-
1
-
-
68349150835
-
On classification and segmentation of massive audio data streams
-
Aggarwal C (2009) On classification and segmentation of massive audio data streams. Knowl Inf Syst 20(2): 137-156.
-
(2009)
Knowl Inf Syst
, vol.20
, Issue.2
, pp. 137-156
-
-
Aggarwal, C.1
-
2
-
-
85012236181
-
-
Berlin, pp: VLDB
-
Aggarwal CC, Han J, Wang J, Yu PS (2003) A framework for clustering evolving data streams. VLDB, Berlin, pp, pp 81-92.
-
(2003)
A Framework for Clustering Evolving Data Streams
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
3
-
-
85136074496
-
-
Toronto, pp: VLDB
-
Aggarwal CC, Han J, Wang J, Yu PS (2004) A framework for projected clustering of high dimensional data streams. VLDB, Toronto, pp, pp 852-863.
-
(2004)
A Framework for Projected Clustering of High Dimensional Data Streams
, pp. 852-863
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
4
-
-
85011117106
-
-
Vienna, pp: VLDB
-
Arai B, Das G, Gunopulos D, Koudas N (2007) Anytime measures for top-k algorithms. VLDB, Vienna, pp, pp 914-925.
-
(2007)
Anytime Measures for Top-K Algorithms
, pp. 914-925
-
-
Arai, B.1
Das, G.2
Gunopulos, D.3
Koudas, N.4
-
5
-
-
47249144374
-
Clustering multidimensional sequences in spatial and temporal databases
-
Assent I, Krieger R, Glavic B, Seidl T (2008) Clustering multidimensional sequences in spatial and temporal databases. Knowl Inf Syst 16(1): 29-51.
-
(2008)
Knowl Inf Syst
, vol.16
, Issue.1
, pp. 29-51
-
-
Assent, I.1
Krieger, R.2
Glavic, B.3
Seidl, T.4
-
7
-
-
0025447750
-
-
Atlantic City, pp: SIGMOD
-
Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The R*-tree: an efficient and robust access method for points and rectangles. SIGMOD, Atlantic City, pp, pp 322-331.
-
(1990)
The R*-Tree: An Efficient and Robust Access Method for Points and Rectangles
, pp. 322-331
-
-
Beckmann, N.1
Kriegel, H.-P.2
Schneider, R.3
Seeger, B.4
-
10
-
-
47249155714
-
A survey on algorithms for mining frequent itemsets over data streams
-
Cheng J, Ke Y, Ng W (2008) A survey on algorithms for mining frequent itemsets over data streams. Knowl Inf Syst 16(1): 1-27.
-
(2008)
Knowl Inf Syst
, vol.16
, Issue.1
, pp. 1-27
-
-
Cheng, J.1
Ke, Y.2
Ng, W.3
-
11
-
-
48649098791
-
Online mining of frequent sets in data streams with error guarantee
-
Dang X, Ng W, Ong K (2008) Online mining of frequent sets in data streams with error guarantee. Knowl Inf Syst 16(2): 245-258.
-
(2008)
Knowl Inf Syst
, vol.16
, Issue.2
, pp. 245-258
-
-
Dang, X.1
Ng, W.2
Ong, K.3
-
13
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the em algorithm. J Royal Stat Soc B 39(1): 1-38.
-
(1977)
J Royal Stat Soc B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
15
-
-
77950692291
-
-
Berlin, pp: Springer
-
Gaber M, Zaslavsky A, Krishnaswamy S (2007) A survey of classification methods in data streams. Springer, Berlin, pp, pp 39-59.
-
(2007)
A Survey of Classification Methods in Data Streams
, pp. 39-59
-
-
Gaber, M.1
Zaslavsky, A.2
Krishnaswamy, S.3
-
20
-
-
68749087011
-
Harnessing the strengths of anytime algorithms for constant data streams
-
Special Issue on Selected Papers from ECML PKDD
-
Kranen P, Seidl T (2009) Harnessing the strengths of anytime algorithms for constant data streams. DMKD Journal, Special Issue on Selected Papers from ECML PKDD 19(2): 245-260.
-
(2009)
DMKD Journal
, vol.19
, Issue.2
, pp. 245-260
-
-
Kranen, P.1
Seidl, T.2
-
21
-
-
54049106902
-
DSM-FI: an efficient algorithm for mining frequent itemsets in data streams
-
Li H, Shan M, Lee S (2008) DSM-FI: an efficient algorithm for mining frequent itemsets in data streams. Knowl Inf Syst 17(1): 79-97.
-
(2008)
Knowl Inf Syst
, vol.17
, Issue.1
, pp. 79-97
-
-
Li, H.1
Shan, M.2
Lee, S.3
-
22
-
-
56249119506
-
Incremental clustering of dynamic data streams using connectivity based representative points
-
Lühr S, Lazarescu M (2009) Incremental clustering of dynamic data streams using connectivity based representative points. Data Knowl Eng 68(1): 1-27.
-
(2009)
Data Knowl Eng
, vol.68
, Issue.1
, pp. 1-27
-
-
Lühr, S.1
Lazarescu, M.2
-
24
-
-
68749121246
-
-
EDBT
-
Seidl T, Assent I, Kranen P, Krieger R, Herrmann J (2009). Indexing density models for incremental learning and anytime classification on data streams, EDBT.
-
(2009)
Indexing density models for incremental learning and anytime classification on data streams
-
-
Seidl, T.1
Assent, I.2
Kranen, P.3
Krieger, R.4
Herrmann, J.5
-
25
-
-
33749564726
-
-
KDD
-
Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) Monic: modeling and monitoring cluster transitions, KDD, pp 706-711.
-
(2006)
Monic: Modeling and monitoring cluster transitions
, pp. 706-711
-
-
Spiliopoulou, M.1
Ntoutsi, I.2
Theodoridis, Y.3
Schult, R.4
-
26
-
-
35248892821
-
-
SAC
-
Spinosa EJ, Ponce de Leon,Ferreira de Carvalho AC, Gama J (2007) Olindda: a cluster-based approach for detecting novelty and concept drift in data streams, SAC, pp 448-452.
-
(2007)
Olindda: A cluster-based approach for detecting novelty and concept drift in data streams
, pp. 448-452
-
-
Spinosa, E.J.1
de Leon, P.2
de Carvalho, A.C.F.3
Gama, J.4
-
29
-
-
72849144638
-
-
ICDM
-
Ueno K, Xi X, Keogh EJ, Lee D-Y (2006) Anytime classification using the nearest neighbor algorithm with applications to stream mining, ICDM, pp 623-632.
-
(2006)
Anytime classification using the nearest neighbor algorithm with applications to stream mining
, pp. 623-632
-
-
Ueno, K.1
Xi, X.2
Keogh, E.J.3
Lee, D.-Y.4
-
32
-
-
77952415079
-
-
KDD
-
Wang H, Fan W, Yu PS, Han J (2003) Mining concept-drifting data streams using ensemble classifiers, KDD, pp 226-235.
-
(2003)
Mining concept-drifting data streams using ensemble classifiers
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
33
-
-
35148836033
-
Classifying under computational resource constraints: anytime classification using probabilistic estimators
-
Yang Y, Webb GI, Korb KB, Ting KM (2007) Classifying under computational resource constraints: anytime classification using probabilistic estimators. Mach Learn 69(1): 35-53.
-
(2007)
Mach Learn
, vol.69
, Issue.1
, pp. 35-53
-
-
Yang, Y.1
Webb, G.I.2
Korb, K.B.3
Ting, K.M.4
-
35
-
-
43249088014
-
Tracking clusters in evolving data streams over sliding windows
-
Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving data streams over sliding windows. Knowl Inf Syst 15(2): 181-214.
-
(2008)
Knowl Inf Syst
, vol.15
, Issue.2
, pp. 181-214
-
-
Zhou, A.1
Cao, F.2
Qian, W.3
Jin, C.4
|