 20
    • 84984442855 scopus 로고
    • Improved methods of combining forecast accuracy
    • Granger, C. W. J., and R. Ramanathan, 1984: Improved methods of combining forecast accuracy. J. Forecasting, 3, 197-204, doi:10.1002/for.3980030207.
    • (1984) J. Forecasting , vol.3 , pp. 197-204
    • Granger, C.W.J.1    Ramanathan, R.2
  • 22
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Accessed 10 January 2015
    • Hsu, C. W., C. C. Chang, and C. J. Lin, 2010: A practical guide to support vector classification. Accessed 10 January 2015. [Available online at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.]
    • (2010)
    • Hsu, C.W.1    Chang, C.C.2    Lin, C.J.3
  • 23
    • 68349099316 scopus 로고    scopus 로고
    • A sequential Bayesian approach for hydrologicmodel selection and prediction
    • Hsu, K., H. Moradkhani, and S. Sorooshian, 2009: A sequential Bayesian approach for hydrologicmodel selection and prediction. Water Resour. Res., 45, W00B12, doi:10.1029/2008WR006824.
    • (2009) Water Resour. Res. , vol.45
    • Hsu, K.1    Moradkhani, H.2    Sorooshian, S.3
  • 24
    • 84947558459 scopus 로고    scopus 로고
    • Indian Ocean dipole mode dataset
    • Accessed 30 June 2015
    • JAMSTEC, 2012: Indian Ocean dipole mode dataset. Accessed 30 June 2015. [Available online at http://www.jamstec.go.jp/frcgc/research/d1/iod/.]
    • (2012)
  • 25
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J. S. R., 1993: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern., 23, 665-685, doi:10.1109/21.256541.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 26
    • 84867889577 scopus 로고    scopus 로고
    • Integration of nonlinear independent component analysis and support vector regression for stock price forecasting
    • Kao, L. J., C. C. Chiu, C. J. Lu, and J. L. Yang, 2013: Integration of nonlinear independent component analysis and support vector regression for stock price forecasting. Neurocomputing, 99, 534-542, doi:10.1016/j.neucom.2012.06.037.
    • (2013) Neurocomputing , vol.99 , pp. 534-542
    • Kao, L.J.1    Chiu, C.C.2    Lu, C.J.3    Yang, J.L.4
  • 27
    • 0035370678 scopus 로고    scopus 로고
    • Quantitative flood forecasting using multisensor data and neural networks
    • Kim, G., and A. P. Barros, 2001: Quantitative flood forecasting using multisensor data and neural networks. J. Hydrol., 246, 45-62, doi:10.1016/S0022-1694(01)00353-5.
    • (2001) J. Hydrol. , vol.246 , pp. 45-62
    • Kim, G.1    Barros, A.P.2
  • 28
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi, O., and M. Cimen, 2011: A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol., 399, 132-140, doi:10.1016/j.jhydrol.2010.12.041.
    • (2011) J. Hydrol. , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 29
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relationships for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat, D., R. Ababou, and A. Mangin, 2000: Rainfall-runoff relationships for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol., 238, 149-178, doi:10.1016/S0022-1694(00)00322-X.
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 30
    • 39549105646 scopus 로고    scopus 로고
    • New perspectives and improvements on the symmetric extension filter bank for subband/wavelet image compression
    • Lin, J., and M. J. T. Smith, 2008: New perspectives and improvements on the symmetric extension filter bank for subband/wavelet image compression. IEEE Trans. Image Process., 7, 177-180, doi:10.1109/TIP.2007.914223.
    • (2008) IEEE Trans. Image Process. , vol.7 , pp. 177-180
    • Lin, J.1    Smith, M.J.T.2
  • 31
    • 84947556534 scopus 로고    scopus 로고
    • Climate change and its impact on runoff during 1956-2009 in Dongjiang basin (in Chinese)
    • Lin, K., Y. He, X. Lei, and X. Chen, 2011: Climate change and its impact on runoff during 1956-2009 in Dongjiang basin (in Chinese). Ecol. Environ. Sci., 20 (12), 1783-1787.
    • (2011) Ecol. Environ. Sci. , vol.20 , Issue.12 , pp. 1783-1787
    • Lin, K.1    He, Y.2    Lei, X.3    Chen, X.4
  • 32
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong, S., and C. Sivapragasam, 2002: Flood stage forecasting with support vector machines. J. Amer. Water Resour. Assoc., 38, 173-186, doi:10.1111/j.1752-1688.2002.tb01544.x.
    • (2002) J. Amer. Water Resour. Assoc. , vol.38 , pp. 173-186
    • Liong, S.1    Sivapragasam, C.2
  • 33
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework
    • Liu, Y., and H. V. Gupta, 2007: Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res., 43, W07401, doi:10.1029/2006WR005756.
    • (2007) Water Resour. Res. , vol.43
    • Liu, Y.1    Gupta, H.V.2
  • 34
    • 78651356161 scopus 로고    scopus 로고
    • Assessing timing errors in hydrologic predictions using cross wavelet analysis
    • Liu, Y., J. Brown, J. Demargne, and D.-J. Seo, 2011: Assessing timing errors in hydrologic predictions using cross wavelet analysis. J. Hydrol., 397, 210-224, doi:10.1016/j.jhydrol.2010.11.040.
    • (2011) J. Hydrol. , vol.397 , pp. 210-224
    • Liu, Y.1    Brown, J.2    Demargne, J.3    Seo, D.-J.4
  • 35
    • 84871397512 scopus 로고    scopus 로고
    • Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities
    • Liu, Y., and Coauthors, 2012: Advancing data assimilation in operational hydrologic forecasting: Progresses, challenges, and emerging opportunities. Hydrol. Earth Syst. Sci., 16, 3863-3887, doi:10.5194/hess-16-3863-2012.
    • (2012) Hydrol. Earth Syst. Sci. , vol.16 , pp. 3863-3887
    • Liu, Y.1
  • 36
    • 84918773671 scopus 로고    scopus 로고
    • Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting
    • Liu, Z., P. Zhou, G. Chen, and L. Guo, 2014: Evaluating a coupled discrete wavelet transform and support vector regression for daily and monthly streamflow forecasting. J. Hydrol., 519, 2822-2831, doi:10.1016/j.jhydrol.2014.06.050.
    • (2014) J. Hydrol. , vol.519 , pp. 2822-2831
    • Liu, Z.1    Zhou, P.2    Chen, G.3    Guo, L.4
  • 37
    • 58049125782 scopus 로고    scopus 로고
    • Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States
    • Luo, L., and E. F. Wood, 2008: Use of Bayesian merging techniques in a multimodel seasonal hydrologic ensemble prediction system for the eastern United States. J. Hydrometeor., 9, 866-884, doi:10.1175/2008JHM980.1.
    • (2008) J. Hydrometeor. , vol.9 , pp. 866-884
    • Luo, L.1    Wood, E.F.2
  • 38
    • 84862648048 scopus 로고    scopus 로고
    • Wavelet-Volterra coupled model for monthly stream flow forecasting
    • Maheswaran, R., and R. Khosa, 2012a: Wavelet-Volterra coupled model for monthly stream flow forecasting. J. Hydrol., 450-451, 320-335, doi:10.1016/j.jhydrol.2012.04.017.
    • (2012) J. Hydrol. , vol.450-451 , pp. 320-335
    • Maheswaran, R.1    Khosa, R.2
  • 39
    • 84862642100 scopus 로고    scopus 로고
    • Comparative study of different wavelets for hydrologic forecasting
    • Maheswaran, R., and R. Khosa, 2012b: Comparative study of different wavelets for hydrologic forecasting. Comput. Geosci., 46, 284-295, doi:10.1016/j.cageo.2011.12.015.
    • (2012) Comput. Geosci. , vol.46 , pp. 284-295
    • Maheswaran, R.1    Khosa, R.2
  • 40
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Mallat, S. G., 1989: A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11, 674-693, doi:10.1109/34.192463.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 41
    • 0016047730 scopus 로고
    • Application of seasonal parametric linear stochastic models tomonthly flow data
    • McKerchar, A. I., and J. W. Delleur, 1974: Application of seasonal parametric linear stochastic models tomonthly flow data. Water Resour. Res., 10, 246-255, doi:10.1029/WR010i002p00246.
    • (1974) Water Resour. Res. , vol.10 , pp. 246-255
    • McKerchar, A.I.1    Delleur, J.W.2
  • 42
    • 3142538909 scopus 로고    scopus 로고
    • Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
    • Moradkhani, H., K. Hsu, H. V. Gupta, and S. Sorooshian, 2004: Improved streamflow forecasting using self-organizing radial basis function artificial neural networks. J. Hydrol., 295, 246-262, doi:10.1016/j.jhydrol.2004.03.027.
    • (2004) J. Hydrol. , vol.295 , pp. 246-262
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 43
    • 84870234964 scopus 로고    scopus 로고
    • Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008)
    • Nalley, D., J. Adamowski, and B. Khalil, 2012: Using discrete wavelet transforms to analyze trends in streamflow and precipitation in Quebec and Ontario (1954-2008). J. Hydrol., 475, 204-228, doi:10.1016/j.jhydrol.2012.09.049.
    • (2012) J. Hydrol. , vol.475 , pp. 204-228
    • Nalley, D.1    Adamowski, J.2    Khalil, B.3
  • 44
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models. J. Hydrol., 10, 282-290, doi:10.1016/0022-1694(70)90255-6.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 45
    • 0242449087 scopus 로고    scopus 로고
    • A comprehensive strategy of hydrologic modeling and uncertainty analysis for nuclear facilities and sites
    • NUREG/CR-6805, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research
    • Neuman, S. P., and P. J. Wierenga, 2003: A comprehensive strategy of hydrologic modeling and uncertainty analysis for nuclear facilities and sites.NUREG/CR-6805, U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research, 311 pp.
    • (2003) , pp. 311
    • Neuman, S.P.1    Wierenga, P.J.2
  • 46
    • 84878563486 scopus 로고    scopus 로고
    • Precipitation in the Pearl River basin, south China: Scaling, regional patterns, and influence of large-scale climate anomalies
    • Niu, J., 2013: Precipitation in the Pearl River basin, south China: Scaling, regional patterns, and influence of large-scale climate anomalies. Stochastic Environ. Res. Risk Assess., 27, 1253-1268, doi:10.1007/s00477-012-0661-2.
    • (2013) Stochastic Environ. Res. Risk Assess. , vol.27 , pp. 1253-1268
    • Niu, J.1
  • 47
    • 84947556105 scopus 로고    scopus 로고
    • MEI index dataset
    • NOAA/ESRL/PSD, accessed 30 June 2015
    • NOAA, 2015: MEI index dataset. NOAA/ESRL/PSD, accessed 30 June 2015. [Available online at http://www.esrl.noaa.gov/psd/enso/mei/table.html.]
    • (2015)
  • 48
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani, V., M. T. Alami, and M. H. Aminfar, 2009a: A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell., 22, 466-472, doi:10.1016/j.engappai.2008.09.003.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 49
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani, V., M. Komasi, and A. Mano, 2009b: A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resour. Manage., 23, 2877-2894, doi:10.1007/s11269-009-9414-5.
    • (2009) Water Resour. Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 50
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani, V., O. Kisi, and M. Komasi, 2011: Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol., 402, 41-59, doi:10.1016/j.jhydrol.2011.03.002.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 51
    • 84871025948 scopus 로고    scopus 로고
    • Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling
    • Nourani, V., A. Hosseini Baghanam, J. Adamowski, and M. Gebremicheal, 2013: Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling. J. Hydrol., 476, 228-243, doi:10.1016/j.jhydrol.2012.10.054.
    • (2013) J. Hydrol. , vol.476 , pp. 228-243
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Gebremicheal, M.4
  • 52
    • 84900481738 scopus 로고    scopus 로고
    • Applications of hybrid wavelet-artificial intelligence models in hydrology: A review
    • Nourani, V., A. Hosseini Baghanam, J. Adamowski, and O. Kisi, 2014: Applications of hybrid wavelet-artificial intelligence models in hydrology: A review. J. Hydrol., 514, 358-377, doi:10.1016/j.jhydrol.2014.03.057.
    • (2014) J. Hydrol. , vol.514 , pp. 358-377
    • Nourani, V.1    Hosseini Baghanam, A.2    Adamowski, J.3    Kisi, O.4
  • 53
    • 84858823339 scopus 로고    scopus 로고
    • Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation
    • Parrish, M. A., H. Moradkhani, and C. M. DeChant, 2012: Toward reduction of model uncertainty: Integration of Bayesian model averaging and data assimilation. Water Resour. Res., 48, W03519, doi:10.1029/2011WR011116.
    • (2012) Water Resour. Res. , vol.48
    • Parrish, M.A.1    Moradkhani, H.2    DeChant, C.M.3
  • 54
    • 33751399443 scopus 로고    scopus 로고
    • Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey)
    • Partal, T., and M. Küçük, 2006: Long-term trend analysis using discrete wavelet components of annual precipitations measurements in Marmara region (Turkey). Phys. Chem. Earth, 31, 1189-1200, doi:10.1016/j.pce.2006.04.043.
    • (2006) Phys. Chem. Earth , vol.31 , pp. 1189-1200
    • Partal, T.1    Küçük, M.2
  • 55
    • 84885521312 scopus 로고    scopus 로고
    • The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia
    • Pokhrel, P., Q. J. Wang, and D. E. Robertson, 2013: The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia. Water Resour. Res., 49, 6671-6687, doi:10.1002/wrcr.20449.
    • (2013) Water Resour. Res. , vol.49 , pp. 6671-6687
    • Pokhrel, P.1    Wang, Q.J.2    Robertson, D.E.3
  • 56
    • 78049301570 scopus 로고    scopus 로고
    • Improving daily rainfall estimation from NDVI using a wavelet transform
    • Quiroz, R., C. Yarlequé, A. Posadas, V. Mares, and W. W. Immerzeel, 2011: Improving daily rainfall estimation from NDVI using a wavelet transform. Environ. Modell. Software, 26, 201-209, doi:10.1016/j.envsoft.2010.07.006.
    • (2011) Environ. Modell. Software , vol.26 , pp. 201-209
    • Quiroz, R.1    Yarlequé, C.2    Posadas, A.3    Mares, V.4    Immerzeel, W.W.5
  • 57
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski, 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 1155-1174, doi:10.1175/MWR2906.1.
    • (2005) Mon. Wea. Rev. , vol.133 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3    Polakowski, M.4
  • 58
    • 84887548611 scopus 로고    scopus 로고
    • Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra non-linear method
    • Rathinasamy, M., J. Adamowski, and R. Khosa, 2013: Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra non-linear method. J. Hydrol., 507, 186-200, doi:10.1016/j.jhydrol.2013.09.025.
    • (2013) J. Hydrol. , vol.507 , pp. 186-200
    • Rathinasamy, M.1    Adamowski, J.2    Khosa, R.3
  • 59
    • 59649124252 scopus 로고    scopus 로고
    • Conceptual model uncertainty in groundwater modeling: Combining generalized like-lihood uncertainty estimation and Bayesian model averaging
    • Rojas, R., L. Feyen, and A. Dassargues, 2008: Conceptual model uncertainty in groundwater modeling: Combining generalized like-lihood uncertainty estimation and Bayesian model averaging. Water Resour. Res., 44, W12418, doi:10.1029/2008WR006908.
    • (2008) Water Resour. Res. , vol.44
    • Rojas, R.1    Feyen, L.2    Dassargues, A.3
  • 60
    • 0345874478 scopus 로고    scopus 로고
    • Possible impacts of Indian Ocean dipole mode events on global climate
    • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Climate Res., 25, 151-169, doi:10.3354/cr025151.
    • (2003) Climate Res. , vol.25 , pp. 151-169
    • Saji, N.H.1    Yamagata, T.2
  • 62
    • 84879887179 scopus 로고    scopus 로고
    • Discrete wavelet-based trend identification in hydrologic time series
    • Sang, Y. F., Z. Wang, and C. Liu, 2013: Discrete wavelet-based trend identification in hydrologic time series. Hydrol. Processes, 27, 2021-2031, doi:10.1002/hyp.9356.
    • (2013) Hydrol. Processes , vol.27 , pp. 2021-2031
    • Sang, Y.F.1    Wang, Z.2    Liu, C.3
  • 63
    • 34248354794 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation forecasting using Bayesian model averaging
    • Sloughter, J. M., A. E. Raftery, T. Gneiting, and C. Fraley, 2007: Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Mon. Wea. Rev., 135, 3209-3220, doi:10.1175/MWR3441.1.
    • (2007) Mon. Wea. Rev. , vol.135 , pp. 3209-3220
    • Sloughter, J.M.1    Raftery, A.E.2    Gneiting, T.3    Fraley, C.4
  • 64
    • 80055067358 scopus 로고    scopus 로고
    • Alleviating border effects in wavelet transforms for nonlinear time-varying signal analysis
    • Su, H., Q. Liu, and J. Li, 2011: Alleviating border effects in wavelet transforms for nonlinear time-varying signal analysis. Adv. Electr. Comput. Eng., 11, 55-60, doi:10.4316/aece.2011.03009.
    • (2011) Adv. Electr. Comput. Eng. , vol.11 , pp. 55-60
    • Su, H.1    Liu, Q.2    Li, J.3
  • 65
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari, M. K., and C. Chatterjee, 2010: Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol., 394, 458-470, doi:10.1016/j.jhydrol.2010.10.001.
    • (2010) J. Hydrol. , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 67
    • 84887252594 scopus 로고    scopus 로고
    • Support vector method for function approximation, regression estimation, and signal processing
    • M. Mozer, M. I. Jordan, and T. Petsche, Eds., MIT Press
    • Vapnik, V., S. Golwich, and A. J. Smola, 1997: Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9, M. Mozer, M. I. Jordan, and T. Petsche, Eds., MIT Press, 281-287.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 281-287
    • Vapnik, V.1    Golwich, S.2    Smola, A.J.3
  • 68
    • 0029481769 scopus 로고
    • Flow duration curves II: A review of applications in water resources planning
    • Vogel, R. M., and N. M. Fennessey, 1995: Flow duration curves II: A review of applications in water resources planning. J. Amer. Water Res. Assoc., 31, 1029-1039, doi:10.1111/j.1752-1688.1995.tb03419.x.
    • (1995) J. Amer. Water Res. Assoc. , vol.31 , pp. 1029-1039
    • Vogel, R.M.1    Fennessey, N.M.2
  • 69
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
    • Vrugt, J., and B. Robinson, 2007: Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging. Water Resour. Res., 43, W01411, doi:10.1029/2005WR004838.
    • (2007) Water Resour. Res. , vol.43
    • Vrugt, J.1    Robinson, B.2
  • 70
    • 79952232516 scopus 로고    scopus 로고
    • Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences
    • Wang, Q. J., and D. E. Robertson, 2011: Multisite probabilistic forecasting of seasonal flows for streams with zero value occurrences. Water Resour. Res., 47, W02546, doi:10.1029/2010WR009333.
    • (2011) Water Resour. Res. , vol.47
    • Wang, Q.J.1    Robertson, D.E.2
  • 71
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of the hydrology
    • Wang, W., and J. Ding, 2003: Wavelet network model and its application to the prediction of the hydrology. Nat. Sci., 1 (1), 67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 72
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W.-C., K. W. Chau, C. T. Cheng, and L. Qiu, 2009: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol., 374, 294-306, doi:10.1016/j.jhydrol.2009.06.019.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.-C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 73
    • 84881169219 scopus 로고    scopus 로고
    • Runoff variation and its impacting factors in the Dongjiang River basin during 1956-2005 (in Chinese with English abstract)
    • Wang, Z., X. Chen, and T. Yan, 2010: Runoff variation and its impacting factors in the Dongjiang River basin during 1956-2005 (in Chinese with English abstract). J. Nat. Resour., 25 (8), 1365-1374.
    • (2010) J. Nat. Resour. , vol.25 , Issue.8 , pp. 1365-1374
    • Wang, Z.1    Chen, X.2    Yan, T.3
  • 74
    • 84869486522 scopus 로고    scopus 로고
    • Retrievals for the rainfall rate over land using Special Sensor Microwave Imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression
    • Wei, C., and J. Roan, 2012: Retrievals for the rainfall rate over land using Special Sensor Microwave Imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression. J. Hydrometeor., 13, 1567-1578, doi:10.1175/JHM-D-11-0118.1.
    • (2012) J. Hydrometeor. , vol.13 , pp. 1567-1578
    • Wei, C.1    Roan, J.2
  • 75
    • 57049121988 scopus 로고    scopus 로고
    • Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models
    • Wöhling, T., and J. A. Vrugt, 2008: Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models. Water Resour. Res., 44, W12432, doi:10.1029/2008WR007154.
    • (2008) Water Resour. Res. , vol.44
    • Wöhling, T.1    Vrugt, J.A.2
  • 76
    • 79957449632 scopus 로고    scopus 로고
    • El Niño-Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext)
    • Wolter, K., and M. S. Timlin, 2011: El Niño-Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). Int. J. Climatol., 31, 1074-1087, doi:10.1002/joc.2336.
    • (2011) Int. J. Climatol. , vol.31 , pp. 1074-1087
    • Wolter, K.1    Timlin, M.S.2
  • 77
    • 84877789036 scopus 로고    scopus 로고
    • Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in south China
    • Wu, Y., and J. Chen, 2013: Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in south China. Ecol. Indic., 32, 294-304, doi:10.1016/j.ecolind.2013.04.002.
    • (2013) Ecol. Indic. , vol.32 , pp. 294-304
    • Wu, Y.1    Chen, J.2
  • 78
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P. S., S. T. Chen, and I. F. Chang, 2006: Support vector regression for real-time flood stage forecasting. J. Hydrol., 328, 704-716, doi:10.1016/j.jhydrol.2006.01.021.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.