메뉴 건너뛰기




Volumn 476, Issue , 2013, Pages 228-243

Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall-runoff modeling

Author keywords

Feed forward neural network; Gilgel Abay watershed; Rainfall runoff modeling; Satellite data; Self organizing map; Wavelet

Indexed keywords

AHEAD-TIME; AUTO-REGRESSIVE INTEGRATED MOVING AVERAGE; CLUSTERING TECHNIQUES; DETERMINATION COEFFICIENTS; ETHIOPIA; EXOGENOUS INPUT; FORECASTING METHODS; HOMOGENEOUS CLUSTER; INPUT VARIABLES; LEAD TIME; MODEL RAINFALL-RUNOFF; MULTI-SCALE FEATURES; MULTI-STEP; NONSTATIONARY; PEAK VALUES; PRE-PROCESSED DATA; PRE-PROCESSING; PRECIPITATION DATA; RAIN GAUGES; RAINFALL RUNOFF; RAINFALL-RUNOFF MODELING; RAINFALL-RUNOFF MODELS; REMOVE NOISE; RUNOFF DATA; RUNOFF PREDICTION; SATELLITE DATA; SATELLITE PRECIPITATION; SOM CLUSTERING; VALIDATION PHASE; WAVELET;

EID: 84871025948     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2012.10.054     Document Type: Article
Times cited : (164)

References (71)
  • 1
    • 41949086697 scopus 로고    scopus 로고
    • Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis
    • Adamowski J. Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis. J. Hydrol. 2008, 353:247-266.
    • (2008) J. Hydrol. , vol.353 , pp. 247-266
    • Adamowski, J.1
  • 2
    • 67650321039 scopus 로고    scopus 로고
    • River flow forecasting using wavelet and cross-wavelet transform models
    • Adamowski J. River flow forecasting using wavelet and cross-wavelet transform models. Hydrol. Process. 2008, 22:4877-4891.
    • (2008) Hydrol. Process. , vol.22 , pp. 4877-4891
    • Adamowski, J.1
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407:28-40.
    • (2011) J. Hydrol. , vol.407 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 84856246099 scopus 로고    scopus 로고
    • Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
    • Adamowski J., Chan H.F., Prasher S.O., Ozga-Zielinski B., Sliusarieva A. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Res. 2012, 48:W01528. 10.1029/2010WR009945.
    • (2012) Water Resources Res. , vol.48
    • Adamowski, J.1    Chan, H.F.2    Prasher, S.O.3    Ozga-Zielinski, B.4    Sliusarieva, A.5
  • 5
    • 0034745667 scopus 로고    scopus 로고
    • Wavelet transform analysis of open channel wake flows
    • Addison P.S., Murrary K.B., Watson J.N. Wavelet transform analysis of open channel wake flows. J. Eng. Mech. 2001, 127(1):58-70.
    • (2001) J. Eng. Mech. , vol.127 , Issue.1 , pp. 58-70
    • Addison, P.S.1    Murrary, K.B.2    Watson, J.N.3
  • 6
    • 77951015838 scopus 로고    scopus 로고
    • River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges River basin
    • Akhtar M.K., Corzo G.A., Van Andel S.J., Jonoski A. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges River basin. Hydrol. Earth Syst. Sci. 2009, 13:1607-1618.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1607-1618
    • Akhtar, M.K.1    Corzo, G.A.2    Van Andel, S.J.3    Jonoski, A.4
  • 7
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition
    • Anctil F., Tape G.D. An exploration of artificial neural network rainfall runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 2004, 3:121-128.
    • (2004) J. Environ. Eng. Sci. , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, G.D.2
  • 8
    • 33645158824 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study
    • Antar M.A., Elassiouti I., Alam M.N. Rainfall-runoff modeling using artificial neural networks technique: a Blue Nile catchment case study. Hydrol. Process. 2006, 20(5):1201-1216.
    • (2006) Hydrol. Process. , vol.20 , Issue.5 , pp. 1201-1216
    • Antar, M.A.1    Elassiouti, I.2    Alam, M.N.3
  • 10
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology 2: hydrologic applications
    • ASCE task committee on application of Artificial Neural Networks in hydrology
    • ASCE task committee on application of Artificial Neural Networks in hydrology Artificial neural networks in hydrology 2: hydrologic applications. J. Hydrol. Eng. 2000, 5(2):124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 11
    • 0002378584 scopus 로고    scopus 로고
    • Wavelet-based feature extraction and decomposition strategies for financial forecasting
    • Aussem A., Campbell J., Murtagh F. Wavelet-based feature extraction and decomposition strategies for financial forecasting. J. Comput. Intell. Finance 1998, 6(2):5-12.
    • (1998) J. Comput. Intell. Finance , vol.6 , Issue.2 , pp. 5-12
    • Aussem, A.1    Campbell, J.2    Murtagh, F.3
  • 12
    • 79960071873 scopus 로고    scopus 로고
    • Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model
    • Bitew M.M., Gebremichael M. Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resources Res. 2011, 47:W06526. 10.1029/2010WR009917.
    • (2011) Water Resources Res. , vol.47
    • Bitew, M.M.1    Gebremichael, M.2
  • 13
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1 - Background and methodology. J. Hydrol. 2005, 301:75-92.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 15
    • 0028449105 scopus 로고
    • Neural network based objective flow regime identification in air-water two phase flow
    • Cai S., Toral H., Qiu J., Archer J.S. Neural network based objective flow regime identification in air-water two phase flow. Can. J. Chem. Eng. 1994, 72:440-445.
    • (1994) Can. J. Chem. Eng. , vol.72 , pp. 440-445
    • Cai, S.1    Toral, H.2    Qiu, J.3    Archer, J.S.4
  • 16
    • 33846807570 scopus 로고    scopus 로고
    • Multi-step-ahead neural networks for flood forecasting
    • Chang F.J., Chang Y.M., Chang L.C. Multi-step-ahead neural networks for flood forecasting. Hydrol. Sci. J. 2007, 52(1):114-130.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.1 , pp. 114-130
    • Chang, F.J.1    Chang, Y.M.2    Chang, L.C.3
  • 17
    • 0024825411 scopus 로고
    • Tree ring analysis of surplus and deficit runoff in the White River, Arkansas
    • Cleaveland M.K., Stahle D.W. Tree ring analysis of surplus and deficit runoff in the White River, Arkansas. Water Resources Res. 1989, 25(6):1391-1401.
    • (1989) Water Resources Res. , vol.25 , Issue.6 , pp. 1391-1401
    • Cleaveland, M.K.1    Stahle, D.W.2
  • 18
    • 0032005702 scopus 로고    scopus 로고
    • An artificial neural network approach to rainfall-runoff modeling
    • Dawson C.W., Wilby R. An artificial neural network approach to rainfall-runoff modeling. J. Hydrol. 1998, 43:47-66.
    • (1998) J. Hydrol. , vol.43 , pp. 47-66
    • Dawson, C.W.1    Wilby, R.2
  • 20
    • 0031998129 scopus 로고    scopus 로고
    • Application of neural networks for time series analysis: rainfall-runoff modelling
    • Furundzic D. Application of neural networks for time series analysis: rainfall-runoff modelling. Signal Process. 1998, 64:383-396.
    • (1998) Signal Process. , vol.64 , pp. 383-396
    • Furundzic, D.1
  • 21
    • 0023510701 scopus 로고
    • Precipitation variation in the Pacific Northwest (1675-1975) as reconstructed from tree rings
    • Graumlich L.J. Precipitation variation in the Pacific Northwest (1675-1975) as reconstructed from tree rings. Ann. Assoc. Am. Geogr. 1987, 77(1):19-29.
    • (1987) Ann. Assoc. Am. Geogr. , vol.77 , Issue.1 , pp. 19-29
    • Graumlich, L.J.1
  • 22
    • 0842334546 scopus 로고    scopus 로고
    • A neural network approach to real-time rainfall estimation for Africa using satellite data
    • Grimes D.I.F., Coppola E., Verdecchia M., Visconti G. A neural network approach to real-time rainfall estimation for Africa using satellite data. J. Hydrometeorol. 2003, 4:1119-1133.
    • (2003) J. Hydrometeorol. , vol.4 , pp. 1119-1133
    • Grimes, D.I.F.1    Coppola, E.2    Verdecchia, M.3    Visconti, G.4
  • 23
    • 0000562670 scopus 로고
    • Decomposition of Hardy function into square integrable wavelets of constant shape
    • Grossmann A., Morlet J. Decomposition of Hardy function into square integrable wavelets of constant shape. J. Math. Anal. 1984, 5:723-736.
    • (1984) J. Math. Anal. , vol.5 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 24
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M.B. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural. Netw. 1994, 5(6):989-993.
    • (1994) IEEE Trans. Neural. Netw. , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 25
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: a synergistic combination in state economic forecasts
    • Hansen J.V., Nelson R.D. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Trans. Neural. Netw. 1997, 8(4):863-873.
    • (1997) IEEE Trans. Neural. Netw. , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 26
    • 0024880831 scopus 로고
    • Multilayer feed-forward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feed-forward networks are universal approximators. Neural Networks 1989, 2(5):359-366.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 27
    • 74149092556 scopus 로고    scopus 로고
    • Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network
    • Hsu K., Li S. Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network. Adv. Water Resources 2010, 33:190-200.
    • (2010) Adv. Water Resources , vol.33 , pp. 190-200
    • Hsu, K.1    Li, S.2
  • 28
    • 0029413797 scopus 로고
    • Artificial neural network modeling of rainfall runoff process
    • Hsu K., Gupta H.V., Sorooshian S. Artificial neural network modeling of rainfall runoff process. Water Resources Res. 1995, 31:2517-2530.
    • (1995) Water Resources Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 29
    • 0036998831 scopus 로고    scopus 로고
    • Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis
    • Hsu K., Gupta H.V., Gao X., Sorooshian S., Imam B. Self-organizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis. Water Resources Res. 2002, 38(12):1-38.
    • (2002) Water Resources Res. , vol.38 , Issue.12 , pp. 1-38
    • Hsu, K.1    Gupta, H.V.2    Gao, X.3    Sorooshian, S.4    Imam, B.5
  • 30
    • 33947356755 scopus 로고    scopus 로고
    • The TRMM multi-satellite precipitation analysis (TMPA): quasi-global, multilayer, combined-sensor, precipitation estimates at fine scale
    • Huffman G.J., Adler R.F., Bolvin D.T., Gu G., Nelkin E.J., Bowman K.P., Hong Y., Stocker E.F., Wolff D.B. The TRMM multi-satellite precipitation analysis (TMPA): quasi-global, multilayer, combined-sensor, precipitation estimates at fine scale. J. Hydrometeorol. 2007, 8:38-55.
    • (2007) J. Hydrometeorol. , vol.8 , pp. 38-55
    • Huffman, G.J.1    Adler, R.F.2    Bolvin, D.T.3    Gu, G.4    Nelkin, E.J.5    Bowman, K.P.6    Hong, Y.7    Stocker, E.F.8    Wolff, D.B.9
  • 31
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall-runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall-runoff models. Hydrol. Process. 2004, 18:571-581.
    • (2004) Hydrol. Process. , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 32
    • 2442514138 scopus 로고    scopus 로고
    • CMORPH: a method that produces global precipitation estimation from passive microwave and infrared data at high spatial and temporal resolution
    • Joyce R.J., Janowiak J.E., Arkin P.A., Xie P. CMORPH: a method that produces global precipitation estimation from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5:487-503.
    • (2004) J. Hydrometeorol. , vol.5 , pp. 487-503
    • Joyce, R.J.1    Janowiak, J.E.2    Arkin, P.A.3    Xie, P.4
  • 33
    • 40749144865 scopus 로고    scopus 로고
    • Review of self-organizing map (SOM) in water resources: analysis, modeling, and application
    • Kalteh A.M., Hjorth P., Berndtsson R. Review of self-organizing map (SOM) in water resources: analysis, modeling, and application. Environ. Model. Softw. 2008, 23:835-845.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 34
    • 0003410791 scopus 로고    scopus 로고
    • Springer-Verlag, Berlin, Heidelberg
    • Kohonen T. Self-Organizing Maps 1997, Springer-Verlag, Berlin, Heidelberg.
    • (1997) Self-Organizing Maps
    • Kohonen, T.1
  • 35
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen T. The self-organizing map. Neurocomputing 1998, 21:1-6.
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 36
    • 28444499418 scopus 로고    scopus 로고
    • Recent advances in wavelet analyses: Part 1 - A review of concepts
    • Labat D. Recent advances in wavelet analyses: Part 1 - A review of concepts. J. Hydrol. 2005, 314:275-288.
    • (2005) J. Hydrol. , vol.314 , pp. 275-288
    • Labat, D.1
  • 37
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relation for karstic spring. Part 2: Continuous wavelet and discrete orthogonal multi resolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relation for karstic spring. Part 2: Continuous wavelet and discrete orthogonal multi resolution analyses. J. Hydrol. 2000, 238:149-178.
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 38
    • 84867101151 scopus 로고    scopus 로고
    • Validation studies of precipitation estimates from different satellite sensors over Hungary - analysis of new satellite-derived rain rate products for hydrological purposes
    • (Published online)
    • Lábó, E., 2012. Validation studies of precipitation estimates from different satellite sensors over Hungary - analysis of new satellite-derived rain rate products for hydrological purposes. J. Hydrol. (Published online). http://dx.doi.org/10.1016/j.jhydrol.2012.08.031.
    • (2012) J. Hydrol
    • Lábó, E.1
  • 39
    • 0038010337 scopus 로고    scopus 로고
    • A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media
    • Lallahem S., Maina J. A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media. Math. Comput. Modell. 2003, 37:1047-1061.
    • (2003) Math. Comput. Modell. , vol.37 , pp. 1047-1061
    • Lallahem, S.1    Maina, J.2
  • 40
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of " goodness-of-fit" measures in hydrologic and hydro-climatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of " goodness-of-fit" measures in hydrologic and hydro-climatic model validation. Water Resources Res. 1999, 35(1):233-241.
    • (1999) Water Resources Res. , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 41
    • 34249662794 scopus 로고    scopus 로고
    • A SOM-based approach to estimate design hyetographs of un-gauged sites
    • Lin G.F., Wu M.C. A SOM-based approach to estimate design hyetographs of un-gauged sites. J. Hydrol. 2007, 339:216-226.
    • (2007) J. Hydrol. , vol.339 , pp. 216-226
    • Lin, G.F.1    Wu, M.C.2
  • 42
    • 79960426659 scopus 로고    scopus 로고
    • An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model
    • Lin G.F., Wu M.C. An RBF network with a two-step learning algorithm for developing a reservoir inflow forecasting model. J. Hydrol. 2011, 405:439-450.
    • (2011) J. Hydrol. , vol.405 , pp. 439-450
    • Lin, G.F.1    Wu, M.C.2
  • 43
    • 80052322875 scopus 로고    scopus 로고
    • A review of self-organizing map applications in meteorology and oceanography. In: Mwasiagi
    • J.I. (Ed.), Self-Organizing Map-Applications and Novel Algorithm Design. InTech, Rijeka, Croatia.
    • Liu, Y., Weisberg, R.H., 2011. A review of self-organizing map applications in meteorology and oceanography. In: Mwasiagi, J.I. (Ed.), Self-Organizing Map-Applications and Novel Algorithm Design. InTech, Rijeka, Croatia.
    • (2011)
    • Liu, Y.1    Weisberg, R.H.2
  • 45
    • 78650507206 scopus 로고    scopus 로고
    • Neuro-Fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers
    • Mirbagheri S.A., Nourani V., Rajaee T., Alikhani A. Neuro-Fuzzy models employing wavelet analysis for suspended sediment concentration prediction in rivers. Hydrol. Sci. J. 2010, 55(7):1175-1189.
    • (2010) Hydrol. Sci. J. , vol.55 , Issue.7 , pp. 1175-1189
    • Mirbagheri, S.A.1    Nourani, V.2    Rajaee, T.3    Alikhani, A.4
  • 46
    • 77952374286 scopus 로고    scopus 로고
    • Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes
    • Nourani V., Kalantari O. Integrated artificial neural network for spatiotemporal modeling of rainfall-runoff-sediment processes. Environ. Eng. Sci. 2010, 27(5):411-422.
    • (2010) Environ. Eng. Sci. , vol.27 , Issue.5 , pp. 411-422
    • Nourani, V.1    Kalantari, O.2
  • 47
    • 36148941807 scopus 로고    scopus 로고
    • Semi-distributed flood runoff model at the sub-continental scale for southwestern Iran
    • Nourani V., Mano A. Semi-distributed flood runoff model at the sub-continental scale for southwestern Iran. Hydrol. Process. 2007, 21:3173-3180.
    • (2007) Hydrol. Process. , vol.21 , pp. 3173-3180
    • Nourani, V.1    Mano, A.2
  • 48
    • 70350337875 scopus 로고    scopus 로고
    • A multivariate ANN-wavelet approach for rainfall-runoff modeling
    • Nourani V., Komasi M., Mano A. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Manage. 2009, 23:2877-2894.
    • (2009) Water Resources Manage. , vol.23 , pp. 2877-2894
    • Nourani, V.1    Komasi, M.2    Mano, A.3
  • 49
    • 79955027205 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Lighvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Lighvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 16:1-12.
    • (2009) Eng. Appl. Artif. Intell. , vol.16 , pp. 1-12
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 50
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi Ö., Komasi M. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402:41-59.
    • (2011) J. Hydrol. , vol.402 , pp. 41-59
    • Nourani, V.1    Kisi, Ö.2    Komasi, M.3
  • 51
    • 84871024941 scopus 로고    scopus 로고
    • Classification of groundwater level data using SOM to develop ANN-based forecasting model
    • Nourani V., Hosseini Baghanam A., Daneshvar F., Alami M.T. Classification of groundwater level data using SOM to develop ANN-based forecasting model. Int. J. Soft Comput. Eng. 2012, 2(1):464-469.
    • (2012) Int. J. Soft Comput. Eng. , vol.2 , Issue.1 , pp. 464-469
    • Nourani, V.1    Hosseini Baghanam, A.2    Daneshvar, F.3    Alami, M.T.4
  • 52
    • 84871019090 scopus 로고    scopus 로고
    • Two semi-distributed ANN-based models for estimation of suspended sediment load
    • (Published on-line)
    • Nourani V., Kalantari O., Hosseini Baghanam A. Two semi-distributed ANN-based models for estimation of suspended sediment load. J. Hydrol. Eng. 2012, (Published on-line). 10.1061/(ASCE)HE.1943-5584.0000587.
    • (2012) J. Hydrol. Eng.
    • Nourani, V.1    Kalantari, O.2    Hosseini Baghanam, A.3
  • 54
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 2008, 358(3-4):317-331.
    • (2008) J. Hydrol. , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 55
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T., Kisi O. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J. Hydrol. 2007, 342:199-212.
    • (2007) J. Hydrol. , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 56
    • 0028813068 scopus 로고
    • The status of satellite-based rainfall estimation over land
    • Petty G.W. The status of satellite-based rainfall estimation over land. Remote Sens. Environ. 1995, 51:125-137.
    • (1995) Remote Sens. Environ. , vol.51 , pp. 125-137
    • Petty, G.W.1
  • 57
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • Pulido-Calvo I., Portela M.M. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol. 2007, 332:1-15.
    • (2007) J. Hydrol. , vol.332 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 58
    • 0033535432 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using an artificial neural network
    • Sajikumara N., Thandaveswara B.S. A non-linear rainfall-runoff model using an artificial neural network. J. Hydrol. 1999, 216:32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumara, N.1    Thandaveswara, B.S.2
  • 60
    • 77957009968 scopus 로고    scopus 로고
    • Using satellite-based rainfall data to support the implementation of environmental water requirements in South Africa
    • Sawunyama T., Hunghes DA. Using satellite-based rainfall data to support the implementation of environmental water requirements in South Africa. Water SA 2010, 136(4):379-385.
    • (2010) Water SA , vol.136 , Issue.4 , pp. 379-385
    • Sawunyama, T.1    Hunghes, D.A.2
  • 61
    • 16444365723 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural network: comparison of networks types
    • Senthil Kumar A.R., Sudheer K.P., Jain S.K., Agarwal P.K. Rainfall-runoff modeling using artificial neural network: comparison of networks types. Hydrol. Process. 2004, 19(6):1277-1291.
    • (2004) Hydrol. Process. , vol.19 , Issue.6 , pp. 1277-1291
    • Senthil Kumar, A.R.1    Sudheer, K.P.2    Jain, S.K.3    Agarwal, P.K.4
  • 62
  • 63
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2000, 16(6):1325-1330.
    • (2000) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 64
    • 0027836314 scopus 로고
    • Comparison of univariate and transfer function models of groundwater fluctuations
    • Tankersley C., Graham W., Hatfield K. Comparison of univariate and transfer function models of groundwater fluctuations. Water Resources Res. 1993, 29(10):3517-3533.
    • (1993) Water Resources Res. , vol.29 , Issue.10 , pp. 3517-3533
    • Tankersley, C.1    Graham, W.2    Hatfield, K.3
  • 65
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar A.S., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4:232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 66
    • 72049104241 scopus 로고    scopus 로고
    • Classification of hydro-meteorological conditions and multiple artificial neural networks for stream flow forecasting
    • Toth E. Classification of hydro-meteorological conditions and multiple artificial neural networks for stream flow forecasting. Hydrol. Earth Syst. Sci. 2009, 13:1555-1566.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1555-1566
    • Toth, E.1
  • 67
    • 23744444467 scopus 로고    scopus 로고
    • Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation
    • Vos N.J., Rientjes T.H.M. Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation. Hydrol. Earth Syst. Sci. 2005, 9:111-126.
    • (2005) Hydrol. Earth Syst. Sci. , vol.9 , pp. 111-126
    • Vos, N.J.1    Rientjes, T.H.M.2
  • 68
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang W., Ding S. Wavelet network model and its application to the predication of hydrology. Nat. Sci. 2003, 1(1):67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, S.2
  • 69
    • 77953342831 scopus 로고    scopus 로고
    • Comparing sigmoid transfer functions for neural network multistep ahead stream flow forecasting
    • Yonaba H., Anctil F., Fortin V. Comparing sigmoid transfer functions for neural network multistep ahead stream flow forecasting. J. Hydrol. Eng. 2010, 15(4):275-283.
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.4 , pp. 275-283
    • Yonaba, H.1    Anctil, F.2    Fortin, V.3
  • 70
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • Zhang G.P. Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 71
    • 80051672856 scopus 로고    scopus 로고
    • Singular spectrum analysis and ARIMA hybrid model for annual runoff forecasting
    • Zhang Q., Wang B.D., He B., Peng Y., Ren M.L. Singular spectrum analysis and ARIMA hybrid model for annual runoff forecasting. Water Resources Manage. 2011, 25:2683-2703.
    • (2011) Water Resources Manage. , vol.25 , pp. 2683-2703
    • Zhang, Q.1    Wang, B.D.2    He, B.3    Peng, Y.4    Ren, M.L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.