메뉴 건너뛰기




Volumn 4632 LNAI, Issue , 2007, Pages 605-615

E-stream: Evolution-based technique for stream clustering

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTER ANALYSIS; INTRUSION DETECTION; MATHEMATICAL MODELS; REAL TIME SYSTEMS; DATA COMMUNICATION SYSTEMS;

EID: 38049025951     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-73871-8_58     Document Type: Conference Paper
Times cited : (82)

References (9)
  • 1
    • 22944466291 scopus 로고    scopus 로고
    • Clustering Large Databases with Numeric and Nominial Values Using Orthogonal Projections
    • Milenova, B.L., Campos, M.M.: Clustering Large Databases with Numeric and Nominial Values Using Orthogonal Projections. In: Proceedings of the 29th VLDB Conference (2003)
    • (2003) Proceedings of the 29th VLDB Conference
    • Milenova, B.L.1    Campos, M.M.2
  • 4
    • 0038205905 scopus 로고    scopus 로고
    • Requirements for Clustering Data Streams
    • Barbara, D.: Requirements for Clustering Data Streams. In: SIGKDD Explorations (2002)
    • (2002) SIGKDD Explorations
    • Barbara, D.1
  • 7
    • 0038633423 scopus 로고    scopus 로고
    • Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L.: Clustering Data Streams: Theory and Practice. TKDE special issue on clustering 15 (2003)
    • Guha, S., Meyerson, A., Mishra, N., Motwani, R., O'Callaghan, L.: Clustering Data Streams: Theory and Practice. TKDE special issue on clustering 15 (2003)
  • 8
    • 27544498086 scopus 로고    scopus 로고
    • Highly Efficient Incremental Estimation of Gaussian Mixture Models for Online Data Stream Clustering
    • Song, M., Wang, H.: Highly Efficient Incremental Estimation of Gaussian Mixture Models for Online Data Stream Clustering. In: SPIE Conference on Intelligent Computing: Theory And Application III (2005)
    • (2005) SPIE Conference on Intelligent Computing: Theory And Application , vol.3
    • Song, M.1    Wang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.