-
1
-
-
84879463278
-
StreamKM++: A clustering algorithm for data streams
-
ACKERMANN,M. R.,MARTENS,M.,RAUPACH, C.,SWIERKOT, K., LAMMERSEN, C., AND SOHLER, C. 2012. StreamKM++: A clustering algorithm for data streams. ACM J. Exper. Algor. 17, 1.
-
(2012)
ACM J. Exper. Algor
, vol.17
, pp. 1
-
-
Ackermann, M.R.1
Martens, M.2
Raupach, C.3
Swierkot, K.4
Lammersen, C.5
Sohler, C.6
-
2
-
-
4243114094
-
Approximating extent measures of points
-
AGARWAL, P. K., HAR-PELED, S., AND VARADARAJAN, K. R. 2004a. Approximating extent measures of points. J. ACM 51, 4, 606-635.
-
(2004)
J ACM
, vol.51
, Issue.4
, pp. 606-635
-
-
Agarwal, P.K.1
Har-Peled, S.2
Varadarajan, K.R.3
-
5
-
-
84855559607
-
A segment-based framework for modeling and mining data streams
-
AGGARWAL, C. C. 2010. A segment-based framework for modeling and mining data streams. Knowl. Inf. Syst, 30, 1, 1-29.
-
(2010)
Knowl. Inf. Syst
, vol.30
, Issue.1
, pp. 1-29
-
-
Aggarwal, C.C.1
-
6
-
-
85012236181
-
A framework for clustering evolving data streams
-
AGGARWAL, C. C., HAN, J.,WANG, J., AND YU, P. S. 2003. A framework for clustering evolving data streams. In Proceedings of the 29th Conference on Very Large Data Bases (VLDB03). Vol. 29, 81-92.
-
(2003)
Proceedings of the 29th Conference on Very Large Data Bases (VLDB03)
, vol.29
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Up, S.Y.4
-
7
-
-
85136074496
-
A framework for projected clustering of high dimensional data streams
-
AGGARWAL, C. C., HAN, J.,WANG, J., AND YU, P. S. 2004b. A framework for projected clustering of high dimensional data streams. In Proceedings of the 30th Conference on Very Large Data Bases (VLDB04). Vol. 30, 852-863.
-
(2004)
Proceedings of the 30th Conference on Very Large Data Bases (VLDB04)
, vol.30
, pp. 852-863
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Up, S.Y.4
-
10
-
-
84856921698
-
On clustering large number of data streams
-
AGHBARI, Z. A., KAMEL, I., AND AWAD, T. 2012. On clustering large number of data streams. Intell. Data Anal. 16, 1, 69-91.
-
(2012)
Intell. Data Anal
, vol.16
, Issue.1
, pp. 69-91
-
-
Aghbari, Z.A.1
Kamel, I.2
Awad, T.3
-
11
-
-
80053422023
-
A study of density-grid based clustering algorithms on data streams
-
IEEE Press, Los Alamitos, CA
-
AMINI, A., WAH, T. Y., SAYBANI, M. R., AGHABOZORGI, S. R., AND YAZDI, S. 2011. A study of density-grid based clustering algorithms on data streams. In Proceedings of the 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD11). IEEE Press, Los Alamitos, CA, 1652-1656.
-
(2011)
Proceedings of the 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD11)
, pp. 1652-1656
-
-
Amini, A.1
Wah, T.Y.2
Saybani, M.R.3
Aghabozorgi, S.R.4
Yazdi, S.5
-
15
-
-
0036042175
-
Models and issues in data stream systems
-
ACM Press, New York
-
BABCOCK, B., BABU, S., DATAR, M., MOTWANI, R., AND WIDOM, J. 2002. Models and issues in data stream systems. In Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS02). ACM Press, New York, 1-16.
-
(2002)
Proceedings of the 21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS02)
, pp. 1-16
-
-
Babcock, B.1
Babu, S.2
Datar, M.3
Motwani, R.4
Widom, J.5
-
16
-
-
1142293244
-
Maintaining variance and k-medians over data stream windows
-
ACM Press, New York
-
BABCOCK, B., DATAR, M., MOTWANI, R., AND OCALLAGHAN, L. 2003. Maintaining variance and k-medians over data stream windows. In Proceedings of the 22nd ACM SIGMOD-SIGACT SIGART Symposium on Principles of Database Systems. ACM Press, New York, 234-243.
-
(2003)
Proceedings of the 22nd ACM SIGMOD-SIGACT SIGART Symposium on Principles of Database Systems
, pp. 234-243
-
-
Babcock, B.1
Datar, M.2
Motwani, R.3
Ocallaghan, L.4
-
17
-
-
0036036832
-
Approximate clustering via core-sets
-
ACM Press, New York
-
BADOIU, M., HAR-PELED, S., AND INDYK, P. 2002. Approximate clustering via core-sets. In Proceedings of the 34th ACM Symposium on The ory of Computing (STOC02). ACM Press, New York, 250-257.
-
(2002)
Proceedings of the 34th ACM Symposium on the Ory of Computing (STOC02)
, pp. 250-257
-
-
Badoiu, M.1
Har-Peled, S.2
Indyk, P.3
-
19
-
-
0038205905
-
Requirements for clustering data streams
-
BARBARA, D. 2002. Requirements for clustering data streams. SIGKDD Explorations 3, 23-27.
-
(2002)
SIGKDD Explorations
, vol.3
, pp. 23-27
-
-
Barbara, D.1
-
20
-
-
0016557674
-
Multidimensional binary search trees used for associative searching
-
BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative searching. Comm. ACM 18, 9, 509-517.
-
(1975)
Comm ACM
, vol.18
, Issue.9
, pp. 509-517
-
-
Bentley, J.L.1
-
21
-
-
0000108833
-
Decomposable searching problems I: Static-to-dynamic transformation
-
BENTLEY, J. L. AND SAXE, J. B. 1980. Decomposable searching problems I: Static-to-dynamic transformation. J. Algor. 1, 4, 301-358.
-
(1980)
J. Algor
, vol.1
, Issue.4
, pp. 301-358
-
-
Bentley, J.L.1
Saxe, J.B.2
-
24
-
-
77953527363
-
MOA: Massive online analysis
-
BIFET, A., HOLMES, G., KIRKBY, R., AND PFAHRINGER, B. 2010. MOA: Massive online analysis. J. Mach. Learn. Res. 11, 1601-1604.
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
26
-
-
84953806973
-
Scaling clustering algorithms to large databases
-
AAAI Press
-
BRADLEY, P. S., FAYYAD, U. M., AND REINA, C. 1998b. Scaling clustering algorithms to large databases. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD98). AAAI Press, 9-15.
-
(1998)
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD98)
, pp. 9-15
-
-
Bradley, P.S.1
Fayyad, U.M.2
Reina, C.3
-
27
-
-
33745434639
-
Density-based clustering over an evolving data stream with noise
-
CAO, F., ESTER, M., QIAN, W., AND ZHOU, A. 2006. Density-based clustering over an evolving data stream with noise. In Proceedings of the 6th SIAM International Conference on Data Mining. 328-339.
-
(2006)
Proceedings of the 6th SIAM International Conference on Data Mining
, pp. 328-339
-
-
Cao, F.1
Ester, M.2
Qian, W.3
Zhou, A.4
-
29
-
-
0038447051
-
Better streaming algorithms for clustering problems
-
ACM Press, New York
-
CHARIKAR, M., OCALLAGHAN, L., AND PANIGRAHY, R. 2003. Better streaming algorithms for clustering problems. In Proceedings of the 35th Annual ACM Symposium on The ory of Computing. ACM Press, New York, 30-39.
-
(2003)
Proceedings of the 35th Annual ACM Symposium on the Ory of Computing
, pp. 30-39
-
-
Charikar, M.1
Ocallaghan, L.2
Panigrahy, R.3
-
31
-
-
33749423364
-
DCF: An efficient data stream clustering framework for streaming applications
-
CHO, K., JO, S., JANG, H., KIM, S. M., AND SONG, J. 2006. DCF: An efficient data stream clustering framework for streaming applications. In Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA06). 114-122.
-
(2006)
Proceedings of the 17th International Conference on Database and Expert Systems Applications (DEXA06)
, pp. 114-122
-
-
Cho, K.1
Jo, S.2
Jang, H.3
Kim, S.M.4
Song, J.5
-
33
-
-
67650162774
-
An em-based algorithm for clustering data streams in slidingwindows
-
Lecture Notes in Computer Science Springer
-
DANG, X. H., LEE, V. C. S., NG, W. K., CIPTADI, A., AND ONG, K.-L. 2009. An em-based algorithm for clustering data streams in slidingwindows. In Proceedings of the 14th InternationalConference on Database Systems for Advanced Applications. Lecture Notes in Computer Science, vol. 5463, Springer, 230-235.
-
(2009)
Proceedings of the 14th InternationalConference on Database Systems for Advanced Applications
, vol.5463
, pp. 230-235
-
-
Dang, X.H.1
Lee, V.C.S.2
Ng, W.K.3
Ciptadi, A.4
Ong, K.-L.5
-
34
-
-
0002815587
-
A general method for scaling up machine learning algorithms and its application to clustering
-
Morgan Kaufmann Publishers, San Francisco
-
DOMINGOS, P. AND HULTEN, G. 2001. A general method for scaling up machine learning algorithms and its application to clustering. In Proceedings of the 8th International Conference on Machine Learning. Morgan Kaufmann Publishers, San Francisco, 106-113.
-
(2001)
Proceedings of the 8th International Conference on Machine Learning
, pp. 106-113
-
-
Domingos, P.1
Hulten, G.2
-
36
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. 226-231.
-
(1996)
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
37
-
-
84887464246
-
Improving the offline clustering stage of data stream algorithms in scenarios with variable number of clusters
-
RIBEIRO, E. F., BARROS, R. C., CARVALHO, A. C. P. L. F., AND GAMA, J. 2012. improving the offline clustering stage of data stream algorithms in scenarios with variable number of clusters. In Proceedings of the 27th ACM Symposium on Applied Computing (SAC12). 572-573.
-
(2012)
Proceedings of the 27th ACM Symposium on Applied Computing (SAC12)
, pp. 572-573
-
-
Ribeiro, E.F.1
Barros, R.C.2
Carvalho, A.C.P.L.F.3
Gama, J.4
-
38
-
-
0002679222
-
Scalability for clustering algorithms revisited
-
FARNSTROM, F., LEWIS, J., AND ELKAN, C. 2000. Scalability for clustering algorithms revisited. SIGKDD Exploration Newslett. 2, 1, 51-57.
-
(2000)
SIGKDD Exploration Newslett
, vol.2
, Issue.1
, pp. 51-57
-
-
Farnstrom, F.1
Lewis, J.2
Elkan, C.3
-
39
-
-
0002433547
-
From data mining to knowledge discovery: An overview
-
American Association for Artificial Intelligence, Menlo Park, CA
-
FAYYAD, U., PIATETSKY-SHAPIRO, G., AND SMYTH, P. 1996. From data mining to knowledge discovery: An overview. In Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence, Menlo Park, CA, 1-34.
-
(1996)
Advances in Knowledge Discovery and Data Mining
, pp. 1-34
-
-
Fayyad, U.1
Piatetsky-Shapiro, G.2
Smyth, P.3
-
41
-
-
70450036395
-
-
Springer
-
GABER, M. M., VATSAVAI, R. R., OMITAOMU, O. A., GAMA, J., CHAWLA, N. V., AND GANGULY, A. R. 2010. Knowledge Discovery from Sensor Data. Springer.
-
(2010)
Knowledge Discovery from Sensor Data
-
-
Gaber, M.M.1
Vatsavai, R.R.2
Omitaomu, O.A.3
Gama, J.4
Chawla, N.V.5
Ganguly, A.R.6
-
44
-
-
33749618778
-
Learning with drift detection
-
GAMA, J.,MEDAS, P., CASTILLO, G., AND RODRIGUES, P. P. 2004. Learning with drift detection. In Proceedings of the 17th Brazilian Symposium on Artificial Intelligence (SBIA04). Vol. 3171., 286-295.
-
(2004)
Proceedings of the 17th Brazilian Symposium on Artificial Intelligence (SBIA04)
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.P.4
-
45
-
-
79551527268
-
Clustering distributed sensor data streams using local processing and reduced communication
-
GAMA, J., PEREIRA, P. R., AND LOPES, L. 2011. Clustering distributed sensor data streams using local processing and reduced communication. Intell. Data Anal. 15, 1, 3-28.
-
(2011)
Intell. Data Anal
, vol.15
, Issue.1
, pp. 3-28
-
-
Gama, J.1
Pereira, P.R.2
Lopes, L.3
-
47
-
-
41949141213
-
Data clustering: The ory, algorithms, and applications
-
GAN, G.,MA, C., AND WU, J. 2007. Data Clustering: The ory, Algorithms, and Applications. ASA-SIAM Series on Statistics and Applied Probability.
-
(2007)
ASA-SIAM Series on Statistics and Applied Probability
-
-
Gan, G.1
Ma, C.2
Wu, J.3
-
49
-
-
0021938963
-
Clustering to minimize the maximum intercluster distance
-
GONZALEZ, T. F. 1985. Clustering to minimize the maximum intercluster distance. The or. Comput. Sci. 38, 293-306.
-
(1985)
The Or. Comput. Sci
, vol.38
, pp. 293-306
-
-
Gonzalez, T.F.1
-
51
-
-
0038633423
-
Clustering data streams: The ory and practice
-
GUHA, S.,MEYERSON, A.,MISHRA, N.,MOTWANI, R., AND OCALLAGHAN, L. 2003. Clustering data streams: The ory and practice. IEEE Trans. Knowl. Data Engin. 15, 515-528.
-
(2003)
IEEE Trans. Knowl. Data Engin
, vol.15
, pp. 515-528
-
-
Guha, S.1
Meyerson, A.2
Mishra, N.3
Motwani, R.4
Ocallaghan, L.5
-
52
-
-
0034514004
-
Clustering data streams
-
GUHA, S.,MISHRA, N.,MOTWANI, R., AND OCALLAGHAN, L. 2000. Clustering data streams. In Proceedings of the IEEE Symposium on Foundations of Computer Science. 359-366.
-
(2000)
Proceedings of the IEEE Symposium on Foundations of Computer Science
, pp. 359-366
-
-
Guha, S.1
Mishra, N.2
Motwani, R.3
Ocallaghan, L.4
-
53
-
-
77955150621
-
REMM: Extensible markov model for data stream clustering in R
-
HAHSLER, M. AND DUNHAM, M. H. 2010. rEMM: Extensible markov model for data stream clustering in r. J. Statist. Softw. 35, 5, 1-31.
-
(2010)
J. Statist. Softw
, vol.35
, Issue.5
, pp. 1-31
-
-
Hahsler, M.1
Dunham, M.H.2
-
54
-
-
84880099592
-
Temporal structure learning for clustering massive data streams in real-time
-
SIAM/Omnipress
-
HAHSLER, M. AND DUNHAM, M. H. 2011. Temporal structure learning for clustering massive data streams in real-time. In Proceedings of the SIAM Conference on Data Mining. SIAM/Omnipress, 664-675.
-
(2011)
Proceedings of the SIAM Conference on Data Mining
, pp. 664-675
-
-
Hahsler, M.1
Dunham, M.H.2
-
58
-
-
84864911201
-
SOStream: Self organizing density-based clustering over data stream
-
Springer
-
ISAKSSON, C.,DUNHAM, M. H., AND HAHSLER, M. 2012. SOStream: Self organizing density-based clustering over data stream. In Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science, vol. 7376, Springer, 264-278.
-
(2012)
Proceedings of the 8th International Conference on Machine Learning and Data Mining in Pattern Recognition. Lecture Notes in Computer Science
, vol.7376
, pp. 264-278
-
-
Isaksson, C.1
Dunham, M.H.2
Hahsler, M.3
-
59
-
-
77950369345
-
Data clustering: 50 years beyond k-means
-
JAIN, A. K. 2009. Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31, 651-666.
-
(2009)
Pattern Recogn. Lett
, vol.31
, pp. 651-666
-
-
Jain, A.K.1
-
60
-
-
33644920942
-
Research issues in data stream association rule mining
-
JIANG, N. AND GRUENWALD, L. 2006. Research issues in data stream association rule mining. SIGMOD Rec. 35, 1, 14-19.
-
(2006)
SIGMOD Rec
, vol.35
, Issue.1
, pp. 14-19
-
-
Jiang, N.1
Gruenwald, L.2
-
62
-
-
79958694733
-
Clustering time series data stream-A literature survey
-
KAVITHA, V. AND PUNITHAVALLI, M. 2010. Clustering time series data stream-A literature survey. Int. J. Comput. Sci. Inf. Secur. 8, 1, 289-294.
-
(2010)
Int. J. Comput. Sci. Inf. Secur
, vol.8
, Issue.1
, pp. 289-294
-
-
Kavitha, V.1
Punithavalli, M.2
-
66
-
-
80053927938
-
The clustree: Indexing microclusters for anytime stream mining
-
KRANEN, P.,ASSENT, I.,BALDAUF, C., AND SEIDL, T. 2011. The clustree: Indexing microclusters for anytime stream mining. Knowl. Inf. Syst. 29, 2, 249-272.
-
(2011)
Knowl. Inf. Syst
, vol.29
, Issue.2
, pp. 249-272
-
-
Kranen, P.1
Assent, I.2
Baldauf, C.3
Seidl, T.4
-
67
-
-
80052676926
-
An effective evaluation measure for clustering on evolving data streams
-
KDD11 ACM Press, New York
-
KREMER, H., KRANEN, P., JANSEN, T., SEIDL, T., BIFET, A., HOLMES, G., AND PFAHRINGER, B.. 2011. An effective evaluation measure for clustering on evolving data streams. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD11). ACM Press, New York, 868-876.
-
(2011)
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 868-876
-
-
Kremer, H.1
Kranen, P.2
Jansen, T.3
Seidl, T.4
Bifet, A.5
Holmes, G.6
Pfahringer, B.7
-
68
-
-
84887467894
-
Continuously identifying representatives out of massive streams
-
ADMA11 Springer
-
LI, Q.,MA, X., TANG, S., AND XIE, S. 2011. Continuously identifying representatives out of massive streams. In Proceedings of the 7th International Conference on Advanced Data Mining and Applications (ADMA11). Springer, 1-14.
-
(2011)
Proceedings of the 7th International Conference on Advanced Data Mining and Applications
, pp. 1-14
-
-
Li, Q.1
Ma, X.2
Tang, S.3
Xie, S.4
-
69
-
-
79960459092
-
Data stream clustering algorithm based on affinity propagation and density
-
LI, Y. AND TAN, B. H. 2011. Data stream clustering algorithm based on affinity propagation and density. Advanced Materials Res. 267, 444-449.
-
(2011)
Advanced Materials Res
, vol.267
, pp. 444-449
-
-
Li, Y.1
Tan, B.H.2
-
70
-
-
38849191210
-
Clustering text data streams
-
LIU, Y.-B., CAI, J.-R., YIN, J., AND FU, A. W.-C. 2008. Clustering text data streams. J. Comput. Sci. Technol. 23, 1, 112-128.
-
(2008)
J. Comput. Sci. Technol
, vol.23
, Issue.1
, pp. 112-128
-
-
Liu, Y.-B.1
Cai, J.-R.2
Yin, J.3
Fu, A.W.-C.4
-
71
-
-
0020102027
-
Least squares quantization in pcm
-
LLOYD, S. P. 1982. Least squares quantization in pcm. IEEE Trans. Inf. The ory 28, 2, 129-137.
-
(1982)
IEEE Trans. Inf. The Ory
, vol.28
, Issue.2
, pp. 129-137
-
-
Lloyd, S.P.1
-
72
-
-
56249119506
-
Incremental clustering of dynamic data streams using connectivity based representative points
-
LUHR, S. AND LAZARESCU, M. 2009. Incremental clustering of dynamic data streams using connectivity based representative points. Data Knowl. Engin. 68, 1-27.
-
(2009)
Data Knowl. Engin
, vol.68
, pp. 1-27
-
-
Luhr, S.1
Lazarescu, M.2
-
74
-
-
0033971270
-
The mahalanobis distance
-
DE MAESSCHALCK, R., JOUAN-RIMBAUD, D., AND MASSART, D. L. 2000. The mahalanobis distance. Chemometrics Intell. Laboratory Syst. 50, 1-18.
-
(2000)
Chemometrics Intell. Laboratory Syst
, vol.50
, pp. 1-18
-
-
De Maesschalck, R.1
Jouan-Rimbaud, D.2
Massart, D.L.3
-
75
-
-
79951751652
-
Clustering data stream: A survey of algorithms
-
MAHDIRAJI, A. R. 2009. Clustering data stream: A survey of algorithms. Int. J. Knowl.-Based Intell. Engin. Syst. 13, 2, 39-44.
-
(2009)
Int. J. Knowl.-Based Intell. Engin. Syst
, vol.13
, Issue.2
, pp. 39-44
-
-
Mahdiraji, A.R.1
-
76
-
-
2942516558
-
Extension of the limit the orems of probability the ory to a sum of variables connected in a chain
-
R. Howard, Ed., JohnWiley and Sons, Chapter Appendix B
-
MARKOV, A. 1971. Extension of the limit the orems of probability the ory to a sum of variables connected in a chain. In Dynamic Probabilistic Systems, Vol. 1, R. Howard, Ed., JohnWiley and Sons, Chapter Appendix B, 552-577.
-
(1971)
Dynamic Probabilistic Systems
, vol.1
, pp. 552-577
-
-
Markov, A.1
-
77
-
-
33745623047
-
Duplicate detection in click streams
-
ACM Press, New York
-
METWALLY, A., AGRAWAL, D., AND ABBADI, A. E. L. 2005. Duplicate detection in click streams. In Proceedings of the 14th International Conference on World Wide Web. ACM Press, New York, 12-21.
-
(2005)
Proceedings of the 14th International Conference on World Wide Web
, pp. 12-21
-
-
Metwally, A.1
Agrawal, D.2
Abbadi, A.E.L.3
-
79
-
-
33749558210
-
YALE: Rapid prototyping for complex data mining tasks
-
MIERSWA, I.,WURST, M.,KLINKENBERG, R., SCHOLZ, M., AND EULER, T. 2006. YALE: Rapid prototyping for complex data mining tasks. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06). L.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06) L
-
-
Mierswa, I.1
Wurst, M.2
Klinkenberg, R.3
Scholz, M.4
Euler, T.5
-
80
-
-
84887439851
-
-
Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad, Eds., ACM Press, New York, 935-940
-
Ungar, M. Craven, D. Gunopulos, and T. Eliassi-Rad, Eds., ACM Press, New York, 935-940.
-
-
-
-
81
-
-
0036203413
-
Streaming data algorithms for high-quality clustering
-
OCALLAGHAN, L., MISHRA, N., MEYERSON, A., GUHA, S., AND MOTWANI, R. 2002. Streaming data algorithms for high-quality clustering. In Proceedings of the 18th International Conference on Data Engineering. 85-694.
-
(2002)
Proceedings of the 18th International Conference on Data Engineering
, pp. 85-694
-
-
Ocallaghan, L.1
Mishra, N.2
Meyerson, A.3
Guha, S.4
Motwani, R.5
-
83
-
-
35048881070
-
SCLOPE: An algorithm for clustering data streams of categorical attributes
-
ONG, K. L, LI, W., NG, W.-K., AND LIM, E.-P. 2004. SCLOPE: An algorithm for clustering data streams of categorical attributes. In Proceedings of the 6th International Conference on Data Warehousing and Knowledge Discovery (KDD04). 209-218.
-
(2004)
Proceedings of the 6th International Conference on Data Warehousing and Knowledge Discovery (KDD04)
, pp. 209-218
-
-
Ong, K.L.1
Li, W.2
Ng, W.-K.3
Lim, E.-P.4
-
84
-
-
84856853817
-
A framework to monitor clusters evolution applied to economy and finance problems
-
OLIVEIRA, M. D. B. AND GAMA, J. 2012. A framework to monitor clusters evolution applied to economy and finance problems. Intell. Data Anal. 16, 1, 93-111.
-
(2012)
Intell. Data Anal
, vol.16
, Issue.1
, pp. 93-111
-
-
Oliveira, M.D.B.1
Gama, J.2
-
85
-
-
54249118625
-
The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms
-
OSTFELD, A.,UBER, J. G., SALOMONS, E., ET AL. 2008. The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. J. Water Resources Plan. Manag. 134, 556.
-
(2008)
J. Water Resources Plan. Manag
, vol.134
, pp. 556
-
-
Ostfeld, A.1
Uber, J.G.2
Salomons, E.3
Al, E.T.4
-
86
-
-
34447276480
-
Cell trees: An adaptive synopsis structure for clustering multidimensional on-line data streams
-
PARK, N. H. AND SUK LEE,W. 2007. Cell trees: An adaptive synopsis structure for clustering multidimensional on-line data streams. Data Knowl. Engin. 63, 2, 528-549.
-
(2007)
Data Knowl. Engin
, vol.63
, Issue.2
, pp. 528-549
-
-
Park, N.H.1
Suk Lee, W.2
-
89
-
-
62449206329
-
Hierarchical clustering of time-series data streams
-
RODRIGUES, P. P., GAMA, J., AND PEDROSO, J. P. 2008. Hierarchical clustering of time-series data streams. IEEE Trans. Knowl. Data Engin. 20, 5, 615-627.
-
(2008)
IEEE Trans. Knowl. Data Engin
, vol.20
, Issue.5
, pp. 615-627
-
-
Rodrigues, P.P.1
Gama, J.2
Pedroso, J.P.3
-
90
-
-
84860214132
-
Evidential evolving gustafson-kessel algorithm for online data streams partitioning using belief function the ory
-
SERIR, L.,RAMASSO, E., AND ZERHOUNI, N. 2012. Evidential evolving gustafson-kessel algorithm for online data streams partitioning using belief function the ory. Int. J. Approximate Reason. 53, 5, 1-22.
-
(2012)
Int. J. Approximate Reason
, vol.53
, Issue.5
, pp. 1-22
-
-
Serir, L.1
Ramasso, E.2
Zerhouni, N.3
-
91
-
-
34748905749
-
Resource-aware very fast k-means for ubiquitous data stream mining
-
SHAH, R., KRISHNASWAMY, S., AND GABER, M. M. 2005. Resource-aware very fast k-means for ubiquitous data stream mining. In Proceedings of the 2nd International Workshop on Knowledge Discovery in Data Streams, Held in Conjunction with the 16th European Conference on Machine Learning (ECML05).
-
(2005)
Proceedings of the 2nd International Workshop on Knowledge Discovery in Data Streams, Held in Conjunction with the 16th European Conference on Machine Learning (ECML05)
-
-
Shah, R.1
Krishnaswamy, S.2
Gaber, M.M.3
-
92
-
-
84862701443
-
A clustering approach for sampling data streams in sensor networks
-
SILVA, A.,CHIKY, R., ANDHEBRAIL,G. 2011. A clustering approach for sampling data streams in sensor networks. Knowl. Inf. Syst. 32, 1, 1-23.
-
(2011)
Knowl. Inf. Syst.
, vol.32
, Issue.1
, pp. 1-23
-
-
Silva, A.1
Chiky, R.2
Hebrail, G.3
-
94
-
-
33749564726
-
MONIC: Modeling and monitoring cluster transitions
-
ACM Press, New York
-
SPILIOPOULOU, M.,NTOUTSI, I., THE ODORIDIS, Y., AND SCHULT, R. 2006. MONIC: Modeling and monitoring cluster transitions. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06). ACM Press, New York, 706-711.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD06)
, pp. 706-711
-
-
Spiliopoulou, M.1
Ntoutsi, I.2
The Odoridis, Y.3
Schult, R.4
-
95
-
-
33747479974
-
Sur la division des corp materiels en parties
-
STEINHAUS, H. 1956. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci 1, 801-804.
-
(1956)
Bull. Acad. Polon. Sci
, vol.1
, pp. 801-804
-
-
Steinhaus, H.1
-
97
-
-
77950575061
-
A detailed analysis of the kdd cup 99 data set
-
TAVALLAEE, M., BAGHERI, E., LU, W., AND GHORBANI, A. A. 2009. A detailed analysis of the kdd cup 99 data set. In Proceedings of the 2nd IEEE International Conference on Computational Intelligence for Security and Defense Applications. 53-58.
-
(2009)
Proceedings of the 2nd IEEE International Conference on Computational Intelligence for Security and Defense Applications
, pp. 53-58
-
-
Tavallaee, M.1
Bagheri, E.2
Lu, W.3
Ghorbani, A.A.4
-
99
-
-
54149099610
-
A weighted fuzzy clustering algorithm for data stream
-
WAN, R.,YAN, X., AND SU, X. 2008. A weighted fuzzy clustering algorithm for data stream. In Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management. 360-364.
-
(2008)
Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management
, pp. 360-364
-
-
Wan, R.1
Yan, X.2
Su, X.3
-
100
-
-
37549018049
-
Top 10 algorithms in data mining
-
WU, X., KUMAR, V., QUINLAN, J. R, GHOSH, J., YANG, Q., MOTODA, H., MCLACHLAN, G. J., NG, A., LIU, B., YU, P. S., ZHOU, Z.-H., STEINBACH, M., HAND, D. J., AND STEINBERG, D. 2007. Top 10 algorithms in data mining. Knowl. Inf. Syst. 14, 1-37.
-
(2007)
Knowl. Inf. Syst
, vol.14
, pp. 1-37
-
-
Wu, X.1
Kumar, V.2
Quinlan, J.R.3
Ghosh, J.4
Yang, Q.5
Motoda, H.6
McLachlan, G.J.7
Ng, A.8
Liu, B.9
Up, S.Y.10
Zhou, Z.-H.11
Steinbach, M.12
Hand, D.J.13
Steinberg, D.14
-
103
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
ACM Press, New York
-
ZHANG, T., RAMAKRISHNAN, R. AND LIVNY, M. 1996. BIRCH: An efficient data clustering method for very large databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM Press, New York, 103-114.
-
(1996)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
104
-
-
21944442892
-
BIRCH: A new data clustering algorithm and its applications
-
ZHANG, T.,RAMAKRISHNAN, R., AND LIVNY,M. 1997. BIRCH: A new data clustering algorithm and its applications. Data Mining Knowl. Discov. 1, 2, 141-182.
-
(1997)
Data Mining Knowl. Discov
, vol.1
, Issue.2
, pp. 141-182
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
106
-
-
84887440209
-
Self-adaptive change detection in streaming data with nonstationary distribution
-
Springer
-
ZHANG, X. AND WANG, W. 2010. Self-adaptive change detection in streaming data with nonstationary distribution. In Advanced Data Mining and Applications. Springer, 1-12.
-
(2010)
Advanced Data Mining and Applications
, pp. 1-12
-
-
Zhang, X.1
Wang, W.2
-
108
-
-
43249088014
-
Tracking clusters in evolving data streams over sliding windows
-
ZHOU, A., CAO, F.,QIAN, W., AND JIN, C. 2008. Tracking clusters in evolving data streams over sliding windows. Knowl. Inf. Syst. 15, 2, 181-214.
-
(2008)
Knowl. Inf. Syst
, vol.15
, Issue.2
, pp. 181-214
-
-
Zhou, A.1
Cao, F.2
Qian, W.3
Jin, C.4
|