메뉴 건너뛰기




Volumn 45, Issue 3, 2015, Pages 535-569

A survey on data stream clustering and classification

Author keywords

Classification; Clustering; Data stream mining; Survey

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; DATA STREAMS; LARGE DATASET; SECURITY SYSTEMS; SENSOR NETWORKS; SURVEYING; SURVEYS;

EID: 84945180794     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-014-0808-1     Document Type: Article
Times cited : (278)

References (110)
  • 1
    • 42949171875 scopus 로고    scopus 로고
    • C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data
    • Adomavicius G, Bockstedt J (2008) C-trend: temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. IEEE Trans Knowl Data Eng 20:721–735
    • (2008) IEEE Trans Knowl Data Eng , vol.20 , pp. 721-735
    • Adomavicius, G.1    Bockstedt, J.2
  • 3
    • 85012236181 scopus 로고    scopus 로고
    • A framework for clustering evolving data streams. In: Proceedings of the 29th international conference on very large data bases, vol 29, pp 81–92
    • Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. In: Proceedings of the 29th international conference on very large data bases, vol 29, pp 81–92. VLDB Endowment
    • (2003) VLDB Endowment
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 4
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams. In: Proceedings of the 13th international conference on very large data bases, vol 30, pp 852–863, 1316763
    • Aggarwal CC, Han J, Wang J, Yu PS (2004) A framework for projected clustering of high dimensional data streams. In: Proceedings of the 13th international conference on very large data bases, vol 30, pp 852–863, 1316763. VLDB Endowment
    • (2004) VLDB Endowment
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 5
    • 33645657061 scopus 로고    scopus 로고
    • A framework for on-demand classification of evolving data streams
    • Aggarwal CC, Han J, Wang J, Yu PS (2006) A framework for on-demand classification of evolving data streams. IEEE Trans Knowl Data Eng 18(5):577–589
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , Issue.5 , pp. 577-589
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 6
    • 77954953912 scopus 로고    scopus 로고
    • On clustering massive text and categorical data streams
    • Aggarwal CC, Philip SY (2010) On clustering massive text and categorical data streams. Knowl Inf Syst 24(2):171–196
    • (2010) Knowl Inf Syst , vol.24 , Issue.2 , pp. 171-196
    • Aggarwal, C.C.1    Philip, S.Y.2
  • 7
    • 84880245506 scopus 로고    scopus 로고
    • Event detection in social streams. In: Proceedings of the SIAM international conference on data mining
    • Aggarwal CC, Subbian K (2012) Event detection in social streams. In: Proceedings of the SIAM international conference on data mining, pp 624–635
    • (2012) pp 624–635
    • Aggarwal, C.C.1    Subbian, K.2
  • 8
    • 84871101071 scopus 로고    scopus 로고
    • Online analysis of community evolution in data streams. In: Proceedings of the SIAM international conference on data mining
    • Aggarwal CC, Yu P (2005) Online analysis of community evolution in data streams. In: Proceedings of the SIAM international conference on data mining, pp 56–67
    • (2005) pp 56–67
    • Aggarwal, C.C.1    Yu, P.2
  • 10
    • 0034186912 scopus 로고    scopus 로고
    • Dynamic self-organizing maps with controlled growth for knowledge discovery
    • Alahakoon D, Halgamuge SK, Srinivasan B (2000) Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans Neural Netw 11(3):601–614
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 601-614
    • Alahakoon, D.1    Halgamuge, S.K.2    Srinivasan, B.3
  • 11
    • 84945234257 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise. In: Proceeding of the 1998 international conference knowledge discovery and data mining
    • Alexander H, Er H, Daniel AK (1998) An efficient approach to clustering in large multimedia databases with noise. In: Proceeding of the 1998 international conference knowledge discovery and data mining, pp 58–65
    • (1998) pp 58–65
    • Alexander, H.1    Er, H.2    Daniel, A.K.3
  • 12
    • 0032283421 scopus 로고    scopus 로고
    • On-line new event detection and tracking. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval, pp 37–45
    • Allan J, Papka R, Lavrenko V (1998) On-line new event detection and tracking. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval, pp 37–45. ACM
    • (1998) ACM
    • Allan, J.1    Papka, R.2    Lavrenko, V.3
  • 13
    • 67650932694 scopus 로고    scopus 로고
    • A comparison of extrinsic clustering evaluation metrics based on formal constraints
    • Amigo E, Gonzalo J, Artiles J (2009) A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inf Retr 12(4):461–486
    • (2009) Inf Retr , vol.12 , Issue.4 , pp. 461-486
    • Amigo, E.1    Gonzalo, J.2    Artiles, J.3
  • 14
    • 0347172110 scopus 로고    scopus 로고
    • Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, vol 28, pp 49–60, 304187
    • Ankerst M, Breunig MM, Kriegel H-P, Sander J (1999) Optics: ordering points to identify the clustering structure. In: Proceedings of the 1999 ACM SIGMOD international conference on management of data, vol 28, pp 49–60, 304187. ACM
    • (1999) ACM
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.-P.3    Sander, J.4
  • 15
    • 0025447750 scopus 로고
    • The R*-tree: an efficient and robust access method for points and rectangles, vol 19
    • Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles, vol 19. ACM
    • (1990) ACM
    • Beckmann, N.1    Kriegel, H.-P.2    Schneider, R.3    Seeger, B.4
  • 16
    • 84880207798 scopus 로고    scopus 로고
    • Adaptive stream mining: pattern learning and mining from evolving data streams. In: Proceeding of the 2010 conference on adaptive stream mining: pattern learning and mining from evolving data streams
    • Bifet A (2010) Adaptive stream mining: pattern learning and mining from evolving data streams. In: Proceeding of the 2010 conference on adaptive stream mining: pattern learning and mining from evolving data streams. IOS Press
    • (2010) IOS Press
    • Bifet, A.1
  • 18
    • 19544386608 scopus 로고    scopus 로고
    • Density connected clustering with local subspace preferences. In: Proceedings of the 4th IEEE international conference on data mining, pp 27–34, 1033433
    • Bohm C, Kailing K, Kriegel H-P, Kroger P (2004) Density connected clustering with local subspace preferences. In: Proceedings of the 4th IEEE international conference on data mining, pp 27–34, 1033433. IEEE Computer Society
    • (2004) IEEE Computer Society
    • Bohm, C.1    Kailing, K.2    Kriegel, H.-P.3    Kroger, P.4
  • 19
    • 0027578653 scopus 로고
    • Incremental clustering for dynamic information processing
    • Can F (1993) Incremental clustering for dynamic information processing. ACM Trans Inf Syst (TOIS) 11(2):143–164
    • (1993) ACM Trans Inf Syst (TOIS) , vol.11 , Issue.2 , pp. 143-164
    • Can, F.1
  • 21
    • 0025597381 scopus 로고
    • Concepts and effectiveness of the cover-coefficient-based clustering methodology for text databases
    • Can F, Ozkarahan EA (1990) Concepts and effectiveness of the cover-coefficient-based clustering methodology for text databases. ACM Trans Database Syst (TODS) 15(4):483–517
    • (1990) ACM Trans Database Syst (TODS) , vol.15 , Issue.4 , pp. 483-517
    • Can, F.1    Ozkarahan, E.A.2
  • 22
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM international conference on data mining
    • Cao F, Ester M, Qian W, Zhou A (2006) Density-based clustering over an evolving data stream with noise. In: Proceedings of the 2006 SIAM international conference on data mining, pp 328–339
    • (2006) pp 328–339
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 23
    • 33749572698 scopus 로고    scopus 로고
    • Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 554–560
    • Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 554–560. ACM
    • (2006) ACM
    • Chakrabarti, D.1    Kumar, R.2    Tomkins, A.3
  • 24
    • 36849092449 scopus 로고    scopus 로고
    • Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 133–142, 1281210
    • Chen Y, Tu L (2007) Density-based clustering for real-time stream data. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 133–142, 1281210. ACM
    • (2007) ACM
    • Chen, Y.1    Tu, L.2
  • 25
    • 36849005505 scopus 로고    scopus 로고
    • Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 153–162
    • Chi Y, Song X, Zhou D, Hino K, Tseng B (2007) Evolutionary spectral clustering by incorporating temporal smoothness. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 153–162. ACM
    • (2007) ACM
    • Chi, Y.1    Song, X.2    Zhou, D.3    Hino, K.4    Tseng, B.5
  • 27
    • 84945234265 scopus 로고    scopus 로고
    • Semantic similarity between search engine queries using temporal correlation. In: Proceedings of the 14th international conference on World Wide Web, pp 2–11, 1060752
    • Chien S, Immorlica N (2005) Semantic similarity between search engine queries using temporal correlation. In: Proceedings of the 14th international conference on World Wide Web, pp 2–11, 1060752. ACM
    • (2005) ACM
    • Chien, S.1    Immorlica, N.2
  • 28
    • 2542578771 scopus 로고    scopus 로고
    • An online cellular probabilistic self-organizing map for static and dynamic data sets
    • Chow TWS, Sitao W (2004) An online cellular probabilistic self-organizing map for static and dynamic data sets. IEEE Trans Circuits Syst I Regul Pap 51(4):732–747
    • (2004) IEEE Trans Circuits Syst I Regul Pap , vol.51 , Issue.4 , pp. 732-747
    • Chow, T.W.S.1    Sitao, W.2
  • 30
    • 84993661659 scopus 로고    scopus 로고
    • M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd international conference on very large data bases, pP 426–435, 671005
    • Ciaccia P, Patella M, Zezula P (1997) M-tree: An efficient access method for similarity search in metric spaces. In: Proceedings of the 23rd international conference on very large data bases, pP 426–435, 671005. Morgan Kaufmann Publishers Inc
    • (1997) Morgan Kaufmann Publishers Inc
    • Ciaccia, P.1    Patella, M.2    Zezula, P.3
  • 35
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, pp 71–80, 347107
    • Domingos P, Hulten G (2000) Mining high-speed data streams. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, pp 71–80, 347107. ACM
    • (2000) ACM
    • Domingos, P.1    Hulten, G.2
  • 37
    • 28444499680 scopus 로고    scopus 로고
    • Top-down specialization for information and privacy preservation. In: 21st international conference on data engineering, 2005. ICDE 2005. Proceedings, pp 205–216
    • Fung BC, Wang K, Yu PS (2005) Top-down specialization for information and privacy preservation. In: 21st international conference on data engineering, 2005. ICDE 2005. Proceedings, pp 205–216. IEEE
    • (2005) IEEE
    • Fung, B.C.1    Wang, K.2    Yu, P.S.3
  • 39
    • 84877045418 scopus 로고    scopus 로고
    • Data stream mining: the bounded rationality
    • Gama J (2013) Data stream mining: the bounded rationality. Informatica (Slovenia) 37(1):21–25
    • (2013) Informatica (Slovenia) , vol.37 , Issue.1 , pp. 21-25
    • Gama, J.1
  • 41
    • 33751066175 scopus 로고    scopus 로고
    • Discretization from data streams: applications to histograms and data mining. In: Proceedings of the 2006 ACM symposium on applied computing, pp 662–667
    • Gama J, Pinto C (2006) Discretization from data streams: applications to histograms and data mining. In: Proceedings of the 2006 ACM symposium on applied computing, pp 662–667. ACM
    • (2006) ACM
    • Gama, J.1    Pinto, C.2
  • 43
    • 84874677467 scopus 로고    scopus 로고
    • On evaluating stream learning algorithms
    • Gama J, Sebastião R, Rodrigues P (2013) On evaluating stream learning algorithms. Mach Learn 90(3):317–346
    • (2013) Mach Learn , vol.90 , Issue.3 , pp. 317-346
    • Gama, J.1    Sebastião, R.2    Rodrigues, P.3
  • 44
    • 85136051842 scopus 로고    scopus 로고
    • Xwave: optimal and approximate extended wavelets. In: Proceedings of the thirtieth international conference on very large data bases, vol 30, pp 288–299, 1316716
    • Guha S, Kim C, Shim K (2004) Xwave: optimal and approximate extended wavelets. In: Proceedings of the thirtieth international conference on very large data bases, vol 30, pp 288–299, 1316716. VLDB Endowment
    • (2004) VLDB Endowment
    • Guha, S.1    Kim, C.2    Shim, K.3
  • 46
    • 0034514004 scopus 로고    scopus 로고
    • Clustering data streams. In: Proceedings of the 41st annual symposium on foundations of computer science
    • Guha S, Mishra N, Motwani R, O’Callaghan L (2000) Clustering data streams. In: Proceedings of the 41st annual symposium on foundations of computer science, pp 359–366
    • (2000) pp 359–366
    • Guha, S.1    Mishra, N.2    Motwani, R.3    O’Callaghan, L.4
  • 47
    • 0032091595 scopus 로고    scopus 로고
    • Cure: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data, pp 73–84, 276312
    • Guha S, Rastogi R, Shim K (1998) Cure: an efficient clustering algorithm for large databases. In: Proceedings of the 1998 ACM SIGMOD international conference on management of data, pp 73–84, 276312. ACM
    • (1998) ACM
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 48
    • 85175741303 scopus 로고    scopus 로고
    • Rock: a robust clustering algorithm for categorical attributes. In: Proceedings of the 15th international conference on data engineering, p 512, 847264
    • Guha S, Rastogi R, Shim K (1999) Rock: a robust clustering algorithm for categorical attributes. In: Proceedings of the 15th international conference on data engineering, p 512, 847264. IEEE Computer Society
    • (1999) IEEE Computer Society
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 49
    • 0021615874 scopus 로고
    • R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data
    • Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings of the 1984 ACM SIGMOD international conference on management of data, pp 47–57
    • (1984) pp 47–57
    • Guttman, A.1
  • 50
    • 84880099592 scopus 로고    scopus 로고
    • Temporal structure learning for clustering massive data streams in real-time. In: SIAM conference on data mining, pp 664–675
    • Hahsler M, Dunham M (2011) Temporal structure learning for clustering massive data streams in real-time. In: SIAM conference on data mining, pp 664–675. SIAM
    • (2011) SIAM
    • Hahsler, M.1    Dunham, M.2
  • 53
    • 0035789299 scopus 로고    scopus 로고
    • Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 97–106, 502529
    • Hulten G, Spencer L, Domingos P (2001) Mining time-changing data streams. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 97–106, 502529. ACM
    • (2001) ACM
    • Hulten, G.1    Spencer, L.2    Domingos, P.3
  • 55
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: hierarchical clustering using dynamic modeling
    • Karypis G, Eui-Hong H, Kumar V (1999) Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8):68–75
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Eui-Hong, H.2    Kumar, V.3
  • 57
    • 84945234278 scopus 로고    scopus 로고
    • The impact of changing populations on classifier performance. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, pp 367–371, 312285
    • Kelly MG, Hand DJ, Adams NM (1999) The impact of changing populations on classifier performance. In: Proceedings of the fifth ACM SIGKDD international conference on knowledge discovery and data mining, pp 367–371, 312285. ACM
    • (1999) ACM
    • Kelly, M.G.1    Hand, D.J.2    Adams, N.M.3
  • 58
    • 0042209915 scopus 로고    scopus 로고
    • Bursty and hierarchical structure in streams
    • Kleinberg J (2003) Bursty and hierarchical structure in streams. Data Min Knowl Discov 7(4):373–397
    • (2003) Data Min Knowl Discov , vol.7 , Issue.4 , pp. 373-397
    • Kleinberg, J.1
  • 59
    • 0025489075 scopus 로고
    • The self-organizing map
    • Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480
    • (1990) Proc IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 60
    • 80053927938 scopus 로고    scopus 로고
    • The clustree: indexing micro-clusters for anytime stream mining
    • Kranen P, Assent I, Baldauf C, Seidl T (2011) The clustree: indexing micro-clusters for anytime stream mining. Knowl Inf Syst 29(2):249–272
    • (2011) Knowl Inf Syst , vol.29 , Issue.2 , pp. 249-272
    • Kranen, P.1    Assent, I.2    Baldauf, C.3    Seidl, T.4
  • 62
    • 80052676926 scopus 로고    scopus 로고
    • An effective evaluation measure for clustering on evolving data streams. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 868–876, 2020555
    • Kremer H, Kranen P, Jansen T, Seidl T, Bifet A, Holmes G, Pfahringer B (2011) An effective evaluation measure for clustering on evolving data streams. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 868–876, 2020555. ACM
    • (2011) ACM
    • Kremer, H.1    Kranen, P.2    Jansen, T.3    Seidl, T.4    Bifet, A.5    Holmes, G.6    Pfahringer, B.7
  • 64
    • 0035306414 scopus 로고    scopus 로고
    • Using contextual analysis for news event detection
    • Lam W, Meng H, Wong K, Yen J (2001) Using contextual analysis for news event detection. Int J Intell Syst 16(4):525–546
    • (2001) Int J Intell Syst , vol.16 , Issue.4 , pp. 525-546
    • Lam, W.1    Meng, H.2    Wong, K.3    Yen, J.4
  • 65
    • 37449029679 scopus 로고    scopus 로고
    • Online classification of nonstationary data streams
    • Last M (2002) Online classification of nonstationary data streams. Intell Data Anal 6(2):129–147
    • (2002) Intell Data Anal , vol.6 , Issue.2 , pp. 129-147
    • Last, M.1
  • 66
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: a fast correlation-based filter solution. In: The 20th international conference on machine learning
    • Lei Y, Huan L (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: The 20th international conference on machine learning, pp 856–863
    • (2003) pp 856–863
    • Lei, Y.1    Huan, L.2
  • 67
    • 85180619662 scopus 로고    scopus 로고
    • Evolving granular neural network for semi-supervised data stream classification. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–8
    • Leite D, Costa P, Gomide F (2010) Evolving granular neural network for semi-supervised data stream classification. In: The 2010 international joint conference on neural networks (IJCNN), pp 1–8. IEEE
    • (2010) IEEE
    • Leite, D.1    Costa, P.2    Gomide, F.3
  • 69
    • 56249119506 scopus 로고    scopus 로고
    • Incremental clustering of dynamic data streams using connectivity based representative points
    • Lühr S, Lazarescu M (2009) Incremental clustering of dynamic data streams using connectivity based representative points. Data Knowl Eng 68(1):1–27
    • (2009) Data Knowl Eng , vol.68 , Issue.1 , pp. 1-27
    • Lühr, S.1    Lazarescu, M.2
  • 70
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H, Yu L (2005) Toward integrating feature selection algorithms for classification and clustering. IEEE Trans Knowl Data Eng 17(4):491–502
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , Issue.4 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 71
    • 84945234283 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231
    • Martin E, Hans-Peter K, Jörg S, Xiaowei X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd international conference on knowledge discovery and data mining, pp 226–231. AAAI Press
    • (1996) AAAI Press
    • Martin, E.1    Hans-Peter, K.2    Jörg, S.3    Xiaowei, X.4
  • 73
    • 38349193795 scopus 로고    scopus 로고
    • A framework for generating data to simulate changing environments. In: Proceedings of the 25th IASTED international multi-conference: artificial intelligence and applications, vol 549, p 389
    • Narasimhamurthy A, Kuncheva LI (2007) A framework for generating data to simulate changing environments. In: Proceedings of the 25th IASTED international multi-conference: artificial intelligence and applications, vol 549, p 389. ACTA Press
    • (2007) ACTA Press
    • Narasimhamurthy, A.1    Kuncheva, L.I.2
  • 74
    • 84861438848 scopus 로고    scopus 로고
    • Heterogeneous ensemble for feature drifts in data streams. In: Proceedings of the 16th Pacific-Asia conference on advances in knowledge discovery and data mining, vol 2, pp 1–12, 2342648
    • Nguyen H-L, Woon Y-K, Ng W-K, Wan L (2012) Heterogeneous ensemble for feature drifts in data streams. In: Proceedings of the 16th Pacific-Asia conference on advances in knowledge discovery and data mining, vol 2, pp 1–12, 2342648. Springer
    • (2012) Springer
    • Nguyen, H.-L.1    Woon, Y.-K.2    Ng, W.-K.3    Wan, L.4
  • 75
    • 0036203413 scopus 로고    scopus 로고
    • Streaming-data algorithms for high-quality clustering. In: Proceedings of the 18th international conference on data engineering
    • O’Callaghan L, Mishra N, Meyerson A, Guha S, Motwani R (2002) Streaming-data algorithms for high-quality clustering. In: Proceedings of the 18th international conference on data engineering, pp 685–694
    • (2002) pp 685–694
    • O’Callaghan, L.1    Mishra, N.2    Meyerson, A.3    Guha, S.4    Motwani, R.5
  • 76
    • 27944478140 scopus 로고    scopus 로고
    • Online bagging and boosting. In: 2005 IEEE international conference on systems, man and cybernetics, vol 3, pp 2340–2345
    • Oza NC (2005) Online bagging and boosting. In: 2005 IEEE international conference on systems, man and cybernetics, vol 3, pp 2340–2345. IEEE
    • (2005) IEEE
    • Oza, N.C.1
  • 77
    • 14344255219 scopus 로고    scopus 로고
    • Statistical grid-based clustering over data streams
    • Park NH, Lee WS (2004) Statistical grid-based clustering over data streams. ACM SIGMOD Rec 33(1):32–37
    • (2004) ACM SIGMOD Rec , vol.33 , Issue.1 , pp. 32-37
    • Park, N.H.1    Lee, W.S.2
  • 78
    • 34447276480 scopus 로고    scopus 로고
    • Cell trees: an adaptive synopsis structure for clustering multi-dimensional on-line data streams
    • Park NH, Lee WS (2007) Cell trees: an adaptive synopsis structure for clustering multi-dimensional on-line data streams. Data Knowl Eng 63(2):528–549
    • (2007) Data Knowl Eng , vol.63 , Issue.2 , pp. 528-549
    • Park, N.H.1    Lee, W.S.2
  • 79
    • 78751684902 scopus 로고    scopus 로고
    • Streamed learning: one-pass svms. In: Proceedings of the 21st international jont conference on artificial intelligence, pp 1211–1216, 1661639
    • Rai P, Daum H, Venkatasubramanian S (2009) Streamed learning: one-pass svms. In: Proceedings of the 21st international jont conference on artificial intelligence, pp 1211–1216, 1661639. Morgan Kaufmann Publishers Inc
    • (2009) Morgan Kaufmann Publishers Inc
    • Rai, P.1    Daum, H.2    Venkatasubramanian, S.3
  • 80
  • 81
    • 77954571408 scopus 로고    scopus 로고
    • Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World wide web, pp 851–860
    • Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes twitter users: real-time event detection by social sensors. In: Proceedings of the 19th international conference on World wide web, pp 851–860. ACM
    • (2010) ACM
    • Sakaki, T.1    Okazaki, M.2    Matsuo, Y.3
  • 83
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv (CSUR) 34(1):1–47
    • (2002) ACM Comput Surv (CSUR) , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 84
    • 68749121246 scopus 로고    scopus 로고
    • Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th international conference on extending database technology: advances in database technology, pp 311–322, 1516397
    • Seidl T, Assent I, Kranen P, Krieger R, Herrmann J (2009) Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th international conference on extending database technology: advances in database technology, pp 311–322, 1516397. ACM
    • (2009) ACM
    • Seidl, T.1    Assent, I.2    Kranen, P.3    Krieger, R.4    Herrmann, J.5
  • 85
    • 0034133653 scopus 로고    scopus 로고
    • Wavecluster: a wavelet-based clustering approach for spatial data in very large databases
    • Sheikholeslami G, Chatterjee S, Zhang A (2000) Wavecluster: a wavelet-based clustering approach for spatial data in very large databases. VLDB J 8(3–4):289–304
    • (2000) VLDB J , vol.8 , Issue.3-4 , pp. 289-304
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 88
    • 77952377169 scopus 로고    scopus 로고
    • Body sensor data processing using stream computing. In: Proceedings of the international conference on multimedia information retrieval, pp 449–458, 1743465
    • Sow D, Biem A, Blount M, Ebling M, Verscheure O (2010) Body sensor data processing using stream computing. In: Proceedings of the international conference on multimedia information retrieval, pp 449–458, 1743465. ACM
    • (2010) ACM
    • Sow, D.1    Biem, A.2    Blount, M.3    Ebling, M.4    Verscheure, O.5
  • 89
    • 33749564726 scopus 로고    scopus 로고
    • Monic: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 706–711
    • Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 706–711. ACM
    • (2006) ACM
    • Spiliopoulou, M.1    Ntoutsi, I.2    Theodoridis, Y.3    Schult, R.4
  • 90
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 377–382, 502568
    • Street WN, Kim Y (2001) A streaming ensemble algorithm (sea) for large-scale classification. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 377–382, 502568. ACM
    • (2001) ACM
    • Street, W.N.1    Kim, Y.2
  • 91
    • 36849035825 scopus 로고    scopus 로고
    • Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 687–696
    • Sun J, Faloutsos C, Papadimitriou S, Yu PS (2007) Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 687–696. ACM
    • (2007) ACM
    • Sun, J.1    Faloutsos, C.2    Papadimitriou, S.3    Yu, P.S.4
  • 92
    • 38049058271 scopus 로고    scopus 로고
    • Visualising the cluster structure of data streams. In: Proceedings of the 7th international conference on intelligent data analysis, pp 81–92, 1771633
    • Tasoulis DK, Ross G, Adams NM (2007) Visualising the cluster structure of data streams. In: Proceedings of the 7th international conference on intelligent data analysis, pp 81–92, 1771633. Springer
    • (2007) Springer
    • Tasoulis, D.K.1    Ross, G.2    Adams, N.M.3
  • 93
    • 33749249312 scopus 로고    scopus 로고
    • Hierarchical dirichlet processes
    • Teh Y, Jordan M, Beal M, Blei D (2006) Hierarchical dirichlet processes. J Am Stat Assoc 101(476):1566–1581
    • (2006) J Am Stat Assoc , vol.101 , Issue.476 , pp. 1566-1581
    • Teh, Y.1    Jordan, M.2    Beal, M.3    Blei, D.4
  • 94
    • 34547989245 scopus 로고    scopus 로고
    • Simpler core vector machines with enclosing balls. In: Proceedings of the 24th international conference on machine learning, pp 911–918, 1273611
    • Tsang IW, Kocsor A, Kwok JT (2007) Simpler core vector machines with enclosing balls. In: Proceedings of the 24th international conference on machine learning, pp 911–918, 1273611. ACM
    • (2007) ACM
    • Tsang, I.W.1    Kocsor, A.2    Kwok, J.T.3
  • 98
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, pp 226–235, 956778
    • Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, pp 226–235, 956778. ACM
    • (2003) ACM
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 100
    • 84994158589 scopus 로고    scopus 로고
    • Sting: a statistical information grid approach to spatial data mining. In: Proceedings of the international conference on very large data bases
    • Wang W, Yang J, Muntz R (1997) Sting: a statistical information grid approach to spatial data mining. In: Proceedings of the international conference on very large data bases, pp 186–195
    • (1997) pp 186–195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 101
    • 0032264627 scopus 로고    scopus 로고
    • A study of retrospective and on-line event detection. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval, pp 28–36
    • Yang Y, Pierce T, Carbonell J (1998) A study of retrospective and on-line event detection. In: Proceedings of the 21st annual international ACM SIGIR conference on research and development in information retrieval, pp 28–36. ACM
    • (1998) ACM
    • Yang, Y.1    Pierce, T.2    Carbonell, J.3
  • 102
    • 0242456762 scopus 로고    scopus 로고
    • Topic-conditioned novelty detection. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp 688–693
    • Yang Y, Zhang J, Carbonell J, Jin C (2002) Topic-conditioned novelty detection. In: Proceedings of the eighth ACM SIGKDD international conference on knowledge discovery and data mining, pp 688–693. ACM
    • (2002) ACM
    • Yang, Y.1    Zhang, J.2    Carbonell, J.3    Jin, C.4
  • 103
    • 8644273327 scopus 로고    scopus 로고
    • Learning to cluster web search results. In: Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval, pp 210–217, 1009030
    • Zeng H-J, He Q-C, Chen Z, Ma W-Y, Ma J (2004) Learning to cluster web search results. In: Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval, pp 210–217, 1009030. ACM
    • (2004) ACM
    • Zeng, H.-J.1    He, Q.-C.2    Chen, Z.3    Ma, W.-Y.4    Ma, J.5
  • 104
    • 84863158747 scopus 로고    scopus 로고
    • Enabling fast lazy learning for data streams. In: Proceedings of the 11th IEEE international conference on data mining (ICDM-11), pp 932–941
    • Zhang P, Gao B, Zhu X, Guo L (2011) Enabling fast lazy learning for data streams. In: Proceedings of the 11th IEEE international conference on data mining (ICDM-11), pp 932–941. IEEE
    • (2011) IEEE
    • Zhang, P.1    Gao, B.2    Zhu, X.3    Guo, L.4
  • 105
    • 80052653210 scopus 로고    scopus 로고
    • Enabling fast prediction for ensemble models on data streams. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 177–185, 2020442
    • Zhang P, Li J, Wang P, Gao BJ, Zhu X, Guo L (2011) Enabling fast prediction for ensemble models on data streams. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 177–185, 2020442. ACM
    • (2011) ACM
    • Zhang, P.1    Li, J.2    Wang, P.3    Gao, B.J.4    Zhu, X.5    Guo, L.6
  • 106
    • 78650172416 scopus 로고    scopus 로고
    • Robust ensemble learning for mining noisy data streams
    • Zhang P, Zhu X, Shi Y, Guo L, Wu X (2011) Robust ensemble learning for mining noisy data streams. Decis Support Syst 50(2):469–479
    • (2011) Decis Support Syst , vol.50 , Issue.2 , pp. 469-479
    • Zhang, P.1    Zhu, X.2    Shi, Y.3    Guo, L.4    Wu, X.5
  • 108
    • 0030157145 scopus 로고    scopus 로고
    • Birch: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, pp 103–114, 233324
    • Zhang T, Ramakrishnan R, Livny M (1996) Birch: an efficient data clustering method for very large databases. In: Proceedings of the 1996 ACM SIGMOD international conference on management of data, pp 103–114, 233324. ACM
    • (1996) ACM
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 109
    • 27744489908 scopus 로고    scopus 로고
    • Efficient streaming text clustering
    • Zhong S (2005) Efficient streaming text clustering. Neural Netw 18(5):790–798
    • (2005) Neural Netw , vol.18 , Issue.5 , pp. 790-798
    • Zhong, S.1
  • 110
    • 43249088014 scopus 로고    scopus 로고
    • Tracking clusters in evolving data streams over sliding windows
    • Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows. Knowl Inf Syst 15(2):181–214
    • (2008) Knowl Inf Syst , vol.15 , Issue.2 , pp. 181-214
    • Zhou, A.1    Cao, F.2    Qian, W.3    Jin, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.