메뉴 건너뛰기




Volumn 68, Issue 1, 2009, Pages 1-27

Incremental clustering of dynamic data streams using connectivity based representative points

Author keywords

Data mining; Incremental graph based clustering; Knowledge acquisition; Recurrent change; Stream data clustering

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; DATA PROCESSING; DECISION SUPPORT SYSTEMS; FLOW OF SOLIDS; GRAPH THEORY; INFORMATION MANAGEMENT; KNOWLEDGE ACQUISITION; KNOWLEDGE BASED SYSTEMS; RIVERS;

EID: 56249119506     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2008.08.006     Document Type: Article
Times cited : (82)

References (56)
  • 1
    • 0040154165 scopus 로고    scopus 로고
    • Re-designing distance functions and distance-based applications for high dimensional data
    • Aggarwal C.C. Re-designing distance functions and distance-based applications for high dimensional data. ACM SIGMOD Record 30 1 (2001) 13-18
    • (2001) ACM SIGMOD Record , vol.30 , Issue.1 , pp. 13-18
    • Aggarwal, C.C.1
  • 4
    • 85012236181 scopus 로고    scopus 로고
    • C.C. Aggarwal, J. Han, J. Wang, P. Yu, A framework for clustering evolving data streams, in: Proceedings of the 29th International Conference on Very Large Data Bases, Berlin, Germany, 2003.
    • C.C. Aggarwal, J. Han, J. Wang, P. Yu, A framework for clustering evolving data streams, in: Proceedings of the 29th International Conference on Very Large Data Bases, Berlin, Germany, 2003.
  • 5
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • Nascimento M.A., Özsu M.T., Kossmann D., Miller R.J., Blakeley J.A., and Schiefer K.B. (Eds), Morgan Kaufmann, Toronto, Canada
    • Aggarwal C.C., Han J., Wang J., and Yu P.S. A framework for projected clustering of high dimensional data streams. In: Nascimento M.A., Özsu M.T., Kossmann D., Miller R.J., Blakeley J.A., and Schiefer K.B. (Eds). Proceedings of the 30th International Conference on Very Large Data Bases (2004), Morgan Kaufmann, Toronto, Canada
    • (2004) Proceedings of the 30th International Conference on Very Large Data Bases
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 7
    • 52649142649 scopus 로고    scopus 로고
    • C.C. Aggarwal, P.S. Yu, A framework for clustering uncertain data streams, in: IEEE 24th International Conference on Data Engineering, Cancún, México, 2008.
    • C.C. Aggarwal, P.S. Yu, A framework for clustering uncertain data streams, in: IEEE 24th International Conference on Data Engineering, Cancún, México, 2008.
  • 8
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Agrawal R., Gehrke J., Gunopulos D., and Raghaven P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record 27 2 (1998) 94-105
    • (1998) ACM SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghaven, P.4
  • 11
    • 56249098413 scopus 로고    scopus 로고
    • A. Asuncion, D.J. Newman, UCI machine learning repository, 2007. .
    • A. Asuncion, D.J. Newman, UCI machine learning repository, 2007. .
  • 14
    • 0016557674 scopus 로고
    • Mutlidimensional binary search trees used for associative searching
    • Bentley J.L. Mutlidimensional binary search trees used for associative searching. Communications of the ACM 18 9 (1975) 509-517
    • (1975) Communications of the ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 16
    • 0033400675 scopus 로고    scopus 로고
    • Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables
    • Blackard J.A., and Dean D.J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture 24 3 (1999) 131-151
    • (1999) Computers and Electronics in Agriculture , vol.24 , Issue.3 , pp. 131-151
    • Blackard, J.A.1    Dean, D.J.2
  • 17
    • 56249146399 scopus 로고    scopus 로고
    • Y.D. Cai, D. Clutter, G. Pape, J. Han, M. Welge, L. Auvil, MAIDS: mining alarming incidents from data streams, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, 2003.
    • Y.D. Cai, D. Clutter, G. Pape, J. Han, M. Welge, L. Auvil, MAIDS: mining alarming incidents from data streams, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Paris, France, 2003.
  • 18
    • 33745434639 scopus 로고    scopus 로고
    • Density-based clustering over an evolving data stream with noise
    • Ghosh J., Lambert D., Skillicorn D.B., and Srivastava J. (Eds), SIAM, Bethesda, Maryland, USA
    • Cao F., Ester M., Qian W., and Zhou A. Density-based clustering over an evolving data stream with noise. In: Ghosh J., Lambert D., Skillicorn D.B., and Srivastava J. (Eds). Proceedings of the Sixth SIAM International Conference on Data Mining (2006), SIAM, Bethesda, Maryland, USA
    • (2006) Proceedings of the Sixth SIAM International Conference on Data Mining
    • Cao, F.1    Ester, M.2    Qian, W.3    Zhou, A.4
  • 19
    • 56249149334 scopus 로고    scopus 로고
    • D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, S. Zdonik, Monitoring streams: a new class of data management applications, in: Proceedings of the 28th International Conference on Very Large Data Bases, 2002.
    • D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, S. Zdonik, Monitoring streams: a new class of data management applications, in: Proceedings of the 28th International Conference on Very Large Data Bases, 2002.
  • 20
    • 56249093548 scopus 로고    scopus 로고
    • M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, S.B. Zdonik, Scalable distributed stream processing, in: Proceedings of the First Biennia Conference on Innovative Data Systems Research, 2003.
    • M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, S.B. Zdonik, Scalable distributed stream processing, in: Proceedings of the First Biennia Conference on Innovative Data Systems Research, 2003.
  • 21
    • 38049072164 scopus 로고    scopus 로고
    • MOSAIC: a proximity graph approach for agglomerative clustering
    • Ninth International Conference on Data Warehousing and Knowledge Discovery. Song I.Y., Eder J., and Nguyen T.M. (Eds), Springer, Regensburg, Germany
    • Choo J., Jiamthapthaksin R., Chen C.-S., Celepcikay O.U., Giusti C., and Eick C.F. MOSAIC: a proximity graph approach for agglomerative clustering. In: Song I.Y., Eder J., and Nguyen T.M. (Eds). Ninth International Conference on Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science vol. 4654 (2007), Springer, Regensburg, Germany
    • (2007) Lecture Notes in Computer Science , vol.4654
    • Choo, J.1    Jiamthapthaksin, R.2    Chen, C.-S.3    Celepcikay, O.U.4    Giusti, C.5    Eick, C.F.6
  • 22
    • 56249145730 scopus 로고    scopus 로고
    • P. Domingos, G. Hulten, Catching up with the data: research issues in mining data streams, in: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa Barbara, California, USA, 2001.
    • P. Domingos, G. Hulten, Catching up with the data: research issues in mining data streams, in: ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa Barbara, California, USA, 2001.
  • 28
    • 26944494130 scopus 로고    scopus 로고
    • An incremental data stream clustering algorithm based on dense units detection
    • Proceedings of the Ninth Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Ho T.B., Cheung D.W.-L., and Liu H. (Eds), Springer
    • Gao J., Li J., Zhang Z., and Tan P.-N. An incremental data stream clustering algorithm based on dense units detection. In: Ho T.B., Cheung D.W.-L., and Liu H. (Eds). Proceedings of the Ninth Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Lecture Notes in Computer Science vol. 3518 (2005), Springer
    • (2005) Lecture Notes in Computer Science , vol.3518
    • Gao, J.1    Li, J.2    Zhang, Z.3    Tan, P.-N.4
  • 31
    • 84944038341 scopus 로고    scopus 로고
    • On clustering using random walks
    • Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science. Hariharan R., Mukund M., and Vinay V. (Eds), Springer
    • Harel D., and Koren Y. On clustering using random walks. In: Hariharan R., Mukund M., and Vinay V. (Eds). Proceedings of the 21st Conference on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science vol. 2245 (2001), Springer
    • (2001) Lecture Notes in Computer Science , vol.2245
    • Harel, D.1    Koren, Y.2
  • 32
    • 0004185151 scopus 로고
    • John Wiley & Sons, New York City, New York, USA
    • Hartigan J.A. Clustering Algorithms (1975), John Wiley & Sons, New York City, New York, USA
    • (1975) Clustering Algorithms
    • Hartigan, J.A.1
  • 33
    • 2542614919 scopus 로고    scopus 로고
    • On quantitative evaluation of clustering systems
    • Wu W., Xiong H., and Shekhar S. (Eds), Kluwer
    • He J., Tan A.-H., Tan C.L., and Sung S.Y. On quantitative evaluation of clustering systems. In: Wu W., Xiong H., and Shekhar S. (Eds). Clustering and Information Retrieval (2003), Kluwer 105-134
    • (2003) Clustering and Information Retrieval , pp. 105-134
    • He, J.1    Tan, A.-H.2    Tan, C.L.3    Sung, S.Y.4
  • 34
    • 56249114200 scopus 로고    scopus 로고
    • S. Hettich, S.D. Bay, The UCI KDD archive, 1999. .
    • S. Hettich, S.D. Bay, The UCI KDD archive, 1999. .
  • 35
    • 1542292055 scopus 로고    scopus 로고
    • What is the nearest neighbor in high dimensional spaces?
    • Abbadi A.E., Brodie M.L., Chakravarthy S., Dayal U., Kamel N., Schlageter G., and Whang K.-Y. (Eds), Morgan Kaufman, Cairo, Egypt
    • Hinneburg A., Aggarwal C.C., and Keim D.A. What is the nearest neighbor in high dimensional spaces?. In: Abbadi A.E., Brodie M.L., Chakravarthy S., Dayal U., Kamel N., Schlageter G., and Whang K.-Y. (Eds). Proceedings of the 26th International Conference on Very Large Data Bases (2000), Morgan Kaufman, Cairo, Egypt
    • (2000) Proceedings of the 26th International Conference on Very Large Data Bases
    • Hinneburg, A.1    Aggarwal, C.C.2    Keim, D.A.3
  • 39
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: good, bad and spectral
    • Kannan R., Vempala S., and Vetta A. On clusterings: good, bad and spectral. Journal of the ACM 51 3 (2004) 497-515
    • (2004) Journal of the ACM , vol.51 , Issue.3 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 41
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: hierarchical clustering using dynamic modeling
    • Karypis G., Han E.-H., and Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer 32 8 (1999) 68-75
    • (1999) Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 43
    • 44649101970 scopus 로고    scopus 로고
    • S. Lühr, M. Lazarescu, Connectivity based stream clustering using localised density exemplars, in: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 5012, Osaka, Japan, 2008.
    • S. Lühr, M. Lazarescu, Connectivity based stream clustering using localised density exemplars, in: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Lecture Notes in Computer Science, vol. 5012, Osaka, Japan, 2008.
  • 45
    • 56249133934 scopus 로고    scopus 로고
    • A.W. Moore, Efficient memory-based learning for robot control, Ph.D. thesis, Cambridge University, 1990.
    • A.W. Moore, Efficient memory-based learning for robot control, Ph.D. thesis, Cambridge University, 1990.
  • 46
    • 33646354141 scopus 로고    scopus 로고
    • A framework for mining evolving trends in web streams using dynamic learning and retrospective validation
    • Nasraoui O., Rojas C., and Cardona C. A framework for mining evolving trends in web streams using dynamic learning and retrospective validation. Computer Networks 50 10 (2006) 1488-1512
    • (2006) Computer Networks , vol.50 , Issue.10 , pp. 1488-1512
    • Nasraoui, O.1    Rojas, C.2    Cardona, C.3
  • 47
    • 57949115516 scopus 로고    scopus 로고
    • TECNO-STREAMS: tracking evolving clusters in noisy data streams with a scalable immune system learning model
    • IEEE Computer Society, Washington, District of Columbia, USA
    • Nasraoui O., Uribe C.C., Coronel C.R., and Gonzalez F. TECNO-STREAMS: tracking evolving clusters in noisy data streams with a scalable immune system learning model. IEEE International Conference on Data Mining (2003), IEEE Computer Society, Washington, District of Columbia, USA
    • (2003) IEEE International Conference on Data Mining
    • Nasraoui, O.1    Uribe, C.C.2    Coronel, C.R.3    Gonzalez, F.4
  • 49
    • 34447276480 scopus 로고    scopus 로고
    • Cell trees: an adaptive synopsis structure for clustering multi-dimensional on-line data streams
    • Park N.H., and Lee W.S. Cell trees: an adaptive synopsis structure for clustering multi-dimensional on-line data streams. Data and Knowledge Engineering 63 2 (2007) 528-549
    • (2007) Data and Knowledge Engineering , vol.63 , Issue.2 , pp. 528-549
    • Park, N.H.1    Lee, W.S.2
  • 50
    • 84962238645 scopus 로고    scopus 로고
    • S.J. Stolfo, W. Fan, W. Lee, A. Prodromidis, P.K. Chan, Cost-based modeling for fraud and intrusion detection: results from the JAM project, in: Proceedings of the DARPA Information Survivability Conference and Exposition, vol. 2, Hilton Head, South Carolina, USA, 2000.
    • S.J. Stolfo, W. Fan, W. Lee, A. Prodromidis, P.K. Chan, Cost-based modeling for fraud and intrusion detection: results from the JAM project, in: Proceedings of the DARPA Information Survivability Conference and Exposition, vol. 2, Hilton Head, South Carolina, USA, 2000.
  • 51
    • 38049058271 scopus 로고    scopus 로고
    • Visualising the cluster structure of data streams
    • Proceedings of the Seventh International Symposium on Intelligent Data Analysis. Berthold M.R., Shawe-Taylor J., and Lavrac N. (Eds), Springer
    • Tasoulis D.K., Ross G., and Adams N.M. Visualising the cluster structure of data streams. In: Berthold M.R., Shawe-Taylor J., and Lavrac N. (Eds). Proceedings of the Seventh International Symposium on Intelligent Data Analysis. Lecture Notes in Computer Science vol. 4723 (2007), Springer
    • (2007) Lecture Notes in Computer Science , vol.4723
    • Tasoulis, D.K.1    Ross, G.2    Adams, N.M.3
  • 52
    • 56249129036 scopus 로고    scopus 로고
    • S. van Dongen, Graph clustering by flow simulation, Ph.D. thesis, University of Utrecht, 2000.
    • S. van Dongen, Graph clustering by flow simulation, Ph.D. thesis, University of Utrecht, 2000.
  • 56
    • 50249118627 scopus 로고    scopus 로고
    • Y. Zhou, K. Aberer, A. Salehi, K.-L. Tan, Rethinking the design of distributed stream processing systems, in: Proceedings of the 24th International Conference on Data Engineering Workshops, ICDE 2008, Cancún, México, 2008.
    • Y. Zhou, K. Aberer, A. Salehi, K.-L. Tan, Rethinking the design of distributed stream processing systems, in: Proceedings of the 24th International Conference on Data Engineering Workshops, ICDE 2008, Cancún, México, 2008.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.