-
1
-
-
42949171875
-
C-TREND: Temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data
-
June
-
G. Adomavicius and J. Bockstedt. C-TREND: Temporal cluster graphs for identifying and visualizing trends in multiattribute transactional data. IEEE Transactions on Knowledge and Data Engineering, 20(6):721-735, June 2008.
-
(2008)
IEEE Transactions on Knowledge and Data Engineering
, vol.20
, Issue.6
, pp. 721-735
-
-
Adomavicius, G.1
Bockstedt, J.2
-
4
-
-
85012236181
-
A framework for clustering evolving data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for clustering evolving data streams. In Proceedings of the International Conference on Very Large Data Bases (VLDB '03), pages 81-92, 2003.
-
(2003)
Proceedings of the International Conference on Very Large Data Bases (VLDB '03)
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
5
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB '04), pages 852-863, 2004.
-
(2004)
Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB '04)
, pp. 852-863
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
6
-
-
0038205905
-
Requirements for clustering data streams
-
D. Barbará. Requirements for clustering data streams. SIGKDD Explorations, 3(2):23-27, 2002.
-
(2002)
SIGKDD Explorations
, vol.3
, Issue.2
, pp. 23-27
-
-
Barbará, D.1
-
8
-
-
33745434639
-
Density-based clustering over an evolving data stream with noise
-
SIAM
-
F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based clustering over an evolving data stream with noise. In Proceedings of the 2006 SIAM International Conference on Data Mining, pages 328-339. SIAM, 2006.
-
(2006)
Proceedings of the 2006 SIAM International Conference on Data Mining
, pp. 328-339
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
10
-
-
68049121093
-
Anomaly detection: A survey
-
V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey. ACM Computing Surveys, 41(3):1-58, 2009.
-
(2009)
ACM Computing Surveys
, vol.41
, Issue.3
, pp. 1-58
-
-
Chandola, V.1
Banerjee, A.2
Kumar, V.3
-
12
-
-
4143149628
-
A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data
-
Kluwer
-
E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo. A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data. In Data Mining for Security Applications. Kluwer, 2002.
-
(2002)
Data Mining for Security Applications
-
-
Eskin, E.1
Arnold, A.2
Prerau, M.3
Portnoy, L.4
Stolfo, S.5
-
13
-
-
0038633423
-
Clustering data streams: Theory and practice
-
S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O'Callaghan. Clustering data streams: Theory and practice. IEEE Transactions on Knowledge and Data Engineering, 15(3):515-528, 2003.
-
(2003)
IEEE Transactions on Knowledge and Data Engineering
, vol.15
, Issue.3
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
O'Callaghan, L.5
-
14
-
-
84893405732
-
Data clustering: A review
-
September
-
A. Jain, M. Murty, and P. Flynn. Data clustering: A review. ACM Computing Surveys, 31(3):264-323, September 1999.
-
(1999)
ACM Computing Surveys
, vol.31
, Issue.3
, pp. 264-323
-
-
Jain, A.1
Murty, M.2
Flynn, P.3
-
17
-
-
0003913523
-
Markov processes for stochastic modeling
-
Chapman & Hall/CRC
-
M. Kijima. Markov Processes for Stochastic Modeling. Stochastic Modeling Series. Chapman & Hall/CRC, 1997.
-
(1997)
Stochastic Modeling Series
-
-
Kijima, M.1
-
18
-
-
33751304792
-
Incremental OPTICS: Efficient computation of updates in a hierarchical cluster ordering
-
Springer
-
H.-P. Kriegel, P. Kröger, and I. Gotlibovich. Incremental OPTICS: Efficient computation of updates in a hierarchical cluster ordering. In Data Warehousing and Knowledge Discovery, volume 2737 of Lecture Notes in Computer Science, pages 224-233. Springer, 2003.
-
(2003)
Data Warehousing and Knowledge Discovery, Volume 2737 of Lecture Notes in Computer Science
, pp. 224-233
-
-
Kriegel, H.-P.1
Kröger, P.2
Gotlibovich, I.3
-
20
-
-
85101511266
-
Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
-
D. Heckerman, H. Mannila, and D. Pregibon, editors Newport Beach, CA, August AAAI Press
-
F. Provost and T. Fawcett. Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In D. Heckerman, H. Mannila, and D. Pregibon, editors, Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pages 43-48, Newport Beach, CA, August 1997. AAAI Press.
-
(1997)
Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining
, pp. 43-48
-
-
Provost, F.1
Fawcett, T.2
-
21
-
-
22044455069
-
Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
-
J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Minining and Knowledge Discovery, 2(2):169-194, 1998.
-
(1998)
Data Minining and Knowledge Discovery
, vol.2
, Issue.2
, pp. 169-194
-
-
Sander, J.1
Ester, M.2
Kriegel, H.-P.3
Xu, X.4
-
22
-
-
33749564726
-
MONIC: Modeling and monitoring cluster transitions
-
Philadelphia, PA, USA
-
M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult. MONIC: Modeling and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, pages 706-711, 2006.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 706-711
-
-
Spiliopoulou, M.1
Ntoutsi, I.2
Theodoridis, Y.3
Schult, R.4
-
24
-
-
38049058271
-
Visualising the cluster structure of data streams
-
Springer
-
D. K. Tasoulis, G. Ross, and N. M. Adams. Visualising the cluster structure of data streams. In Advances in Intelligent Data Analysis VII, Lecture Notes in Computer Science, pages 81-92. Springer, 2007.
-
(2007)
Advances in Intelligent Data Analysis VII, Lecture Notes in Computer Science
, pp. 81-92
-
-
Tasoulis, D.K.1
Ross, G.2
Adams, N.M.3
-
25
-
-
0038365156
-
Outliers in multivariate time series
-
R. S. Tsay, D. Pea, and A. E. Pankratz. Outliers in multivariate time series. Biometrika, 87(4):789-804, 2000.
-
(2000)
Biometrika
, vol.87
, Issue.4
, pp. 789-804
-
-
Tsay, R.S.1
Pea, D.2
Pankratz, A.E.3
-
27
-
-
38049025951
-
E-stream: Evolution-based technique for stream clustering
-
Springer-Verlag, Berlin, Heidelberg
-
K. Udommanetanakit, T. Rakthanmanon, and K. Waiyamai. E-stream: Evolution-based technique for stream clustering. In ADMA '07: Proceedings of the 3rd international conference on Advanced Data Mining and Applications, pages 605-615. Springer-Verlag, Berlin, Heidelberg, 2007.
-
(2007)
ADMA '07: Proceedings of the 3rd International Conference on Advanced Data Mining and Applications
, pp. 605-615
-
-
Udommanetanakit, K.1
Rakthanmanon, T.2
Waiyamai, K.3
-
28
-
-
73349121934
-
Density-based clustering of data streams at multiple resolutions
-
L. Wan, W. K. Ng, X. H. Dang, P. S. Yu, and K. Zhang. Density-based clustering of data streams at multiple resolutions. ACM Transactions on Knowledge Discovery from Data, 3(3):1-28, 2009.
-
(2009)
ACM Transactions on Knowledge Discovery from Data
, vol.3
, Issue.3
, pp. 1-28
-
-
Wan, L.1
Ng, W.K.2
Dang, X.H.3
Yu, P.S.4
Zhang, K.5
-
29
-
-
24044470614
-
Clustering of time series data - A survey
-
November
-
T. Warren Liao. Clustering of time series data - a survey. Pattern Recognition, 38(11):1857-1874, November 2005.
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Warren Liao, T.1
|