-
2
-
-
0001185873
-
An essay towards solving a problem in the doctrine of chances
-
T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 53:370-418, 1763.
-
(1763)
Philosophical Transactions of the Royal Society
, vol.53
, pp. 370-418
-
-
Bayes, T.1
-
4
-
-
33749637514
-
The Gauss-Tree: Efficient Object Identification in Databases of Probabilistic Feature Vectors
-
C. Böhm, A. Pryakhin, and M. Schubert. The Gauss-Tree: Efficient Object Identification in Databases of Probabilistic Feature Vectors. ICDE, 2006.
-
(2006)
ICDE
-
-
Böhm, C.1
Pryakhin, A.2
Schubert, M.3
-
5
-
-
0342789980
-
Ideal reformulation of belief networks
-
J. S. Breese and E. Horvitz. Ideal reformulation of belief networks. In UAI, pages 129-144, 1990.
-
(1990)
UAI
, pp. 129-144
-
-
Breese, J.S.1
Horvitz, E.2
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. J. C. Burges. A tutorial on support vector machines for pattern recognition. DMKD, 2(2):121-167, 1998.
-
(1998)
DMKD
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
7
-
-
0036120047
-
Projective art for clustering data sets in high dimensional spaces
-
Y. Cao and J. Wu. Projective art for clustering data sets in high dimensional spaces. Neural Networks, 15(l):105-120, 2002.
-
(2002)
Neural Networks
, vol.15
, Issue.L
, pp. 105-120
-
-
Cao, Y.1
Wu, J.2
-
9
-
-
1942450879
-
Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry
-
D. DeCoste. Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry. In IGML, 2002.
-
(2002)
IGML
-
-
DeCoste, D.1
-
10
-
-
0034592938
-
Mining high-speed data streams
-
P. Domingos and G. Hulten. Mining high-speed data streams. In KDD, pages 71-80, 2000.
-
(2000)
KDD
, pp. 71-80
-
-
Domingos, P.1
Hulten, G.2
-
11
-
-
0013303684
-
Learning from infinite data in finite time
-
P. Domingos and G. Hulten. Learning from infinite data in finite time. In NIPS, pages 673-680, 2001.
-
(2001)
NIPS
, pp. 673-680
-
-
Domingos, P.1
Hulten, G.2
-
13
-
-
77953547618
-
Interruptible anytime algorithms for iterative improvement of decision trees
-
S. Esmeir and S. Markovitch. Interruptible anytime algorithms for iterative improvement of decision trees. In UBDM workshop at KDD, 2005.
-
(2005)
UBDM workshop at KDD
-
-
Esmeir, S.1
Markovitch, S.2
-
14
-
-
70349100153
-
-
A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SDM, 2003.
-
A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SDM, 2003.
-
-
-
-
15
-
-
0021615874
-
R-trees: A dynamic index structure for spatial searching
-
A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47-57, 1984.
-
(1984)
SIGMOD
, pp. 47-57
-
-
Guttman, A.1
-
19
-
-
0242540431
-
Mining complex models from arbitrarily large databases in constant time
-
G. Hulten and P. Domingos. Mining complex models from arbitrarily large databases in constant time. In KDD, pages 525-531, 2002.
-
(2002)
KDD
, pp. 525-531
-
-
Hulten, G.1
Domingos, P.2
-
21
-
-
51349099976
-
-
P. Kranen, D. Kensche, S. Kim, N. Zimmermann, E. Muller, C. Quix, X. Li, T. Gries, T. Seidl, M. Jarke, and S. Leonhardt. Mobile mining and information management in healthnet scenarios. In MDM, 2008.
-
P. Kranen, D. Kensche, S. Kim, N. Zimmermann, E. Muller, C. Quix, X. Li, T. Gries, T. Seidl, M. Jarke, and S. Leonhardt. Mobile mining and information management in healthnet scenarios. In MDM, 2008.
-
-
-
-
22
-
-
33748771827
-
On state-space abstraction for anytime evaluation of bayesian networks
-
C.-L. Liu and M. P. Wellman. On state-space abstraction for anytime evaluation of bayesian networks. SIGART Bulletin, 7(2):50-57, 1996.
-
(1996)
SIGART Bulletin
, vol.7
, Issue.2
, pp. 50-57
-
-
Liu, C.-L.1
Wellman, M.P.2
-
23
-
-
0345373440
-
A boosting approach to topic spotting on subdialogues
-
K. Myers, M. J. Kearns, S. P. Singh, and M. A. Walker. A boosting approach to topic spotting on subdialogues. In ICML, pages 655-662, 2000.
-
(2000)
ICML
, pp. 655-662
-
-
Myers, K.1
Kearns, M.J.2
Singh, S.P.3
Walker, M.A.4
-
25
-
-
84925655451
-
Nearest Neighbor Classification/Liu L
-
Ozsu M. T, eds, to appear, Springer
-
T. Seidl. Nearest Neighbor Classification/Liu L., Ozsu M. T. (eds.): Encyclopedia of Database Systems. (to appear). Springer, 2009.
-
(2009)
Encyclopedia of Database Systems
-
-
Seidl, T.1
-
26
-
-
0032094249
-
-
T. Seidl and K. H.-P. Optimal multi-step k-nearest neighbor search. In Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, pages 154-165, 1998.
-
T. Seidl and K. H.-P. Optimal multi-step k-nearest neighbor search. In Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, pages 154-165, 1998.
-
-
-
-
27
-
-
85091376407
-
Neural network classification using shannonSs entropy
-
L. Silva, J. M. de Sa, and L. Alexandra. Neural network classification using shannonSs entropy. In ESANN, 2005.
-
(2005)
ESANN
-
-
Silva, L.1
de Sa, J.M.2
Alexandra, L.3
-
29
-
-
0035788947
-
A streaming ensemble algorithm (sea) for large-scale classification
-
W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. In KDD, pages 377-382, 2001.
-
(2001)
KDD
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.2
-
30
-
-
72849144638
-
Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining
-
K. Ueno, X. Xi, E. Keogh, and D. Lee. Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining. ICDM, pages 623-632, 2006.
-
(2006)
ICDM
, pp. 623-632
-
-
Ueno, K.1
Xi, X.2
Keogh, E.3
Lee, D.4
-
32
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD, pages 226-235, 2003.
-
(2003)
KDD
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
33
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(l):69-101, 1996.
-
(1996)
Machine Learning
, vol.23
, Issue.L
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
34
-
-
35148836033
-
Classifying under computational resource constraints: Anytime classification using probabilistic estimators
-
Y. Yang, G. Webb, K. Korb, and K. M. Ting. Classifying under computational resource constraints: anytime classification using probabilistic estimators. Machine Learning, 69(l):35-53, 2007.
-
(2007)
Machine Learning
, vol.69
, Issue.L
, pp. 35-53
-
-
Yang, Y.1
Webb, G.2
Korb, K.3
Ting, K.M.4
-
35
-
-
18444391539
-
Fast density estimation using cf-kernel for very large databases
-
T. Zhang, R. Ramakrishnan, and M. Livny. Fast density estimation using cf-kernel for very large databases. In KDD, pages 312-316, 1999.
-
(1999)
KDD
, pp. 312-316
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
36
-
-
0030230721
-
Using anytime algorithms in intelligent systems
-
S. Zilberstein. Using anytime algorithms in intelligent systems. The AI magazine, 17(3):73-83, 1996.
-
(1996)
The AI magazine
, vol.17
, Issue.3
, pp. 73-83
-
-
Zilberstein, S.1
|