메뉴 건너뛰기




Volumn 43, Issue 1, 2007, Pages

Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging

Author keywords

[No Author keywords available]

Indexed keywords

ERROR ANALYSIS; HYDROLOGY; KALMAN FILTERS; MATHEMATICAL MODELS; STATISTICAL METHODS; UNCERTAIN SYSTEMS;

EID: 33847624077     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2005WR004838     Document Type: Article
Times cited : (281)

References (47)
  • 1
    • 33748942107 scopus 로고    scopus 로고
    • Multi-model combination techniques for hydrologic forecasting: Application to distributed model intercomparison project results
    • Ajami, N. K., Q. Duan, X. Gao, and S. Sorooshian (2005), Multi-model combination techniques for hydrologic forecasting: Application to distributed model intercomparison project results, J. Hydrometeorol., 7(4), 755-768.
    • (2005) J. Hydrometeorol , vol.7 , Issue.4 , pp. 755-768
    • Ajami, N.K.1    Duan, Q.2    Gao, X.3    Sorooshian, S.4
  • 2
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty, Water Resour. Res., doi:10.1029/ 2005WR004745
    • in press
    • Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty, Water Resour. Res., doi:10.1029/ 2005WR004745, in press.
    • (2007)
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 3
    • 0000119989 scopus 로고
    • The HBV model
    • edited by V. P. Singh, pp, Water Resour. Publ, Highlands Ranch, Colo
    • Bergström, S. (1995), The HBV model, in Computer Models of Watershed Hydrology, edited by V. P. Singh, pp. 443-476, Water Resour. Publ., Highlands Ranch, Colo.
    • (1995) Computer Models of Watershed Hydrology , pp. 443-476
    • Bergström, S.1
  • 4
    • 33847674721 scopus 로고
    • A hydrograph based model for estimating the water yield of ungauged catchments
    • Boughton, W. C. (1993), A hydrograph based model for estimating the water yield of ungauged catchments, J. Irrig. Drain. Eng., 116, 83-98.
    • (1993) J. Irrig. Drain. Eng , vol.116 , pp. 83-98
    • Boughton, W.C.1
  • 5
    • 0034772442 scopus 로고    scopus 로고
    • Toward improved streamflow forecast: Value of semidistributed modeling
    • Boyle, D. P., H. V. Gupta, S. Sorooshian, V. Koren, Z. Zhang, and M. Smith (2001), Toward improved streamflow forecast: Value of semidistributed modeling, Water Resour. Res., 37(11), 2749-2759.
    • (2001) Water Resour. Res , vol.37 , Issue.11 , pp. 2749-2759
    • Boyle, D.P.1    Gupta, H.V.2    Sorooshian, S.3    Koren, V.4    Zhang, Z.5    Smith, M.6
  • 7
    • 33645549317 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation estimation in complex terrain
    • Clark, M. P., and A. W. Slater (2006), Probabilistic quantitative precipitation estimation in complex terrain, J. Hydrometeorol., 7(1), 3-22.
    • (2006) J. Hydrometeorol , vol.7 , Issue.1 , pp. 3-22
    • Clark, M.P.1    Slater, A.W.2
  • 8
    • 0001078433 scopus 로고    scopus 로고
    • Bayesian model averaging and model search strategies
    • edited by J. M. Bernardo et al, pp, Oxford Univ. Press, New York
    • Clyde, M. A. (1999), Bayesian model averaging and model search strategies, in Bayesian Statistics, vol. 6, edited by J. M. Bernardo et al., pp. 157-185, Oxford Univ. Press, New York.
    • (1999) Bayesian Statistics , vol.6 , pp. 157-185
    • Clyde, M.A.1
  • 9
    • 0028193070 scopus 로고
    • Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics
    • Evensen, G. (1994), Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10,143-10,162.
    • (1994) J. Geophys. Res , vol.99
    • Evensen, G.1
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-472.
    • (1992) Stat. Sci , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 33847646109 scopus 로고
    • Hydrologic forecast system-HFS: A user's manual
    • 17 pp, Hydrol. Res. Cent, San Diego, Calif
    • Georgakakos, H., and J. A. Sperflage (1995), Hydrologic forecast system-HFS: A user's manual, HRC Tech. Note 1, 17 pp., Hydrol. Res. Cent., San Diego, Calif.
    • (1995) HRC Tech. Note 1
    • Georgakakos, H.1    Sperflage, J.A.2
  • 13
    • 0043099986 scopus 로고
    • On improved operational hydrologic forecasting of streamflows,
    • Rep. 325, 162 pp, Iowa Inst. of Hydraul. Res, Iowa City
    • Georgakakos, H., H. Rajaram, and S. G. Li (1988), On improved operational hydrologic forecasting of streamflows, Rep. 325, 162 pp., Iowa Inst. of Hydraul. Res., Iowa City.
    • (1988)
    • Georgakakos, H.1    Rajaram, H.2    Li, S.G.3
  • 14
    • 84893179575 scopus 로고
    • Variable selection via Gibbs sampling
    • George, E. I., and R. E. McCulloch (1993), Variable selection via Gibbs sampling, J. Am. Stat. Assoc., 88(423), 881-889.
    • (1993) J. Am. Stat. Assoc , vol.88 , Issue.423 , pp. 881-889
    • George, E.I.1    McCulloch, R.E.2
  • 15
    • 4143139874 scopus 로고    scopus 로고
    • Characterizing streamflow simulation uncertainty through multi-model ensembles
    • Georgekakos, K. P., D. J. Seo, H. Gupta, J. Schaake, and M. B. Butts (2004), Characterizing streamflow simulation uncertainty through multi-model ensembles, J. Hydrol., 298(1-4), 222-241.
    • (2004) J. Hydrol , vol.298 , Issue.1-4 , pp. 222-241
    • Georgekakos, K.P.1    Seo, D.J.2    Gupta, H.3    Schaake, J.4    Butts, M.B.5
  • 16
    • 0027580559 scopus 로고
    • Novel approach to nonlinear and non-Gaussian Bayesian state estimation
    • Gordon, N. D., D. Salmond, and A. F. M. Smith (1993), Novel approach to nonlinear and non-Gaussian Bayesian state estimation, IEE Proc., Part F, 140, 107-113.
    • (1993) IEE Proc., Part F , vol.140 , pp. 107-113
    • Gordon, N.D.1    Salmond, D.2    Smith, A.F.M.3
  • 18
    • 0002541945 scopus 로고
    • Ockham's razor and Bayesian analysis
    • Jefferys, W., and J. Berger (1992), Ockham's razor and Bayesian analysis, Am. Sci., 80, 64-72.
    • (1992) Am. Sci , vol.80 , pp. 64-72
    • Jefferys, W.1    Berger, J.2
  • 19
    • 85024429815 scopus 로고
    • New approach to linear filtering and prediction problems
    • Kalman, R. (1960), New approach to linear filtering and prediction problems, J. Basic Eng., 82D, 35-45.
    • (1960) J. Basic Eng , vol.82 D , pp. 35-45
    • Kalman, R.1
  • 20
    • 0019227947 scopus 로고
    • Real time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty
    • Kitanidis, P. K., and R. L. Bras (1980a), Real time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty, Water Resour. Res., 16(6), 1025-1033.
    • (1980) Water Resour. Res , vol.16 , Issue.6 , pp. 1025-1033
    • Kitanidis, P.K.1    Bras, R.L.2
  • 21
    • 0019227948 scopus 로고
    • Real time forecasting with a conceptual hydrologic model: 2. Applications and results
    • Kitanidis, P. K., and R. L. Bras (1980b), Real time forecasting with a conceptual hydrologic model: 2. Applications and results, Water Resour. Res., 16(6), 1034-1044.
    • (1980) Water Resour. Res , vol.16 , Issue.6 , pp. 1034-1044
    • Kitanidis, P.K.1    Bras, R.L.2
  • 22
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211, 69-85.
    • (1998) J. Hydrol , vol.211 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 23
    • 28244439991 scopus 로고    scopus 로고
    • Hydrological model selection: A Bayesian alternative
    • doi:10.1029/2004WR003719
    • Marshall, L., D. Nott, and A. Sharma (2005), Hydrological model selection: A Bayesian alternative, Water Resour. Res., 41, W10422, doi:10.1029/2004WR003719.
    • (2005) Water Resour. Res , vol.41
    • Marshall, L.1    Nott, D.2    Sharma, A.3
  • 24
    • 11944268965 scopus 로고    scopus 로고
    • Dual state-parameter estimation of hydrological models using ensemble Kaiman filter
    • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Hauser (2005a), Dual state-parameter estimation of hydrological models using ensemble Kaiman filter, Adv. Water Resour., 28, 135-147.
    • (2005) Adv. Water Resour , vol.28 , pp. 135-147
    • Moradkhani, H.1    Sorooshian, S.2    Gupta, H.V.3    Hauser, P.R.4
  • 25
    • 20844449766 scopus 로고    scopus 로고
    • Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using particle filter
    • doi:10.1029/2004WR003604
    • Moradkhani, H., K. Hsu, H. V. Gupta, and S. Sorooshian (2005b), Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using particle filter, Water Resour. Res., 41, W05012, doi:10.1029/2004WR003604.
    • (2005) Water Resour. Res , vol.41
    • Moradkhani, H.1    Hsu, K.2    Gupta, H.V.3    Sorooshian, S.4
  • 26
    • 0348225037 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of uncertain model predictions
    • doi:10.1007/800477-003-0151-7
    • Neuman, S. P. (2003), Maximum likelihood Bayesian averaging of uncertain model predictions, Stochastic Environ. Res. Risk Assess., 17, 291-305, doi:10.1007/800477-003-0151-7.
    • (2003) Stochastic Environ. Res. Risk Assess , vol.17 , pp. 291-305
    • Neuman, S.P.1
  • 27
    • 0015573240 scopus 로고
    • Numerical simulation of the rainfall runoff processes on a daily basis
    • Nielsen, S. A., and E. Hansen (1973), Numerical simulation of the rainfall runoff processes on a daily basis, Nord. Hydrol., 4, 171-190.
    • (1973) Nord. Hydrol , vol.4 , pp. 171-190
    • Nielsen, S.A.1    Hansen, E.2
  • 28
    • 33644526931 scopus 로고    scopus 로고
    • Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models
    • doi:10.1016/j.jhydrol.2005.07.016
    • Oudin, L., C. Perrin, T. Mathevet, V. Andréassian, and C. Michel (2005), Impact of biased and randomly corrupted inputs on the efficiency and the parameters of watershed models, J. Hydrol., 320, 62-83, doi:10.1016/j.jhydrol.2005.07.016.
    • (2005) J. Hydrol , vol.320 , pp. 62-83
    • Oudin, L.1    Perrin, C.2    Mathevet, T.3    Andréassian, V.4    Michel, C.5
  • 29
    • 0141682120 scopus 로고    scopus 로고
    • Improvement of a parsimonious model for streamflow simulation
    • Perrin, C., C. Michel, and V. Andréassian (2003), Improvement of a parsimonious model for streamflow simulation, J. Hydrol., 279, 275-289.
    • (2003) J. Hydrol , vol.279 , pp. 275-289
    • Perrin, C.1    Michel, C.2    Andréassian, V.3
  • 30
    • 1142301691 scopus 로고    scopus 로고
    • Long-run performance of Bayesian model averaging
    • Raftery, A. E., and Y. Zheng (2003), Long-run performance of Bayesian model averaging, J. Am. Stat. Assoc., 98, 931-938.
    • (2003) J. Am. Stat. Assoc , vol.98 , pp. 931-938
    • Raftery, A.E.1    Zheng, Y.2
  • 31
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery, A. E., D. Madigan, and J. A. Hoeting (1997), Bayesian model averaging for linear regression models, J. Am. Stat. Assoc., 92, 179-191.
    • (1997) J. Am. Stat. Assoc , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.A.3
  • 32
    • 4944243495 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles,
    • Tech. Rep. 440, Dep. of Stat, Univ. of Wash, Seattle
    • Raftery, A. E., F. Balabdaoui, T. Gneiting, and M. Polakowski (2003), Using Bayesian model averaging to calibrate forecast ensembles, Tech. Rep. 440, Dep. of Stat., Univ. of Wash., Seattle.
    • (2003)
    • Raftery, A.E.1    Balabdaoui, F.2    Gneiting, T.3    Polakowski, M.4
  • 33
    • 20444497873 scopus 로고    scopus 로고
    • Using Bayesian model averaging to calibrate forecast ensembles
    • Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski (2005), Using Bayesian model averaging to calibrate forecast ensembles, Mon. Weather Rev., 133, 1155-1174.
    • (2005) Mon. Weather Rev , vol.133 , pp. 1155-1174
    • Raftery, A.E.1    Gneiting, T.2    Balabdaoui, F.3    Polakowski, M.4
  • 34
    • 0031436317 scopus 로고    scopus 로고
    • Validation and intercomparison of different updating procedures for real-time forecasting
    • Refsgaard, J. C. (1998), Validation and intercomparison of different updating procedures for real-time forecasting, Nord. Hydrol., 28, 65-84.
    • (1998) Nord. Hydrol , vol.28 , pp. 65-84
    • Refsgaard, J.C.1
  • 35
    • 0042092515 scopus 로고    scopus 로고
    • Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting
    • Seo, D. J., V. Koren, and N. Cajina (2003), Real-time variational assimilation of hydrologic and hydrometeorological data into operational hydrologic forecasting, J. Hydrometeorol., 4, 627-641.
    • (2003) J. Hydrometeorol , vol.4 , pp. 627-641
    • Seo, D.J.1    Koren, V.2    Cajina, N.3
  • 36
    • 0033393056 scopus 로고    scopus 로고
    • A real-time combination method for the outputs of different rainfall-runoff models
    • Shamseldin, A. Y., and K. M. O'Connor (1999), A real-time combination method for the outputs of different rainfall-runoff models, Hydrol. Sci. J., 44(6), 895-912.
    • (1999) Hydrol. Sci. J , vol.44 , Issue.6 , pp. 895-912
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 37
    • 0031259688 scopus 로고    scopus 로고
    • Methods for combining the outputs of different rainfall-runoff model
    • Shamseldin, A. Y., K. M. O'Connor, and G. C. Liang (1997), Methods for combining the outputs of different rainfall-runoff model, J. Hydrol., 197, 203-229.
    • (1997) J. Hydrol , vol.197 , pp. 203-229
    • Shamseldin, A.Y.1    O'Connor, K.M.2    Liang, G.C.3
  • 38
    • 33847661804 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation forecasting using Bayesian model averaging,
    • Tech. Rep. 496, Dep. of Stat, Univ. of Wash, Seattle
    • Sloughter, J. M., A. E. Raftery, and T. Gneiting (2006), Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Tech. Rep. 496, Dep. of Stat., Univ. of Wash., Seattle.
    • (2006)
    • Sloughter, J.M.1    Raftery, A.E.2    Gneiting, T.3
  • 39
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases
    • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16(2), 430-442.
    • (1980) Water Resour. Res , vol.16 , Issue.2 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 40
    • 0036998958 scopus 로고    scopus 로고
    • Toward improved identifiability of hydrologic model parameters: The information content of experimental data
    • doi:10.1029/2001WR001118
    • Vrugt, J. A., W. Bouten, H. V. Gupta, and S. Sorooshian (2002), Toward improved identifiability of hydrologic model parameters: The information content of experimental data, Water Resour. Res., 38(12), 1312, doi:10.1029/2001WR001118.
    • (2002) Water Resour. Res , vol.38 , Issue.12 , pp. 1312
    • Vrugt, J.A.1    Bouten, W.2    Gupta, H.V.3    Sorooshian, S.4
  • 41
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 42
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • doi:10.1029/2004WR003059
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059.
    • (2005) Water Resour. Res , vol.41
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 43
    • 33746200035 scopus 로고    scopus 로고
    • Real-time data assimilation for operation ensemble streamflow forecasting
    • doi:10.1175/JHM504.1
    • Vrugt, J. A., H. V. Gupta, B.O. Nualláin, and W. Bouten (2006a), Real-time data assimilation for operation ensemble streamflow forecasting, J. Hydrometeorol., 7(3), 548-565, doi:10.1175/JHM504.1.
    • (2006) J. Hydrometeorol , vol.7 , Issue.3 , pp. 548-565
    • Vrugt, J.A.1    Gupta, H.V.2    Nualláin, B.O.3    Bouten, W.4
  • 44
    • 33744917802 scopus 로고    scopus 로고
    • Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting Model
    • doi:10.1016/j.hydrol.2005.10.041
    • Vrugt, J. A., H. V. Gupta, S. C. Dekker, S. Sorooshian, T. Wagener, and W. Bouten (2006b), Application of stochastic parameter optimization to the Sacramento Soil Moisture Accounting Model, J. Hydrol., 325(1-4), 288-307, doi:10.1016/j.hydrol.2005.10.041.
    • (2006) J. Hydrol , vol.325 , Issue.1-4 , pp. 288-307
    • Vrugt, J.A.1    Gupta, H.V.2    Dekker, S.C.3    Sorooshian, S.4    Wagener, T.5    Bouten, W.6
  • 45
    • 33847633276 scopus 로고    scopus 로고
    • Multi-objective calibration of forecast ensembles using Bayesian model averaging
    • doi:10.1029/2006GL027126
    • Vrugt, J. A., M. P. Clark, C. G. H. Diks, Q. Duan, and B. A. Robinson (2006c), Multi-objective calibration of forecast ensembles using Bayesian model averaging, Geophys. Res. Lett., 33, L19817, doi:10.1029/2006GL027126.
    • (2006) Geophys. Res. Lett , vol.33
    • Vrugt, J.A.1    Clark, M.P.2    Diks, C.G.H.3    Duan, Q.4    Robinson, B.A.5
  • 46
    • 0030162090 scopus 로고    scopus 로고
    • Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • Yapo, P., H. V. Gupta, and S. Sorooshian (1996), Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data, J. Hydrol., 181, 23-48.
    • (1996) J. Hydrol , vol.181 , pp. 23-48
    • Yapo, P.1    Gupta, H.V.2    Sorooshian, S.3
  • 47
    • 2942700220 scopus 로고    scopus 로고
    • Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
    • doi:10.1029/2003WR002557
    • Ye, M., S. P. Neuman, and P. D. Meyer (2004), Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff, Water Resour. Res., 40, W05113, doi:10.1029/2003WR002557.
    • (2004) Water Resour. Res , vol.40
    • Ye, M.1    Neuman, S.P.2    Meyer, P.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.