메뉴 건너뛰기




Volumn , Issue , 2009, Pages 311-322

Indexing density models for incremental learning and anytime classification on data streams

Author keywords

[No Author keywords available]

Indexed keywords

ANYTIME LEARNING; BAYES CLASSIFIER; DATA STREAM; DENSITY MODELS; EVALUATION METHOD; INCREMENTAL LEARNING; INDIVIDUAL OBJECTS; KERNEL DENSITY ESTIMATORS; MIXTURE DENSITY; POISSON STREAM; PROBABILITY DENSITIES; STREAMING DATA; TRAINING DATA; TWO-STREAM;

EID: 68749121246     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1516360.1516397     Document Type: Conference Paper
Times cited : (42)

References (36)
  • 2
    • 0001185873 scopus 로고
    • An essay towards solving a problem in the doctrine of chances
    • T. Bayes. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions of the Royal Society, 53:370-418, 1763.
    • (1763) Philosophical Transactions of the Royal Society , vol.53 , pp. 370-418
    • Bayes, T.1
  • 4
    • 33749637514 scopus 로고    scopus 로고
    • The Gauss-Tree: Efficient Object Identification in Databases of Probabilistic Feature Vectors
    • C. Böhm, A. Pryakhin, and M. Schubert. The Gauss-Tree: Efficient Object Identification in Databases of Probabilistic Feature Vectors. ICDE, 2006.
    • (2006) ICDE
    • Böhm, C.1    Pryakhin, A.2    Schubert, M.3
  • 5
    • 0342789980 scopus 로고
    • Ideal reformulation of belief networks
    • J. S. Breese and E. Horvitz. Ideal reformulation of belief networks. In UAI, pages 129-144, 1990.
    • (1990) UAI , pp. 129-144
    • Breese, J.S.1    Horvitz, E.2
  • 6
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. J. C. Burges. A tutorial on support vector machines for pattern recognition. DMKD, 2(2):121-167, 1998.
    • (1998) DMKD , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 7
    • 0036120047 scopus 로고    scopus 로고
    • Projective art for clustering data sets in high dimensional spaces
    • Y. Cao and J. Wu. Projective art for clustering data sets in high dimensional spaces. Neural Networks, 15(l):105-120, 2002.
    • (2002) Neural Networks , vol.15 , Issue.L , pp. 105-120
    • Cao, Y.1    Wu, J.2
  • 9
    • 1942450879 scopus 로고    scopus 로고
    • Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry
    • D. DeCoste. Anytime interval-valued outputs for kernel machines: Fast support vector machine classification via distance geometry. In IGML, 2002.
    • (2002) IGML
    • DeCoste, D.1
  • 10
    • 0034592938 scopus 로고    scopus 로고
    • Mining high-speed data streams
    • P. Domingos and G. Hulten. Mining high-speed data streams. In KDD, pages 71-80, 2000.
    • (2000) KDD , pp. 71-80
    • Domingos, P.1    Hulten, G.2
  • 11
    • 0013303684 scopus 로고    scopus 로고
    • Learning from infinite data in finite time
    • P. Domingos and G. Hulten. Learning from infinite data in finite time. In NIPS, pages 673-680, 2001.
    • (2001) NIPS , pp. 673-680
    • Domingos, P.1    Hulten, G.2
  • 13
    • 77953547618 scopus 로고    scopus 로고
    • Interruptible anytime algorithms for iterative improvement of decision trees
    • S. Esmeir and S. Markovitch. Interruptible anytime algorithms for iterative improvement of decision trees. In UBDM workshop at KDD, 2005.
    • (2005) UBDM workshop at KDD
    • Esmeir, S.1    Markovitch, S.2
  • 14
    • 70349100153 scopus 로고    scopus 로고
    • A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SDM, 2003.
    • A. G. Gray and A. W. Moore. Nonparametric density estimation: Toward computational tractability. In SDM, 2003.
  • 15
    • 0021615874 scopus 로고
    • R-trees: A dynamic index structure for spatial searching
    • A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD, pages 47-57, 1984.
    • (1984) SIGMOD , pp. 47-57
    • Guttman, A.1
  • 19
    • 0242540431 scopus 로고    scopus 로고
    • Mining complex models from arbitrarily large databases in constant time
    • G. Hulten and P. Domingos. Mining complex models from arbitrarily large databases in constant time. In KDD, pages 525-531, 2002.
    • (2002) KDD , pp. 525-531
    • Hulten, G.1    Domingos, P.2
  • 21
    • 51349099976 scopus 로고    scopus 로고
    • P. Kranen, D. Kensche, S. Kim, N. Zimmermann, E. Muller, C. Quix, X. Li, T. Gries, T. Seidl, M. Jarke, and S. Leonhardt. Mobile mining and information management in healthnet scenarios. In MDM, 2008.
    • P. Kranen, D. Kensche, S. Kim, N. Zimmermann, E. Muller, C. Quix, X. Li, T. Gries, T. Seidl, M. Jarke, and S. Leonhardt. Mobile mining and information management in healthnet scenarios. In MDM, 2008.
  • 22
    • 33748771827 scopus 로고    scopus 로고
    • On state-space abstraction for anytime evaluation of bayesian networks
    • C.-L. Liu and M. P. Wellman. On state-space abstraction for anytime evaluation of bayesian networks. SIGART Bulletin, 7(2):50-57, 1996.
    • (1996) SIGART Bulletin , vol.7 , Issue.2 , pp. 50-57
    • Liu, C.-L.1    Wellman, M.P.2
  • 23
    • 0345373440 scopus 로고    scopus 로고
    • A boosting approach to topic spotting on subdialogues
    • K. Myers, M. J. Kearns, S. P. Singh, and M. A. Walker. A boosting approach to topic spotting on subdialogues. In ICML, pages 655-662, 2000.
    • (2000) ICML , pp. 655-662
    • Myers, K.1    Kearns, M.J.2    Singh, S.P.3    Walker, M.A.4
  • 25
    • 84925655451 scopus 로고    scopus 로고
    • Nearest Neighbor Classification/Liu L
    • Ozsu M. T, eds, to appear, Springer
    • T. Seidl. Nearest Neighbor Classification/Liu L., Ozsu M. T. (eds.): Encyclopedia of Database Systems. (to appear). Springer, 2009.
    • (2009) Encyclopedia of Database Systems
    • Seidl, T.1
  • 26
    • 0032094249 scopus 로고    scopus 로고
    • T. Seidl and K. H.-P. Optimal multi-step k-nearest neighbor search. In Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, pages 154-165, 1998.
    • T. Seidl and K. H.-P. Optimal multi-step k-nearest neighbor search. In Proc. ACM SIGMOD Int. Conf. on Management of Data, Seattle, Washington, pages 154-165, 1998.
  • 27
    • 85091376407 scopus 로고    scopus 로고
    • Neural network classification using shannonSs entropy
    • L. Silva, J. M. de Sa, and L. Alexandra. Neural network classification using shannonSs entropy. In ESANN, 2005.
    • (2005) ESANN
    • Silva, L.1    de Sa, J.M.2    Alexandra, L.3
  • 29
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (sea) for large-scale classification
    • W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale classification. In KDD, pages 377-382, 2001.
    • (2001) KDD , pp. 377-382
    • Street, W.N.1    Kim, Y.2
  • 30
    • 72849144638 scopus 로고    scopus 로고
    • Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining
    • K. Ueno, X. Xi, E. Keogh, and D. Lee. Anytime Classification Using the Nearest Neighbor Algorithm with Applications to Stream Mining. ICDM, pages 623-632, 2006.
    • (2006) ICDM , pp. 623-632
    • Ueno, K.1    Xi, X.2    Keogh, E.3    Lee, D.4
  • 32
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD, pages 226-235, 2003.
    • (2003) KDD , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 33
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23(l):69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.L , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 34
    • 35148836033 scopus 로고    scopus 로고
    • Classifying under computational resource constraints: Anytime classification using probabilistic estimators
    • Y. Yang, G. Webb, K. Korb, and K. M. Ting. Classifying under computational resource constraints: anytime classification using probabilistic estimators. Machine Learning, 69(l):35-53, 2007.
    • (2007) Machine Learning , vol.69 , Issue.L , pp. 35-53
    • Yang, Y.1    Webb, G.2    Korb, K.3    Ting, K.M.4
  • 35
    • 18444391539 scopus 로고    scopus 로고
    • Fast density estimation using cf-kernel for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. Fast density estimation using cf-kernel for very large databases. In KDD, pages 312-316, 1999.
    • (1999) KDD , pp. 312-316
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3
  • 36
    • 0030230721 scopus 로고    scopus 로고
    • Using anytime algorithms in intelligent systems
    • S. Zilberstein. Using anytime algorithms in intelligent systems. The AI magazine, 17(3):73-83, 1996.
    • (1996) The AI magazine , vol.17 , Issue.3 , pp. 73-83
    • Zilberstein, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.