메뉴 건너뛰기




Volumn 35, Issue , 2015, Pages 85-89

Oxidant and environmental toxicant-induced effects compromise DNA ligation during base excision DNA repair

Author keywords

8 oxo 7,8 dihydro 2' deoxyguanosine (8 oxoG); Abortive ligation products; Base excision repair (BER); DNA ligase; DNA polymerase (pol ); Ligation failure

Indexed keywords

8 HYDROXYDEOXYGUANOSINE; ADENOSINE PHOSPHATE; DNA DIRECTED DNA POLYMERASE BETA; OXIDIZING AGENT; POLYDEOXYRIBONUCLEOTIDE SYNTHASE; XRCC1 PROTEIN; 8-OXO-7-HYDRODEOXYGUANOSINE; DANGEROUS GOODS; DEOXYGUANOSINE; DNA LIGASE;

EID: 84944068163     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2015.09.010     Document Type: Review
Times cited : (33)

References (73)
  • 1
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl T. Instability and decay of the primary structure of DNA. Nature 1993, 362(6422):709-715.
    • (1993) Nature , vol.362 , Issue.6422 , pp. 709-715
    • Lindahl, T.1
  • 2
    • 0025355730 scopus 로고
    • Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis
    • Lutz W.K. Endogenous genotoxic agents and processes as a basis of spontaneous carcinogenesis. Mutat. Res. 1990, 238(3):287-295.
    • (1990) Mutat. Res. , vol.238 , Issue.3 , pp. 287-295
    • Lutz, W.K.1
  • 3
    • 0016656025 scopus 로고
    • Apurinic and apyrimidinic sites in DNA
    • Lindahl T., Ljungquist S. Apurinic and apyrimidinic sites in DNA. Basic Life Sci. 1975, 5a:31-38.
    • (1975) Basic Life Sci. , vol.5a , pp. 31-38
    • Lindahl, T.1    Ljungquist, S.2
  • 4
    • 0345448125 scopus 로고    scopus 로고
    • Repair of abasic sites in DNA
    • Dianov G.L., et al. Repair of abasic sites in DNA. Mutat. Res. 2003, 531(1-2):157-163.
    • (2003) Mutat. Res. , vol.531 , Issue.1-2 , pp. 157-163
    • Dianov, G.L.1
  • 5
    • 0025902273 scopus 로고
    • Endogenous mutagens and the causes of aging and cancer
    • Ames B.N., Gold L.S. Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 1991, 250(1-2):3-16.
    • (1991) Mutat. Res. , vol.250 , Issue.1-2 , pp. 3-16
    • Ames, B.N.1    Gold, L.S.2
  • 7
    • 0019997115 scopus 로고
    • DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells
    • Topal M.D., Baker M.S. DNA precursor pool: a significant target for N-methyl-N-nitrosourea in C3H/10T1/2 clone 8 cells. Proc. Natl. Acad. Sci. U. S. A. 1982, 79(7):2211-2215.
    • (1982) Proc. Natl. Acad. Sci. U. S. A. , vol.79 , Issue.7 , pp. 2211-2215
    • Topal, M.D.1    Baker, M.S.2
  • 8
    • 0025373259 scopus 로고
    • Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine
    • Fraga C.G., et al. Oxidative damage to DNA during aging: 8-hydroxy-2'-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. U. S. A. 1990, 87(12):4533-4537.
    • (1990) Proc. Natl. Acad. Sci. U. S. A. , vol.87 , Issue.12 , pp. 4533-4537
    • Fraga, C.G.1
  • 9
    • 0034733899 scopus 로고    scopus 로고
    • Base excision repair of DNA in mammalian cells
    • Krokan H.E., et al. Base excision repair of DNA in mammalian cells. FEBS Lett. 2000, 476(1-2):73-77.
    • (2000) FEBS Lett. , vol.476 , Issue.1-2 , pp. 73-77
    • Krokan, H.E.1
  • 10
    • 0035225455 scopus 로고    scopus 로고
    • Keynote: past, present, and future aspects of base excision repair
    • Lindahl T. Keynote: past, present, and future aspects of base excision repair. Prog. Nucleic Acid Res. Mol. Biol. 2001, 68:xvii-xxx.
    • (2001) Prog. Nucleic Acid Res. Mol. Biol. , vol.68 , pp. 17-30
    • Lindahl, T.1
  • 11
    • 0031574192 scopus 로고    scopus 로고
    • Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway
    • Parikh S.S., Mol C.D., Tainer J.A. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway. Structure 1997, 5(12):1543-1550.
    • (1997) Structure , vol.5 , Issue.12 , pp. 1543-1550
    • Parikh, S.S.1    Mol, C.D.2    Tainer, J.A.3
  • 12
    • 0032516831 scopus 로고    scopus 로고
    • Mammalian abasic site base excision repair: identification of the reaction sequence and rate-determining steps
    • Srivastava D.K., et al. Mammalian abasic site base excision repair: identification of the reaction sequence and rate-determining steps. J. Biol. Chem. 1998, 273(33):21203-21209.
    • (1998) J. Biol. Chem. , vol.273 , Issue.33 , pp. 21203-21209
    • Srivastava, D.K.1
  • 13
    • 0034734377 scopus 로고    scopus 로고
    • Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means
    • Mol C.D., Hosfield D.J., Tainer J.A. Abasic site recognition by two apurinic/apyrimidinic endonuclease families in DNA base excision repair: the 3' ends justify the means. Mutat. Res. 2000, 460(3-4):211-229.
    • (2000) Mutat. Res. , vol.460 , Issue.3-4 , pp. 211-229
    • Mol, C.D.1    Hosfield, D.J.2    Tainer, J.A.3
  • 14
    • 0032510962 scopus 로고    scopus 로고
    • Human DNA polymerase beta deoxyribose phosphate lyase: substrate specificity and catalytic mechanism
    • Prasad R., et al. Human DNA polymerase beta deoxyribose phosphate lyase: substrate specificity and catalytic mechanism. J. Biol. Chem. 1998, 273(24):15263-15270.
    • (1998) J. Biol. Chem. , vol.273 , Issue.24 , pp. 15263-15270
    • Prasad, R.1
  • 15
    • 33745211646 scopus 로고    scopus 로고
    • Activities and mechanism of DNA polymerase beta
    • Beard W.A., Prasad R., Wilson S.H. Activities and mechanism of DNA polymerase beta. Methods Enzymol. 2006, 408:91-107.
    • (2006) Methods Enzymol. , vol.408 , pp. 91-107
    • Beard, W.A.1    Prasad, R.2    Wilson, S.H.3
  • 17
    • 0030957997 scopus 로고    scopus 로고
    • Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1)
    • Klungland A., Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 1997, 16(11):3341-3348.
    • (1997) EMBO J. , vol.16 , Issue.11 , pp. 3341-3348
    • Klungland, A.1    Lindahl, T.2
  • 18
    • 0344154405 scopus 로고    scopus 로고
    • 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways
    • Fortini P., et al. 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways. Mutat. Res. 2003, 531(1-2):127-139.
    • (2003) Mutat. Res. , vol.531 , Issue.1-2 , pp. 127-139
    • Fortini, P.1
  • 19
    • 33646859065 scopus 로고    scopus 로고
    • Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA
    • Sung J.S., Demple B. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 2006, 273(8):1620-1629.
    • (2006) FEBS J. , vol.273 , Issue.8 , pp. 1620-1629
    • Sung, J.S.1    Demple, B.2
  • 20
    • 33947170923 scopus 로고    scopus 로고
    • Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases lambda and beta
    • Brown J.A., et al. Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases lambda and beta. J. Mol. Biol. 2007, 367(5):1258-1269.
    • (2007) J. Mol. Biol. , vol.367 , Issue.5 , pp. 1258-1269
    • Brown, J.A.1
  • 21
    • 0036714327 scopus 로고    scopus 로고
    • Induction of DNA polymerase beta-dependent base excision repair in response to oxidative stress in vivo
    • Cabelof D.C., et al. Induction of DNA polymerase beta-dependent base excision repair in response to oxidative stress in vivo. Carcinogenesis 2002, 23(9):1419-1425.
    • (2002) Carcinogenesis , vol.23 , Issue.9 , pp. 1419-1425
    • Cabelof, D.C.1
  • 22
    • 0025981359 scopus 로고
    • Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG
    • Shibutani S., Takeshita M., Grollman A.P. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 1991, 349(6308):431-434.
    • (1991) Nature , vol.349 , Issue.6308 , pp. 431-434
    • Shibutani, S.1    Takeshita, M.2    Grollman, A.P.3
  • 23
    • 77954384819 scopus 로고    scopus 로고
    • Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site
    • Batra V.K., et al. Mutagenic conformation of 8-oxo-7,8-dihydro-2'-dGTP in the confines of a DNA polymerase active site. Nat. Struct. Mol. Biol. 2010, 17(7):889-890.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , Issue.7 , pp. 889-890
    • Batra, V.K.1
  • 24
    • 84856001654 scopus 로고    scopus 로고
    • Binary complex crystal structure of DNA polymerase beta reveals multiple conformations of the templating 8-oxoguanine lesion
    • Batra V.K., et al. Binary complex crystal structure of DNA polymerase beta reveals multiple conformations of the templating 8-oxoguanine lesion. Proc. Natl. Acad. Sci. U. S. A. 2012, 109(1):113-118.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , Issue.1 , pp. 113-118
    • Batra, V.K.1
  • 25
    • 78549267771 scopus 로고    scopus 로고
    • DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine
    • Beard W.A., Batra V.K., Wilson S.H. DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Mutat. Res. 2010, 703(1):18-23.
    • (2010) Mutat. Res. , vol.703 , Issue.1 , pp. 18-23
    • Beard, W.A.1    Batra, V.K.2    Wilson, S.H.3
  • 26
    • 34247623128 scopus 로고    scopus 로고
    • Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta
    • Wang Y., et al. Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta. Biophys. J. 2007, 92(9):3063-3070.
    • (2007) Biophys. J. , vol.92 , Issue.9 , pp. 3063-3070
    • Wang, Y.1
  • 27
    • 78650399787 scopus 로고    scopus 로고
    • Substrate channeling in mammalian base excision repair pathways: passing the baton
    • Prasad R., et al. Substrate channeling in mammalian base excision repair pathways: passing the baton. J. Biol. Chem. 2010, 285(52):40479-40488.
    • (2010) J. Biol. Chem. , vol.285 , Issue.52 , pp. 40479-40488
    • Prasad, R.1
  • 28
    • 84871208707 scopus 로고    scopus 로고
    • Pol beta associated complex and base excision repair factors in mouse fibroblasts
    • Prasad R., et al. Pol beta associated complex and base excision repair factors in mouse fibroblasts. Nucleic Acids Res. 2012, 40(22):11571-11582.
    • (2012) Nucleic Acids Res. , vol.40 , Issue.22 , pp. 11571-11582
    • Prasad, R.1
  • 29
    • 0034093291 scopus 로고    scopus 로고
    • Passing the baton in base excision repair
    • Wilson S.H., Kunkel T.A. Passing the baton in base excision repair. Nat. Struct. Biol. 2000, 7(3):176-178.
    • (2000) Nat. Struct. Biol. , vol.7 , Issue.3 , pp. 176-178
    • Wilson, S.H.1    Kunkel, T.A.2
  • 30
    • 34250349580 scopus 로고    scopus 로고
    • Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta
    • Liu Y., et al. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase beta. J. Biol. Chem. 2007, 282(18):13532-13541.
    • (2007) J. Biol. Chem. , vol.282 , Issue.18 , pp. 13532-13541
    • Liu, Y.1
  • 31
    • 80054831072 scopus 로고    scopus 로고
    • A review of recent experiments on step-to-step hand-off of the DNA intermediates in mammalian base excision repair pathways
    • Prasad R., et al. A review of recent experiments on step-to-step hand-off of the DNA intermediates in mammalian base excision repair pathways. Mol. Biol. (Mosk) 2011, 45(4):586-600.
    • (2011) Mol. Biol. (Mosk) , vol.45 , Issue.4 , pp. 586-600
    • Prasad, R.1
  • 32
    • 33644624369 scopus 로고    scopus 로고
    • DNA ligases: structure, reaction mechanism, and function
    • Tomkinson A.E., et al. DNA ligases: structure, reaction mechanism, and function. Chem. Rev. 2006, 106(2):687-699.
    • (2006) Chem. Rev. , vol.106 , Issue.2 , pp. 687-699
    • Tomkinson, A.E.1
  • 33
    • 34548614799 scopus 로고    scopus 로고
    • Defective DNA repair and neurodegenerative disease
    • Rass U., Ahel I., West S.C. Defective DNA repair and neurodegenerative disease. Cell 2007, 130(6):991-1004.
    • (2007) Cell , vol.130 , Issue.6 , pp. 991-1004
    • Rass, U.1    Ahel, I.2    West, S.C.3
  • 34
    • 61749094512 scopus 로고    scopus 로고
    • Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1
    • Reynolds J.J., et al. Defective DNA ligation during short-patch single-strand break repair in ataxia oculomotor apraxia 1. Mol. Cell. Biol. 2009, 29(5):1354-1362.
    • (2009) Mol. Cell. Biol. , vol.29 , Issue.5 , pp. 1354-1362
    • Reynolds, J.J.1
  • 35
    • 84921469195 scopus 로고    scopus 로고
    • Recognition and repair of chemically heterogeneous structures at DNA ends
    • Andres S.N., et al. Recognition and repair of chemically heterogeneous structures at DNA ends. Environ. Mol. Mutagen. 2015, 56(1):1-21.
    • (2015) Environ. Mol. Mutagen. , vol.56 , Issue.1 , pp. 1-21
    • Andres, S.N.1
  • 36
    • 84902087226 scopus 로고    scopus 로고
    • Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair
    • Caglayan M., et al. Role of polymerase beta in complementing aprataxin deficiency during abasic-site base excision repair. Nat. Struct. Mol. Biol. 2014, 21(5):497-499.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , Issue.5 , pp. 497-499
    • Caglayan, M.1
  • 37
    • 84944051708 scopus 로고    scopus 로고
    • Complementation of aprataxin deficiency by base excision repair enzymes
    • Caglayan M., et al. Complementation of aprataxin deficiency by base excision repair enzymes. Nucleic Acids Res. 2015, 43(4):2271-2281.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.4 , pp. 2271-2281
    • Caglayan, M.1
  • 38
    • 0034734386 scopus 로고    scopus 로고
    • Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta
    • Beard W.A., Wilson S.H. Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. Mutat. Res. 2000, 460(3-4):231-244.
    • (2000) Mutat. Res. , vol.460 , Issue.3-4 , pp. 231-244
    • Beard, W.A.1    Wilson, S.H.2
  • 39
    • 0035826622 scopus 로고    scopus 로고
    • Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes
    • Arndt J.W., et al. Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. Biochemistry 2001, 40(18):5368-5375.
    • (2001) Biochemistry , vol.40 , Issue.18 , pp. 5368-5375
    • Arndt, J.W.1
  • 40
    • 33645984577 scopus 로고    scopus 로고
    • Magnesium-induced assembly of a complete DNA polymerase catalytic complex
    • Batra V.K., et al. Magnesium-induced assembly of a complete DNA polymerase catalytic complex. Structure 2006, 14(4):757-766.
    • (2006) Structure , vol.14 , Issue.4 , pp. 757-766
    • Batra, V.K.1
  • 41
    • 17544370107 scopus 로고    scopus 로고
    • Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta
    • Beard W.A., et al. Enzyme-DNA interactions required for efficient nucleotide incorporation and discrimination in human DNA polymerase beta. J. Biol. Chem. 1996, 271(21):12141-12144.
    • (1996) J. Biol. Chem. , vol.271 , Issue.21 , pp. 12141-12144
    • Beard, W.A.1
  • 42
    • 70450257567 scopus 로고    scopus 로고
    • DNA polymerase beta substrate specificity: side chain modulation of the A-rule
    • Beard W.A., et al. DNA polymerase beta substrate specificity: side chain modulation of the A-rule. J. Biol. Chem. 2009, 284(46):31680-31689.
    • (2009) J. Biol. Chem. , vol.284 , Issue.46 , pp. 31680-31689
    • Beard, W.A.1
  • 43
    • 84909606593 scopus 로고    scopus 로고
    • Substrate-induced DNA polymerase beta activation
    • Beard W.A., et al. Substrate-induced DNA polymerase beta activation. J. Biol. Chem. 2014, 289(45):31411-31422.
    • (2014) J. Biol. Chem. , vol.289 , Issue.45 , pp. 31411-31422
    • Beard, W.A.1
  • 44
    • 84879897415 scopus 로고    scopus 로고
    • Observing a DNA polymerase choose right from wrong
    • Freudenthal B.D., et al. Observing a DNA polymerase choose right from wrong. Cell 2013, 154(1):157-168.
    • (2013) Cell , vol.154 , Issue.1 , pp. 157-168
    • Freudenthal, B.D.1
  • 45
    • 84868601408 scopus 로고    scopus 로고
    • Structures of dNTP intermediate states during DNA polymerase active site assembly
    • Freudenthal B.D., Beard W.A., Wilson S.H. Structures of dNTP intermediate states during DNA polymerase active site assembly. Structure 2012, 20(11):1829-1837.
    • (2012) Structure , vol.20 , Issue.11 , pp. 1829-1837
    • Freudenthal, B.D.1    Beard, W.A.2    Wilson, S.H.3
  • 46
  • 47
    • 84889585493 scopus 로고    scopus 로고
    • How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template
    • Sampoli Benitez B., et al. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Biophys. J. 2013, 105(11):2559-2568.
    • (2013) Biophys. J. , vol.105 , Issue.11 , pp. 2559-2568
    • Sampoli Benitez, B.1
  • 48
    • 0033555373 scopus 로고    scopus 로고
    • Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine
    • Duarte V., Muller J.G., Burrows C.J. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res. 1999, 27(2):496-502.
    • (1999) Nucleic Acids Res. , vol.27 , Issue.2 , pp. 496-502
    • Duarte, V.1    Muller, J.G.2    Burrows, C.J.3
  • 49
    • 84873636583 scopus 로고    scopus 로고
    • DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion
    • Freudenthal B.D., Beard W.A., Wilson S.H. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Nucleic Acids Res. 2013, 41(3):1848-1858.
    • (2013) Nucleic Acids Res. , vol.41 , Issue.3 , pp. 1848-1858
    • Freudenthal, B.D.1    Beard, W.A.2    Wilson, S.H.3
  • 50
    • 84925461150 scopus 로고    scopus 로고
    • Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide
    • Freudenthal B.D., et al. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature 2015, 517(7536):635-639.
    • (2015) Nature , vol.517 , Issue.7536 , pp. 635-639
    • Freudenthal, B.D.1
  • 51
    • 79551513593 scopus 로고    scopus 로고
    • To live or to die: a matter of processing damaged DNA termini in neurons
    • El-Khamisy S.F. To live or to die: a matter of processing damaged DNA termini in neurons. EMBO Mol. Med. 2011, 3(2):78-88.
    • (2011) EMBO Mol. Med. , vol.3 , Issue.2 , pp. 78-88
    • El-Khamisy, S.F.1
  • 52
    • 33749821755 scopus 로고    scopus 로고
    • The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates
    • Ahel I., et al. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006, 443(7112):713-716.
    • (2006) Nature , vol.443 , Issue.7112 , pp. 713-716
    • Ahel, I.1
  • 53
    • 79955663428 scopus 로고    scopus 로고
    • Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair
    • Weinfeld M., et al. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem. Sci. 2011, 36(5):262-271.
    • (2011) Trends Biochem. Sci. , vol.36 , Issue.5 , pp. 262-271
    • Weinfeld, M.1
  • 54
    • 0035856495 scopus 로고    scopus 로고
    • DNA repair: how Ku makes ends meet
    • Doherty A.J., Jackson S.P. DNA repair: how Ku makes ends meet. Curr. Biol. 2001, 11(22):R920-R924.
    • (2001) Curr. Biol. , vol.11 , Issue.22 , pp. R920-R924
    • Doherty, A.J.1    Jackson, S.P.2
  • 55
    • 17844365289 scopus 로고    scopus 로고
    • APE1-dependent repair of DNA single-strand breaks containing 3'-end 8-oxoguanine
    • Parsons J.L., Dianova I.I., Dianov G.L. APE1-dependent repair of DNA single-strand breaks containing 3'-end 8-oxoguanine. Nucleic Acids Res. 2005, 33(7):2204-2209.
    • (2005) Nucleic Acids Res. , vol.33 , Issue.7 , pp. 2204-2209
    • Parsons, J.L.1    Dianova, I.I.2    Dianov, G.L.3
  • 56
    • 0033923815 scopus 로고    scopus 로고
    • Requirement for human AP endonuclease 1 for repair of 3'-blocking damage at DNA single-strand breaks induced by reactive oxygen species
    • Izumi T., et al. Requirement for human AP endonuclease 1 for repair of 3'-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis 2000, 21(7):1329-1334.
    • (2000) Carcinogenesis , vol.21 , Issue.7 , pp. 1329-1334
    • Izumi, T.1
  • 57
    • 84902083476 scopus 로고    scopus 로고
    • Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2)
    • Pommier Y., et al. Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst) 2014, 19:114-129.
    • (2014) DNA Repair (Amst) , vol.19 , pp. 114-129
    • Pommier, Y.1
  • 58
    • 84865063582 scopus 로고    scopus 로고
    • Biochemical mapping of human NEIL1 DNA glycosylase and AP lyase activities
    • Vik E.S., et al. Biochemical mapping of human NEIL1 DNA glycosylase and AP lyase activities. DNA Repair (Amst) 2012, 11(9):766-773.
    • (2012) DNA Repair (Amst) , vol.11 , Issue.9 , pp. 766-773
    • Vik, E.S.1
  • 59
    • 0030703177 scopus 로고    scopus 로고
    • Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites
    • Bjoras M., et al. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. EMBO J. 1997, 16(20):6314-6322.
    • (1997) EMBO J. , vol.16 , Issue.20 , pp. 6314-6322
    • Bjoras, M.1
  • 60
    • 33645306835 scopus 로고    scopus 로고
    • 3'-5' exonuclease activity of human apurinic/apyrimidinic endonuclease 1 towards DNAs containing dNMP and their modified analogs at the 3 end of single strand DNA break
    • Dyrkheeva N.S., et al. 3'-5' exonuclease activity of human apurinic/apyrimidinic endonuclease 1 towards DNAs containing dNMP and their modified analogs at the 3 end of single strand DNA break. Biochemistry (Moscow) 2006, 71(2):200-210.
    • (2006) Biochemistry (Moscow) , vol.71 , Issue.2 , pp. 200-210
    • Dyrkheeva, N.S.1
  • 61
    • 0036828697 scopus 로고    scopus 로고
    • AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair
    • Ranalli T.A., Tom S., Bambara R.A. AP endonuclease 1 coordinates flap endonuclease 1 and DNA ligase I activity in long patch base excision repair. J. Biol. Chem. 2002, 277(44):41715-41724.
    • (2002) J. Biol. Chem. , vol.277 , Issue.44 , pp. 41715-41724
    • Ranalli, T.A.1    Tom, S.2    Bambara, R.A.3
  • 62
    • 33749616036 scopus 로고    scopus 로고
    • TDP1-dependent DNA single-strand break repair and neurodegeneration
    • El-Khamisy S.F., Caldecott K.W. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 2006, 21(4):219-224.
    • (2006) Mutagenesis , vol.21 , Issue.4 , pp. 219-224
    • El-Khamisy, S.F.1    Caldecott, K.W.2
  • 63
    • 0035890069 scopus 로고    scopus 로고
    • XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions
    • Vidal A.E., et al. XRCC1 coordinates the initial and late stages of DNA abasic site repair through protein-protein interactions. EMBO J. 2001, 20(22):6530-6539.
    • (2001) EMBO J. , vol.20 , Issue.22 , pp. 6530-6539
    • Vidal, A.E.1
  • 64
    • 0029957245 scopus 로고    scopus 로고
    • XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase: and DNA ligase III is a novel molecular 'nick-sensor' in vitro
    • Caldecott K.W., et al. XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase: and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nucleic Acids Res. 1996, 24(22):4387-4394.
    • (1996) Nucleic Acids Res. , vol.24 , Issue.22 , pp. 4387-4394
    • Caldecott, K.W.1
  • 65
    • 0028157948 scopus 로고
    • An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III
    • Caldecott K.W., et al. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 1994, 14(1):68-76.
    • (1994) Mol. Cell. Biol. , vol.14 , Issue.1 , pp. 68-76
    • Caldecott, K.W.1
  • 66
    • 0034656991 scopus 로고    scopus 로고
    • Domain specific interaction in the XRCC1-DNA polymerase beta complex
    • Marintchev A., et al. Domain specific interaction in the XRCC1-DNA polymerase beta complex. Nucleic Acids Res. 2000, 28(10):2049-2059.
    • (2000) Nucleic Acids Res. , vol.28 , Issue.10 , pp. 2049-2059
    • Marintchev, A.1
  • 67
    • 58149194884 scopus 로고    scopus 로고
    • DNA ligase-a means to an end joining
    • Bray C.M., et al. DNA ligase-a means to an end joining. SEB Exp. Biol. Ser. 2008, 59:203-217.
    • (2008) SEB Exp. Biol. Ser. , vol.59 , pp. 203-217
    • Bray, C.M.1
  • 68
    • 0034327406 scopus 로고    scopus 로고
    • Structural and mechanistic conservation in DNA ligases
    • Doherty A.J., Suh S.W. Structural and mechanistic conservation in DNA ligases. Nucleic Acids Res. 2000, 28(21):4051-4058.
    • (2000) Nucleic Acids Res. , vol.28 , Issue.21 , pp. 4051-4058
    • Doherty, A.J.1    Suh, S.W.2
  • 69
    • 67749148968 scopus 로고    scopus 로고
    • Short-patch single-strand break repair in ataxia oculomotor apraxia-1
    • Reynolds J.J., El-Khamisy S.F., Caldecott K.W. Short-patch single-strand break repair in ataxia oculomotor apraxia-1. Biochem. Soc. Trans. 2009, 37(Pt 3):577-581.
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 577-581
    • Reynolds, J.J.1    El-Khamisy, S.F.2    Caldecott, K.W.3
  • 70
    • 70349978979 scopus 로고    scopus 로고
    • Aprataxin: poly-ADP ribose polymerase 1 (PARP-1) and apurinic endonuclease 1 (APE1) function together to protect the genome against oxidative damage
    • Harris J.L., et al. Aprataxin: poly-ADP ribose polymerase 1 (PARP-1) and apurinic endonuclease 1 (APE1) function together to protect the genome against oxidative damage. Hum. Mol. Genet. 2009, 18(21):4102-4117.
    • (2009) Hum. Mol. Genet. , vol.18 , Issue.21 , pp. 4102-4117
    • Harris, J.L.1
  • 71
    • 84903192918 scopus 로고    scopus 로고
    • Targeting DNA repair pathways for cancer treatment: what's new?
    • Kelley M.R., Logsdon D., Fishel M.L. Targeting DNA repair pathways for cancer treatment: what's new?. Future Oncol. 2014, 10(7):1215-1237.
    • (2014) Future Oncol. , vol.10 , Issue.7 , pp. 1215-1237
    • Kelley, M.R.1    Logsdon, D.2    Fishel, M.L.3
  • 73
    • 44849117230 scopus 로고    scopus 로고
    • Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair
    • Chen X., et al. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair. Cancer Res. 2008, 68(9):3169-3177.
    • (2008) Cancer Res. , vol.68 , Issue.9 , pp. 3169-3177
    • Chen, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.