-
1
-
-
77953683770
-
Targeting nanoparticles to cancer
-
Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90-99.
-
(2010)
Pharmacol Res
, vol.62
, Issue.2
, pp. 90-99
-
-
Wang, M.1
Thanou, M.2
-
2
-
-
33749599209
-
Nanomedicine for implants: A review of studies and necessary experimental tools
-
Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28(2):354-369.
-
(2007)
Biomaterials
, vol.28
, Issue.2
, pp. 354-369
-
-
Liu, H.1
Webster, T.J.2
-
3
-
-
84879498742
-
Nanostructured scaffolds for bone tissue engineering
-
Li X, Wang L, Fan Y, Feng Q, Cui F-Z, Watari F. Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A. 2013;101A(8):2424-2435.
-
(2013)
J Biomed Mater Res A
, vol.101A
, Issue.8
, pp. 2424-2435
-
-
Li, X.1
Wang, L.2
Fan, Y.3
Feng, Q.4
Cui, F.-Z.5
Watari, F.6
-
4
-
-
84879311028
-
Development of nanomaterials for bone repair and regeneration
-
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater. 2012;101B(2):387-397.
-
(2012)
J Biomed Mater Res B Appl Biomater
, vol.101B
, Issue.2
, pp. 387-397
-
-
McMahon, R.E.1
Wang, L.2
Skoracki, R.3
Mathur, A.B.4
-
6
-
-
84879311028
-
Development of nanomaterials for bone repair and regeneration
-
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater. 2013;101(2):387-397.
-
(2013)
J Biomed Mater Res B Appl Biomater
, vol.101
, Issue.2
, pp. 387-397
-
-
McMahon, R.E.1
Wang, L.2
Skoracki, R.3
Mathur, A.B.4
-
7
-
-
84870330878
-
Nanoparticles and their potential for application in bone
-
Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine. 2012;7:4545-4557.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 4545-4557
-
-
Tautzenberger, A.1
Kovtun, A.2
Ignatius, A.3
-
8
-
-
84928484351
-
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
-
Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;(2) Article 14017.
-
(2014)
Bone Res
, Issue.2
-
-
Wang, P.1
Zhao, L.2
Liu, J.3
Weir, M.D.4
Zhou, X.5
Xu, H.H.6
-
9
-
-
78751697635
-
Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications
-
Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22-39.
-
(2011)
Nanomedicine
, vol.7
, Issue.1
, pp. 22-39
-
-
Simchi, A.1
Tamjid, E.2
Pishbin, F.3
Boccaccini, A.R.4
-
10
-
-
84890381496
-
Bone tissue engineering using 3D printing
-
Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496-504.
-
(2013)
Mater Today
, vol.16
, Issue.12
, pp. 496-504
-
-
Bose, S.1
Vahabzadeh, S.2
Bandyopadhyay, A.3
-
11
-
-
55749100987
-
Nanotechnology and nanomaterials: Promises for improved tissue regeneration
-
Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66-80.
-
(2009)
Nano Today
, vol.4
, Issue.1
, pp. 66-80
-
-
Zhang, L.1
Webster, T.J.2
-
12
-
-
84876463086
-
Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices
-
Shirwaiker RA, Samberg ME, Cohen PH, Wysk RA, Monteiro-Riviere NA. Nanomaterials and synergistic low-intensity direct current (LIDC) stimulation technology for orthopedic implantable medical devices. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):191-204.
-
(2013)
Wiley Interdiscip Rev Nanomed Nanobiotechnol
, vol.5
, Issue.3
, pp. 191-204
-
-
Shirwaiker, R.A.1
Samberg, M.E.2
Cohen, P.H.3
Wysk, R.A.4
Monteiro-Riviere, N.A.5
-
13
-
-
77954481625
-
Synthesis and characterization of collagen/hydroxyapatite: Magnetite composite material for bone cancer treatment
-
Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A. Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J Mater Sci Mater Med. 2010;21(7):2237-2242.
-
(2010)
J Mater Sci Mater Med
, vol.21
, Issue.7
, pp. 2237-2242
-
-
Andronescu, E.1
Ficai, M.2
Voicu, G.3
Ficai, D.4
Maganu, M.5
Ficai, A.6
-
14
-
-
84947648686
-
Active implant combining human stem cell microtissues and growth factors for bone-regenerative nanomedicine
-
Schiavi J, Keller L, Morand D-N, et al. Active implant combining human stem cell microtissues and growth factors for bone-regenerative nanomedicine. Nanomedicine. 2015;10(5):753-763.
-
(2015)
Nanomedicine
, vol.10
, Issue.5
, pp. 753-763
-
-
Schiavi, J.1
Keller, L.2
Morand, D.-N.3
-
15
-
-
84899903327
-
Chitosan-based scaffolds for bone tissue engineering
-
Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161-3184.
-
(2014)
J Mater Chem B
, vol.2
, Issue.21
, pp. 3161-3184
-
-
Levengood, S.1
Zhang, M.2
-
16
-
-
77956406108
-
Chitosan composites for bone tissue engineering-an overview
-
Venkatesan J, Kim S-K. Chitosan composites for bone tissue engineering-an overview. Mar Drugs. 2010;8(8):2252-2266.
-
(2010)
Mar Drugs
, vol.8
, Issue.8
, pp. 2252-2266
-
-
Venkatesan, J.1
Kim, S.-K.2
-
17
-
-
33846280901
-
Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells
-
Kim J, Kim IS, Cho TH, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830-1837.
-
(2007)
Biomaterials
, vol.28
, Issue.10
, pp. 1830-1837
-
-
Kim, J.1
Kim, I.S.2
Cho, T.H.3
-
18
-
-
77954383096
-
Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration
-
Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010;31(26):6772-6781.
-
(2010)
Biomaterials
, vol.31
, Issue.26
, pp. 6772-6781
-
-
Patterson, J.1
Siew, R.2
Herring, S.W.3
Lin, A.4
Guldberg, R.5
Stayton, P.S.6
-
19
-
-
84899680676
-
Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: Cartilage regeneration
-
Lee P, Tran K, Chang W, Shelke NB, Kumbar SG, Yu X. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. J Biomed Nanotechnol. 2014;10(8):1469-1479.
-
(2014)
J Biomed Nanotechnol
, vol.10
, Issue.8
, pp. 1469-1479
-
-
Lee, P.1
Tran, K.2
Chang, W.3
Shelke, N.B.4
Kumbar, S.G.5
Yu, X.6
-
20
-
-
84861622526
-
Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells
-
Correia C, Bhumiratana S, Yan L-P, et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 2012;8(7):2483-2492.
-
(2012)
Acta Biomater
, vol.8
, Issue.7
, pp. 2483-2492
-
-
Correia, C.1
Bhumiratana, S.2
Yan, L.-P.3
-
21
-
-
84904648794
-
Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration
-
Zhang W, Zhu C, Ye D, et al. Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration. PloS One. 2014;9(7):e102371.
-
(2014)
Plos One
, vol.9
, Issue.7
-
-
Zhang, W.1
Zhu, C.2
Ye, D.3
-
22
-
-
79961037608
-
In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery
-
Zhang Y, Fan W, Nothdurft L, et al. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Tissue Eng Part C Methods. 2011;17(8):789-797.
-
(2011)
Tissue Eng Part C Methods
, vol.17
, Issue.8
, pp. 789-797
-
-
Zhang, Y.1
Fan, W.2
Nothdurft, L.3
-
23
-
-
33749552865
-
Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold
-
Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007;28(2):316-325.
-
(2007)
Biomaterials
, vol.28
, Issue.2
, pp. 316-325
-
-
Xin, X.1
Hussain, M.2
Mao, J.J.3
-
24
-
-
10644242750
-
Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds
-
Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26(16):3075-3082.
-
(2005)
Biomaterials
, vol.26
, Issue.16
, pp. 3075-3082
-
-
Park, G.E.1
Pattison, M.A.2
Park, K.3
Webster, T.J.4
-
25
-
-
84895474183
-
An overview of poly(Lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering
-
Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640-3659.
-
(2014)
Int J Mol Sci
, vol.15
, Issue.3
, pp. 3640-3659
-
-
Gentile, P.1
Chiono, V.2
Carmagnola, I.3
Hatton, P.V.4
-
26
-
-
79959549546
-
Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites
-
Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites. Mater Lett. 2011;65(15-16):2530-2533.
-
(2011)
Mater Lett
, vol.65
, Issue.15-16
, pp. 2530-2533
-
-
Tamjid, E.1
Bagheri, R.2
Vossoughi, M.3
Simchi, A.4
-
27
-
-
80052129827
-
Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites
-
Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng C. 2011;31(7):1526-1533.
-
(2011)
Mater Sci Eng C
, vol.31
, Issue.7
, pp. 1526-1533
-
-
Tamjid, E.1
Bagheri, R.2
Vossoughi, M.3
Simchi, A.4
-
28
-
-
84891512464
-
Polycaprolactone scaffold engineered for sustained release of resveratrol: Therapeutic enhancement in bone tissue engineering
-
Kamath MS, Ahmed SSSJ, Dhanasekaran M, Santosh SW. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomedicine. 2014;9:183-195.
-
(2014)
Int J Nanomedicine
, vol.9
, pp. 183-195
-
-
Kamath, M.S.1
Ahmed, S.2
Dhanasekaran, M.3
Santosh, S.W.4
-
30
-
-
84870791066
-
Enhanced osteoblast responses to poly(Methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering
-
Xing ZC, Han SJ, Shin YS, et al. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering. J Biomater Sci Polym Ed. 2013;24(1):61-76.
-
(2013)
J Biomater Sci Polym Ed
, vol.24
, Issue.1
, pp. 61-76
-
-
Xing, Z.C.1
Han, S.J.2
Shin, Y.S.3
-
31
-
-
77952327337
-
Polymethylmethacrylate: Properties and contemporary uses in orthopaedics
-
Jaeblon T. Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18(5):297-305.
-
(2010)
J am Acad Orthop Surg
, vol.18
, Issue.5
, pp. 297-305
-
-
Jaeblon, T.1
-
32
-
-
84891716114
-
Poly (Lactic acid) production for tissue engineering applications
-
Lopes MS, Jardini AL, Filho RM. Poly (lactic acid) production for tissue engineering applications. Procedia Eng. 2012;42(0):1402-1413.
-
(2012)
Procedia Eng
, vol.42
, pp. 1402-1413
-
-
Lopes, M.S.1
Jardini, A.L.2
Filho, R.M.3
-
33
-
-
84897469526
-
Current strategies to improve the bioactivity of PEEK
-
Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014;15(4):5426-5445.
-
(2014)
Int J Mol Sci
, vol.15
, Issue.4
, pp. 5426-5445
-
-
Ma, R.1
Tang, T.2
-
34
-
-
84920749453
-
High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants
-
Evans NT, Torstrick FB, Lee CSD, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015;13(0):159-167.
-
(2015)
Acta Biomater
, vol.13
, pp. 159-167
-
-
Evans, N.T.1
Torstrick, F.B.2
Lee, C.3
-
35
-
-
84870320878
-
In vitro and in vivo studies of surface-structured implants for bone formation
-
Xia L, Feng B, Wang P, et al. In vitro and in vivo studies of surface-structured implants for bone formation. Int J Nanomedicine. 2012;7:4873.
-
(2012)
Int J Nanomedicine
, vol.7
, pp. 4873
-
-
Xia, L.1
Feng, B.2
Wang, P.3
-
36
-
-
84901291375
-
Nanostructured titanium-based materials for medical implants: Modeling and development
-
Mishnaevsky Jr L, Levashov E, Valiev RZ, et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater Sci Eng R Rep. 2014;81(0):1-19.
-
(2014)
Mater Sci Eng R Rep
, vol.81
, pp. 1-19
-
-
Mishnaevsky, L.1
Levashov, E.2
Valiev, R.Z.3
-
37
-
-
2342440651
-
Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo
-
Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731-4739.
-
(2004)
Biomaterials
, vol.25
, Issue.19
, pp. 4731-4739
-
-
Webster, T.J.1
Ejiofor, J.U.2
-
38
-
-
84876411301
-
Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue
-
Ryu JJ, Shrotriya P. Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue. Appl Surf Sci. 2013;273:536-541.
-
(2013)
Appl Surf Sci
, vol.273
, pp. 536-541
-
-
Ryu, J.J.1
Shrotriya, P.2
-
39
-
-
84875372006
-
Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability
-
Yamanaka K, Mori M, Chiba A. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability. Acta Biomater. 2013;9(4):6259-6267.
-
(2013)
Acta Biomater
, vol.9
, Issue.4
, pp. 6259-6267
-
-
Yamanaka, K.1
Mori, M.2
Chiba, A.3
-
40
-
-
79957901154
-
Antibacterial nano-structured titania coating incorporated with silver nanoparticles
-
Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32(24):5706-5716.
-
(2011)
Biomaterials
, vol.32
, Issue.24
, pp. 5706-5716
-
-
Zhao, L.1
Wang, H.2
Huo, K.3
-
41
-
-
84903266002
-
Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants
-
Esfandiari N, Simchi A, Bagheri R. Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants. J Biomed Mater Res A. 2014;102(8):2625-2635.
-
(2014)
J Biomed Mater Res A
, vol.102
, Issue.8
, pp. 2625-2635
-
-
Esfandiari, N.1
Simchi, A.2
Bagheri, R.3
-
42
-
-
84888646624
-
Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts
-
Pauksch L, Hartmann S, Rohnke M, et al. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014;10(1):439-449.
-
(2014)
Acta Biomater
, vol.10
, Issue.1
, pp. 439-449
-
-
Pauksch, L.1
Hartmann, S.2
Rohnke, M.3
-
43
-
-
84877750400
-
Intergranular corrosion resistance of nanostructured austenitic stainless steel
-
Krawczynska AT, Gloc M, Lublinska K. Intergranular corrosion resistance of nanostructured austenitic stainless steel. J Mater Sci. 2013;48(13):4517-4523.
-
(2013)
J Mater Sci
, vol.48
, Issue.13
, pp. 4517-4523
-
-
Krawczynska, A.T.1
Gloc, M.2
Lublinska, K.3
-
44
-
-
84934343235
-
Surface nanostructure formations in an AISI 316L stainless steel induced by pulsed electron beam treatment
-
Cai Y, Zhang K, Zhang Z, Dong J, Lei Y, Zhang T. Surface nanostructure formations in an AISI 316L stainless steel induced by pulsed electron beam treatment. J Nanomater. 2015;2015:5.
-
(2015)
J Nanomater
, vol.2015
, pp. 5
-
-
Cai, Y.1
Zhang, K.2
Zhang, Z.3
Dong, J.4
Lei, Y.5
Zhang, T.6
-
45
-
-
84903955338
-
Porous tantalum and tantalum oxide nanoparticles for regenerative medicine
-
Mohandas G, Oskolkov N, McMahon MT, Walczak P, Janowski M. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine. Acta Neurobiol Exp. 2014;74:188-196.
-
(2014)
Acta Neurobiol Exp
, vol.74
, pp. 188-196
-
-
Mohandas, G.1
Oskolkov, N.2
McMahon, M.T.3
Walczak, P.4
Janowski, M.5
-
46
-
-
84928156416
-
Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering
-
Zhou C, Deng C, Chen X, et al. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J Mech Behav Biomed Mater. 2015(0).
-
(2015)
J Mech Behav Biomed Mater
-
-
Zhou, C.1
Deng, C.2
Chen, X.3
-
47
-
-
84922229216
-
Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity
-
Bosco R, Iafisco M, Tampieri A, Jansen JA, Leeuwenburgh SCG, van den Beucken JJJP. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Appl Surf Sci. 2015;328(0):516-524.
-
(2015)
Appl Surf Sci
, vol.328
, pp. 516-524
-
-
Bosco, R.1
Iafisco, M.2
Tampieri, A.3
Jansen, J.A.4
Leeuwenburgh, S.5
Van Den Beucken, J.J.J.P.6
-
48
-
-
84873101462
-
Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential
-
Patel KD, El-Fiqi A, Lee H-HH-Y, et al. Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. J Mater Chem. 2012;22(47):24945-24956.
-
(2012)
J Mater Chem
, vol.22
, Issue.47
, pp. 24945-24956
-
-
Patel, K.D.1
El-Fiqi, A.2
Lee, H.-H.-Y.3
-
49
-
-
0038518249
-
Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina
-
Price RL, Haberstroh KM, Webster TJ. Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput. 2003;41(3):372-375.
-
(2003)
Med Biol Eng Comput
, vol.41
, Issue.3
, pp. 372-375
-
-
Price, R.L.1
Haberstroh, K.M.2
Webster, T.J.3
-
50
-
-
80053155807
-
Carbon nanostructures for orthopedic medical applications
-
Yang L, Zhang L, Webster TJ. Carbon nanostructures for orthopedic medical applications. Nanomedicine. 2011;6(7):1231-1244.
-
(2011)
Nanomedicine
, vol.6
, Issue.7
, pp. 1231-1244
-
-
Yang, L.1
Zhang, L.2
Webster, T.J.3
-
51
-
-
84886437375
-
Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering
-
Newman P, Minett A, Ellis-Behnke R, Zreiqat H. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 2013;9(8):1139-1158.
-
(2013)
Nanomedicine
, vol.9
, Issue.8
, pp. 1139-1158
-
-
Newman, P.1
Minett, A.2
Ellis-Behnke, R.3
Zreiqat, H.4
-
52
-
-
84924311212
-
The promising application of graphene oxide as coating materials in orthopedic implants: Preparation, characterization and cell behavior
-
Zhao C, Lu X, Zanden C, Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater. 2015;10(1):015019.
-
(2015)
Biomed Mater
, vol.10
, Issue.1
-
-
Zhao, C.1
Lu, X.2
Zanden, C.3
Liu, J.4
-
53
-
-
84887693294
-
Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture
-
Mansoorianfar M, Shokrgozar MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40(0):107-114.
-
(2013)
Diam Relat Mater
, vol.40
, pp. 107-114
-
-
Mansoorianfar, M.1
Shokrgozar, M.A.2
Mehrjoo, M.3
Tamjid, E.4
Simchi, A.5
-
54
-
-
84903264971
-
Obieta I. 16-Biomedical applications of ceramic nanocomposites
-
Banerjee R, Manna I, editors, UK: Woodhead Publishing
-
Garmendia N, Olalde B, Obieta I. 16-Biomedical applications of ceramic nanocomposites. In: Banerjee R, Manna I, editors. Ceramic Nanocomposites: Cambridge, UK: Woodhead Publishing; 2013:530-547.
-
(2013)
Ceramic Nanocomposites: Cambridge
, pp. 530-547
-
-
Garmendia, N.1
Olalde, B.2
-
55
-
-
84920652296
-
Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders
-
Gain AK, Zhang L, Liu W. Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders. Mater Des. 2015;67(0):136-144.
-
(2015)
Mater Des
, vol.67
, pp. 136-144
-
-
Gain, A.K.1
Zhang, L.2
Liu, W.3
-
56
-
-
84921835086
-
Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications
-
Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015;14(0):175-184.
-
(2015)
Acta Biomater
, vol.14
, pp. 175-184
-
-
Hickey, D.J.1
Ercan, B.2
Sun, L.3
Webster, T.J.4
-
57
-
-
84873407465
-
Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements
-
Liao CZ, Li K, Wong HM, Tong WY, Yeung KWK, Tjong SC. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater Sci Eng C. 2013;33(3):1380-1388.
-
(2013)
Mater Sci Eng C
, vol.33
, Issue.3
, pp. 1380-1388
-
-
Liao, C.Z.1
Li, K.2
Wong, H.M.3
Tong, W.Y.4
Yeung, K.W.K.5
Tjong, S.C.6
-
58
-
-
84876413787
-
Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings
-
Liu X, Mou Y, Wu S, Man HC. Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings. Appl Surf Sci. 2013;273(0):748-757.
-
(2013)
Appl Surf Sci
, vol.273
, pp. 748-757
-
-
Liu, X.1
Mou, Y.2
Wu, S.3
Man, H.C.4
-
59
-
-
84906668362
-
Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium
-
Yan Y, Zhang X, Huang Y, Ding Q, Pang X. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci. 2014;314(0):348-357.
-
(2014)
Appl Surf Sci
, vol.314
, pp. 348-357
-
-
Yan, Y.1
Zhang, X.2
Huang, Y.3
Ding, Q.4
Pang, X.5
-
60
-
-
84878324983
-
Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system
-
Pishbin F, Mourino V, Gilchrist JB, et al. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9(7):7469-7479.
-
(2013)
Acta Biomater
, vol.9
, Issue.7
, pp. 7469-7479
-
-
Pishbin, F.1
Mourino, V.2
Gilchrist, J.B.3
-
61
-
-
84877341536
-
Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA
-
Zhou C, Shi Q, Guo W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater interfaces. 2013;5(9):3847-3854.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, Issue.9
, pp. 3847-3854
-
-
Zhou, C.1
Shi, Q.2
Guo, W.3
-
62
-
-
84893205476
-
Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering
-
Cheng Y, Ramos D, Lee P, Liang D, Yu X, Kumbar SG. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. J Biomed Nanotechnol. 2014;10(2):287-298.
-
(2014)
J Biomed Nanotechnol
, vol.10
, Issue.2
, pp. 287-298
-
-
Cheng, Y.1
Ramos, D.2
Lee, P.3
Liang, D.4
Yu, X.5
Kumbar, S.G.6
-
63
-
-
12344265826
-
Bone reconstruction: From bioceramics to tissue engineering
-
El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87-101.
-
(2005)
Expert Rev Med Devices
, vol.2
, Issue.1
, pp. 87-101
-
-
El-Ghannam, A.1
-
64
-
-
84899889621
-
Biomimetic porous scaffolds for bone tissue engineering
-
Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80(0):1-36.
-
(2014)
Mater Sci Eng R Rep
, vol.80
, pp. 1-36
-
-
Wu, S.1
Liu, X.2
Yeung, K.3
Liu, C.4
Yang, X.5
-
65
-
-
0036368621
-
Bone regeneration graft materials
-
Hoexter DL. Bone regeneration graft materials. J Oral Implantol. 2002;28(6):290-294.
-
(2002)
J Oral Implantol
, vol.28
, Issue.6
, pp. 290-294
-
-
Hoexter, D.L.1
-
66
-
-
84884682307
-
Tissue engineering and regenerative medicine: Past, present, and future
-
Salgado AJ, Oliveira JM, Martins A, et al. Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol. 2013;108:1-33.
-
(2013)
Int Rev Neurobiol
, vol.108
, pp. 1-33
-
-
Salgado, A.J.1
Oliveira, J.M.2
Martins, A.3
-
67
-
-
84879607946
-
Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering
-
Thibault RA, Mikos AG, Kasper FK. Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthc Mater. 2013;2(1):13-24.
-
(2013)
Adv Healthc Mater
, vol.2
, Issue.1
, pp. 13-24
-
-
Thibault, R.A.1
Mikos, A.G.2
Kasper, F.K.3
-
68
-
-
42149178627
-
Biomaterials for bone tissue engineering
-
Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18-25.
-
(2008)
Mater Today
, vol.11
, Issue.5
, pp. 18-25
-
-
Stevens, M.M.1
-
71
-
-
84930230921
-
Engineering complex orthopaedic tissues via strategic biomimicry
-
Qu D, Mosher CZ, Boushell MK, Lu HH. Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng. 2014;3:3.
-
(2014)
Ann Biomed Eng
, vol.3
, pp. 3
-
-
Qu, D.1
Mosher, C.Z.2
Boushell, M.K.3
Lu, H.H.4
-
72
-
-
84870796456
-
Bone regeneration with BMP-2 delivered from keratose scaffolds
-
de Guzman RC, Saul JM, Ellenburg MD, et al. Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials. 2013;34(6):1644-1656.
-
(2013)
Biomaterials
, vol.34
, Issue.6
, pp. 1644-1656
-
-
de Guzman, R.C.1
Saul, J.M.2
Ellenburg, M.D.3
-
73
-
-
0025346401
-
Bone induction by osteogenin and bone morphogenetic proteins
-
Reddi AH, Cunningham NS. Bone induction by osteogenin and bone morphogenetic proteins. Biomaterials. 1990;11:33-34.
-
(1990)
Biomaterials
, vol.11
, pp. 33-34
-
-
Reddi, A.H.1
Cunningham, N.S.2
-
74
-
-
84924912880
-
Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications
-
Liu C, Wan P, Tan LL, Wang K, Yang K. Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications. J Orthop Translat. 2014;2(3):139-148.
-
(2014)
J Orthop Translat
, vol.2
, Issue.3
, pp. 139-148
-
-
Liu, C.1
Wan, P.2
Tan, L.L.3
Wang, K.4
Yang, K.5
-
75
-
-
84921950815
-
Surface characterization and cytotoxicity response of biodegradable magnesium alloys
-
Pompa L, Rahman ZU, Munoz E, Haider W. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Mater Sci Eng C. 2015;49(0):761-768.
-
(2015)
Mater Sci Eng C
, vol.49
, pp. 761-768
-
-
Pompa, L.1
Rahman, Z.U.2
Munoz, E.3
Haider, W.4
-
76
-
-
84881141775
-
Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants
-
Serra G, Morais L, Elias CN, et al. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater Sci Eng C. 2013;33(7):4197-4202.
-
(2013)
Mater Sci Eng C
, vol.33
, Issue.7
, pp. 4197-4202
-
-
Serra, G.1
Morais, L.2
Elias, C.N.3
-
77
-
-
78650729559
-
Accelerated stem cell attachment to ultrafine grained titanium
-
Estrin Y, Ivanova EP, Michalska A, Truong VK, Lapovok R, Boyd R. Accelerated stem cell attachment to ultrafine grained titanium. Acta Biomater. 2011;7(2):900-906.
-
(2011)
Acta Biomater
, vol.7
, Issue.2
, pp. 900-906
-
-
Estrin, Y.1
Ivanova, E.P.2
Michalska, A.3
Truong, V.K.4
Lapovok, R.5
Boyd, R.6
-
78
-
-
84872679298
-
Processing of an ultrafine-grained titanium by high-pressure torsion: An evaluation of the wear properties with and without a TiN coating
-
Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG. Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. J Mech Behav Biomed Mater. 2013;17(0):166-175.
-
(2013)
J Mech Behav Biomed Mater
, vol.17
, pp. 166-175
-
-
Wang, C.T.1
Gao, N.2
Gee, M.G.3
Wood, R.4
Langdon, T.G.5
-
79
-
-
70349152991
-
Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography
-
Park J-W, Kim Y-J, Park CH, et al. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 2009;5(8):3272-3280.
-
(2009)
Acta Biomater
, vol.5
, Issue.8
, pp. 3272-3280
-
-
Park, J.-W.1
Kim, Y.-J.2
Park, C.H.3
-
80
-
-
26844467958
-
Better osteoblast adhesion on nanoparticulate selenium-A promising orthopedic implant material
-
Perla V, Webster TJ. Better osteoblast adhesion on nanoparticulate selenium-A promising orthopedic implant material. J Biomed Mater Res A. 2005;75(2):356-364.
-
(2005)
J Biomed Mater Res A
, vol.75
, Issue.2
, pp. 356-364
-
-
Perla, V.1
Webster, T.J.2
-
81
-
-
77951543916
-
Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material
-
Tran PA, Sarin L, Hurt RH, Webster TJ. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A. 2010;93(4):1417-1428.
-
(2010)
J Biomed Mater Res A
, vol.93
, Issue.4
, pp. 1417-1428
-
-
Tran, P.A.1
Sarin, L.2
Hurt, R.H.3
Webster, T.J.4
-
82
-
-
85042589906
-
Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications
-
Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomedicine. 2008;3(3):391.
-
(2008)
Int J Nanomedicine
, vol.3
, Issue.3
, pp. 391
-
-
Tran, P.1
Webster, T.J.2
-
84
-
-
78751697635
-
Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications
-
Simchi A, Tamjid E, Pishbin F, Boccaccini A. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22-39.
-
(2011)
Nanomedicine
, vol.7
, Issue.1
, pp. 22-39
-
-
Simchi, A.1
Tamjid, E.2
Pishbin, F.3
Boccaccini, A.4
-
85
-
-
84455192027
-
Micromechanisms for improved fracture toughness in nanoceramics
-
Ovid’ko I, Sheinerman A. Micromechanisms for improved fracture toughness in nanoceramics. Rev Adv Mater Sci. 2011;29(2):105-125.
-
(2011)
Rev Adv Mater Sci
, vol.29
, Issue.2
, pp. 105-125
-
-
Ovid’Ko, I.1
Sheinerman, A.2
-
86
-
-
84871342931
-
Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna
-
Hafezi F, Hosseinnejad F, Fooladi A, Mohit Mafi S, Amiri A, Nourani M. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med. 2012;23(11):2783-2792.
-
(2012)
J Mater Sci Mater Med
, vol.23
, Issue.11
, pp. 2783-2792
-
-
Hafezi, F.1
Hosseinnejad, F.2
Fooladi, A.3
Mohit Mafi, S.4
Amiri, A.5
Nourani, M.6
-
87
-
-
84947613023
-
Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
-
Epub 2015 Apr 8
-
Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015. Epub 2015 Apr 8.
-
(2015)
Adv Drug Deliv Rev
-
-
Agarwal, R.1
García, A.J.2
-
88
-
-
84925884621
-
Antibacterial surface treatment for orthopaedic implants
-
Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849-13880.
-
(2014)
Int J Mol Sci
, vol.15
, Issue.8
, pp. 13849-13880
-
-
Gallo, J.1
Holinka, M.2
Moucha, C.S.3
-
90
-
-
84861203750
-
High-strength silk protein scaffolds for bone repair
-
Mandal BB, Grinberg A, Seok Gil E, Panilaitis B, Kaplan DL. High-strength silk protein scaffolds for bone repair. Proc Nat Acad Sci. 2012;109(20):7699-7704.
-
(2012)
Proc Nat Acad Sci
, vol.109
, Issue.20
, pp. 7699-7704
-
-
Mandal, B.B.1
Grinberg, A.2
Seok Gil, E.3
Panilaitis, B.4
Kaplan, D.L.5
-
91
-
-
84875923713
-
Nanocomposites for bone tissue regeneration
-
Sahoo NG, Pan YZ, Li L, He CB. Nanocomposites for bone tissue regeneration. Nanomedicine. 2013;8(4):639-653.
-
(2013)
Nanomedicine
, vol.8
, Issue.4
, pp. 639-653
-
-
Sahoo, N.G.1
Pan, Y.Z.2
Li, L.3
He, C.B.4
-
92
-
-
84922234924
-
3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications
-
Sadat-Shojai M, Khorasani M-T, Jamshidi A. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C. 2015;49(0):835-843.
-
(2015)
Mater Sci Eng C
, vol.49
, pp. 835-843
-
-
Sadat-Shojai, M.1
Khorasani, M.-T.2
Jamshidi, A.3
-
93
-
-
84892798333
-
Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite
-
Baradaran S, Moghaddam E, Basirun WJ, et al. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon. 2014;69(0):32-45.
-
(2014)
Carbon
, vol.69
, pp. 32-45
-
-
Baradaran, S.1
Moghaddam, E.2
Basirun, W.J.3
-
94
-
-
84868119126
-
Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds
-
Wu M, Wang Q, Liu X, Liu H. Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon. 2013;51(0):335-345.
-
(2013)
Carbon
, vol.51
, pp. 335-345
-
-
Wu, M.1
Wang, Q.2
Liu, X.3
Liu, H.4
-
95
-
-
0035371982
-
Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption
-
Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis Y. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22(11):1241-1251.
-
(2001)
Biomaterials
, vol.22
, Issue.11
, pp. 1241-1251
-
-
Deligianni, D.D.1
Katsala, N.2
Ladas, S.3
Sotiropoulou, D.4
Amedee, J.5
Missirlis, Y.6
-
96
-
-
36448947234
-
Surface modification of titanium implants using bioactive glasses with air abrasion technologies
-
Koller G, Cook RJ, Thompson ID, Watson TF, Di Silvio L. Surface modification of titanium implants using bioactive glasses with air abrasion technologies. J Mater Sci Mater Med. 2007;18(12):2291-2296.
-
(2007)
J Mater Sci Mater Med
, vol.18
, Issue.12
, pp. 2291-2296
-
-
Koller, G.1
Cook, R.J.2
Thompson, I.D.3
Watson, T.F.4
Di Silvio, L.5
-
97
-
-
84893368657
-
Interaction of progenitor bone cells with different surface modifications of titanium implant
-
Chen W-C, Chen Y-S, Ko C-L, Lin Y, Kuo T-H, Kuo H-N. Interaction of progenitor bone cells with different surface modifications of titanium implant. Mater Sci Eng C. 2014;37(0):305-313.
-
(2014)
Mater Sci Eng C
, vol.37
, pp. 305-313
-
-
Chen, W.-C.1
Chen, Y.-S.2
Ko, C.-L.3
Lin, Y.4
Kuo, T.-H.5
Kuo, H.-N.6
-
98
-
-
79951621704
-
Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives
-
Variola F, Brunski JB, Orsini G, de Oliveira PT, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 2011;3(2):335-353.
-
(2011)
Nanoscale
, vol.3
, Issue.2
, pp. 335-353
-
-
Variola, F.1
Brunski, J.B.2
Orsini, G.3
de Oliveira, P.T.4
Wazen, R.5
Nanci, A.6
-
99
-
-
84855525567
-
Surface modification of the titanium implant using TEA CO 2 laser pulses in controllable gas atmospheres-Comparative study
-
Ciganovic J, Stasic J, Gakovic B, et al. Surface modification of the titanium implant using TEA CO 2 laser pulses in controllable gas atmospheres-Comparative study. Appl Surf Sci. 2012;258(7):2741-2748.
-
(2012)
Appl Surf Sci
, vol.258
, Issue.7
, pp. 2741-2748
-
-
Ciganovic, J.1
Stasic, J.2
Gakovic, B.3
-
100
-
-
84893595491
-
Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants
-
Lorenzetti M, Biglino D, Novak S, Kobe S. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C. 2014;37(0):390-398.
-
(2014)
Mater Sci Eng C
, vol.37
, pp. 390-398
-
-
Lorenzetti, M.1
Biglino, D.2
Novak, S.3
Kobe, S.4
-
101
-
-
84925606145
-
Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures
-
Lin L, Wang H, Ni M, et al. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Translat. 2014;2(1):35-42.
-
(2014)
J Orthop Translat
, vol.2
, Issue.1
, pp. 35-42
-
-
Lin, L.1
Wang, H.2
Ni, M.3
-
102
-
-
1042287251
-
Improved biological performance of Ti implants due to surface modification by micro-arc oxidation
-
Li L-H, Kong Y-M, Kim H-W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25(14):2867-2875.
-
(2004)
Biomaterials
, vol.25
, Issue.14
, pp. 2867-2875
-
-
Li, L.-H.1
Kong, Y.-M.2
Kim, H.-W.3
-
103
-
-
84901056619
-
Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections
-
Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Mater Sci Eng C. 2014;41(0):240-248.
-
(2014)
Mater Sci Eng C
, vol.41
, pp. 240-248
-
-
Ordikhani, F.1
Tamjid, E.2
Simchi, A.3
-
104
-
-
77954312509
-
Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion
-
Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Asp. 2010;365(1-3):222-229.
-
(2010)
Colloids Surf a Physicochem Eng Asp
, vol.365
, Issue.1-3
, pp. 222-229
-
-
Rosales-Leal, J.I.1
Rodríguez-Valverde, M.A.2
Mazzaglia, G.3
-
105
-
-
84884412810
-
Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants
-
Wu S, Liu X, Yeung KW, et al. Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Technol. 2013;233:13-26.
-
(2013)
Surf Coat Technol
, vol.233
, pp. 13-26
-
-
Wu, S.1
Liu, X.2
Yeung, K.W.3
-
106
-
-
84925354721
-
A new complex ceramic coating with carbon nanotubes, hydroxyapatite and TiO2 nanotubes on Ti surface for biomedical applications
-
Prodana M, Duta M, Ionita D, et al. A new complex ceramic coating with carbon nanotubes, hydroxyapatite and TiO2 nanotubes on Ti surface for biomedical applications. Ceram Int. 2015;41(5, Part A):6318-6325.
-
(2015)
Ceram Int
, vol.41
, Issue.5
, pp. 6318-6325
-
-
Prodana, M.1
Duta, M.2
Ionita, D.3
-
107
-
-
84925082782
-
Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits
-
Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater. 2015;11(0):494-502.
-
(2015)
Acta Biomater
, vol.11
, pp. 494-502
-
-
Salou, L.1
Hoornaert, A.2
Louarn, G.3
Layrolle, P.4
-
108
-
-
84873465845
-
The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia
-
Prodanov L, Lamers E, Domanski M, Luttge R, Jansen JA, Walboomers XF. The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia. Biomaterials. 2013;34(12):2920-2927.
-
(2013)
Biomaterials
, vol.34
, Issue.12
, pp. 2920-2927
-
-
Prodanov, L.1
Lamers, E.2
Domanski, M.3
Luttge, R.4
Jansen, J.A.5
Walboomers, X.F.6
-
109
-
-
84903317160
-
Modification of implant material surface properties by means of oxide nano-structured coatings deposition
-
Safonov V, Zykova A, Smolik J, Rogowska R, Lukyanchenko V, Kolesnikov D. Modification of implant material surface properties by means of oxide nano-structured coatings deposition. Appl Surf Sci. 2014;310(0):174-179.
-
(2014)
Appl Surf Sci
, vol.310
, pp. 174-179
-
-
Safonov, V.1
Zykova, A.2
Smolik, J.3
Rogowska, R.4
Lukyanchenko, V.5
Kolesnikov, D.6
-
110
-
-
84909594679
-
Generation of functionalized polymer nanolayer on implant surface via initiated chemical vapor deposition (ICVD)
-
Park SW, Lee D, Lee HR, et al. Generation of functionalized polymer nanolayer on implant surface via initiated chemical vapor deposition (iCVD). J Colloid Interface Sci. 2015;439(0):34-41.
-
(2015)
J Colloid Interface Sci
, vol.439
, pp. 34-41
-
-
Park, S.W.1
Lee, D.2
Lee, H.R.3
-
111
-
-
84908170396
-
Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential
-
Ordikhani F, Simchi A. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl Surf Sci. 2014;317(0):56-66.
-
(2014)
Appl Surf Sci
, vol.317
, pp. 56-66
-
-
Ordikhani, F.1
Simchi, A.2
-
112
-
-
84887081819
-
A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants
-
Ahmed RA, Fekry AM, Farghali RA. A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants. Appl Surf Sci. 2013;285, Part B(0):309-316.
-
(2013)
Appl Surf Sci
, vol.285
, pp. 309-316
-
-
Ahmed, R.A.1
Fekry, A.M.2
Farghali, R.A.3
-
113
-
-
84923378552
-
Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity
-
Ordikhani F, Ramezani Farani M, Dehghani M, Tamjid E, Simchi A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84(0):91-102.
-
(2015)
Carbon
, vol.84
, pp. 91-102
-
-
Ordikhani, F.1
Ramezani Farani, M.2
Dehghani, M.3
Tamjid, E.4
Simchi, A.5
-
114
-
-
0242522346
-
The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants
-
Nguyen HQ, Deporter DA, Pilliar RM, Valiquette N, Yakubovich R. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials. 2004;25(5):865-876.
-
(2004)
Biomaterials
, vol.25
, Issue.5
, pp. 865-876
-
-
Nguyen, H.Q.1
Deporter, D.A.2
Pilliar, R.M.3
Valiquette, N.4
Yakubovich, R.5
-
115
-
-
84906781823
-
Biofunctional porous anodized titanium implants for enhanced bone regeneration
-
Shim IK, Chung HJ, Jung MR, et al. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A. 2014;102(10):3639-3648.
-
(2014)
J Biomed Mater Res A
, vol.102
, Issue.10
, pp. 3639-3648
-
-
Shim, I.K.1
Chung, H.J.2
Jung, M.R.3
-
116
-
-
84901056619
-
Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant associated infections
-
Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant associated infections. Mater Sci Eng C. 2014(41):240-248.
-
(2014)
Mater Sci Eng C
, Issue.41
, pp. 240-248
-
-
Ordikhani, F.1
Tamjid, E.2
Simchi, A.3
-
117
-
-
33846142467
-
Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material
-
Radin S, Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials. 2007;28(9):1721-1729.
-
(2007)
Biomaterials
, vol.28
, Issue.9
, pp. 1721-1729
-
-
Radin, S.1
Ducheyne, P.2
-
118
-
-
84899050472
-
Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants
-
Mattioli-Belmonte M, Cometa S, Ferretti C, et al. Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym. 2014;110(0):173-182.
-
(2014)
Carbohydr Polym
, vol.110
, pp. 173-182
-
-
Mattioli-Belmonte, M.1
Cometa, S.2
Ferretti, C.3
-
119
-
-
84883873284
-
In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections
-
Chennell P, Feschet-Chassot E, Devers T, Awitor KO, Descamps S, Sautou V. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int J Pharm. 2013;455(1-2):298-305.
-
(2013)
Int J Pharm
, vol.455
, Issue.1-2
, pp. 298-305
-
-
Chennell, P.1
Feschet-Chassot, E.2
Devers, T.3
Awitor, K.O.4
Descamps, S.5
Sautou, V.6
-
120
-
-
70849136593
-
Tiny medicine: Nanomaterial-based biosensors
-
Yun YH, Eteshola E, Bhattacharya A, et al. Tiny medicine: nanomaterial-based biosensors. Sensors (Basel). 2009;9(11):9275-9299.
-
(2009)
Sensors (Basel)
, vol.9
, Issue.11
, pp. 9275-9299
-
-
Yun, Y.H.1
Eteshola, E.2
Bhattacharya, A.3
-
122
-
-
1542530046
-
Advances toward bioapplications of carbon nanotubes
-
Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004;14(4):527-541.
-
(2004)
J Mater Chem
, vol.14
, Issue.4
, pp. 527-541
-
-
Lin, Y.1
Taylor, S.2
Li, H.3
-
123
-
-
0037022696
-
Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation
-
Supronowicz PR, Ajayan PM, Ullmann KR, Arulanandam BP, Metzger DW, Bizios R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J Biomed Mater Res. 2002;59(3):499-506.
-
(2002)
J Biomed Mater Res
, vol.59
, Issue.3
, pp. 499-506
-
-
Supronowicz, P.R.1
Ajayan, P.M.2
Ullmann, K.R.3
Arulanandam, B.P.4
Metzger, D.W.5
Bizios, R.6
-
124
-
-
47249105511
-
Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation
-
Sirinrath S, Thomas JW. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology. 2008;19(29):295101.
-
(2008)
Nanotechnology
, vol.19
, Issue.29
-
-
Sirinrath, S.1
Thomas, J.W.2
-
125
-
-
33947708859
-
A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding
-
Yun Y, Bange A, Heineman WR, et al. A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding. Sens Actuators B Chem. 2007;123(1):177-182.
-
(2007)
Sens Actuators B Chem
, vol.123
, Issue.1
, pp. 177-182
-
-
Yun, Y.1
Bange, A.2
Heineman, W.R.3
-
126
-
-
33645114820
-
Fabrication and characterization of carbon nanotube-titanium nitride composites with enhanced electrical and electrochemical properties
-
Jiang L, Gao L. Fabrication and characterization of carbon nanotube-titanium nitride composites with enhanced electrical and electrochemical properties. J Am Ceram Soc. 2006;89(1):156-161.
-
(2006)
J am Ceram Soc
, vol.89
, Issue.1
, pp. 156-161
-
-
Jiang, L.1
Gao, L.2
-
127
-
-
84897944597
-
Stem cell tracking using iron oxide nanoparticles
-
Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine. 2014;9:1641-1653.
-
(2014)
Int J Nanomedicine
, vol.9
, pp. 1641-1653
-
-
Bull, E.1
Madani, S.Y.2
Sheth, R.3
Seifalian, A.4
Green, M.5
Seifalian, A.M.6
-
128
-
-
84860137081
-
Orthopaedic applications of nanoparticle-based stem cell therapies
-
Wimpenny I, Markides H, El Haj AJ. Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther. 2012;3(2):13.
-
(2012)
Stem Cell Res Ther
, vol.3
, Issue.2
, pp. 13
-
-
Wimpenny, I.1
Markides, H.2
El Haj, A.J.3
-
129
-
-
66449111991
-
Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells
-
Hsieh MF, Li JK, Lin CA, et al. Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. J Nanosci Nanotechnol. 2009;9(4):2758-2762.
-
(2009)
J Nanosci Nanotechnol
, vol.9
, Issue.4
, pp. 2758-2762
-
-
Hsieh, M.F.1
Li, J.K.2
Lin, C.A.3
-
130
-
-
84869988600
-
Gold nanoparticles as computerized tomography (CT) contrast agents
-
Xi D, Dong S, Meng X, Lu Q, Meng L, Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2012;2(33):12515-12524.
-
(2012)
RSC Adv
, vol.2
, Issue.33
, pp. 12515-12524
-
-
Xi, D.1
Dong, S.2
Meng, X.3
Lu, Q.4
Meng, L.5
Ye, J.6
-
131
-
-
61649105001
-
Targeted gold nanoparticles enable molecular CT imaging of cancer
-
Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593-4596.
-
(2008)
Nano Lett
, vol.8
, Issue.12
, pp. 4593-4596
-
-
Popovtzer, R.1
Agrawal, A.2
Kotov, N.A.3
-
132
-
-
84878328951
-
Gold nanoparticle contrast agents in advanced X-ray imaging technologies
-
Ahn S, Jung S, Lee S. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules. 2013;18(5):5858-5890.
-
(2013)
Molecules
, vol.18
, Issue.5
, pp. 5858-5890
-
-
Ahn, S.1
Jung, S.2
Lee, S.3
-
133
-
-
84911915610
-
Magnetic resonance functional nano-hydroxyapatite incorporated poly(Caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI
-
Ganesh N, Ashokan A, Rajeshkannan R, Chennazhi K, Koyakutty M, Nair SV. Magnetic resonance functional nano-hydroxyapatite incorporated poly(caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI. Tissue Eng A. 2014;20(19-20):2783-2794.
-
(2014)
Tissue Eng A
, vol.20
, Issue.19-20
, pp. 2783-2794
-
-
Ganesh, N.1
Ashokan, A.2
Rajeshkannan, R.3
Chennazhi, K.4
Koyakutty, M.5
Nair, S.V.6
-
134
-
-
84975137330
-
Functional imaging in diagnostic of orthopedic implant-associated infections
-
Potapova I. Functional imaging in diagnostic of orthopedic implant-associated infections. Diagnostics. 2013;3(4):356.
-
(2013)
Diagnostics
, vol.3
, Issue.4
, pp. 356
-
-
Potapova, I.1
-
136
-
-
84897098015
-
Carbon nanotube chemiresistor for wireless pH sensing
-
Gou P, Kraut ND, Feigel IM, et al. Carbon nanotube chemiresistor for wireless pH sensing. Sci Rep. 2014;4:4468.
-
(2014)
Sci Rep
, vol.4
, pp. 4468
-
-
Gou, P.1
Kraut, N.D.2
Feigel, I.M.3
-
137
-
-
33846882630
-
Molecular pathogenesis of osteosarcoma
-
Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 2007;26(1):1-18.
-
(2007)
DNA Cell Biol
, vol.26
, Issue.1
, pp. 1-18
-
-
Kansara, M.1
Thomas, D.M.2
-
138
-
-
79953078905
-
Bone metastasis: Mechanisms and therapeutic opportunities
-
Suva LJ, Washam C, Nicholas RW, Griffin RJ. Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol. 2011;7(4):208-218.
-
(2011)
Nat Rev Endocrinol
, vol.7
, Issue.4
, pp. 208-218
-
-
Suva, L.J.1
Washam, C.2
Nicholas, R.W.3
Griffin, R.J.4
-
139
-
-
84868691970
-
In situ forming implants for local chemotherapy and hyperthermia of bone tumors
-
Mohamed M, Borchard G, Jordan O. In situ forming implants for local chemotherapy and hyperthermia of bone tumors. J Drug Deliv Sci Technol. 2012;22:393-408.
-
(2012)
J Drug Deliv Sci Technol
, vol.22
, pp. 393-408
-
-
Mohamed, M.1
Borchard, G.2
Jordan, O.3
-
140
-
-
33748291697
-
In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field
-
Li B, Jia D, Zhou Y, Hu Q, Cai W. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater. 2006;306(2):223-227.
-
(2006)
J Magn Magn Mater
, vol.306
, Issue.2
, pp. 223-227
-
-
Li, B.1
Jia, D.2
Zhou, Y.3
Hu, Q.4
Cai, W.5
-
141
-
-
27844431638
-
Preparation of three-dimensional nano-magnetite/chitosan rod
-
Hu Q, Chen F, Li B, Shen J. Preparation of three-dimensional nano-magnetite/chitosan rod. Mater Lett. 2006;60(3):368-370.
-
(2006)
Mater Lett
, vol.60
, Issue.3
, pp. 368-370
-
-
Hu, Q.1
Chen, F.2
Li, B.3
Shen, J.4
-
142
-
-
51149105067
-
Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer
-
Murakami S, Hosono T, Jeyadevan B, Kamitakahara M, Ioku K. Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J Ceram Soc Jpn. 2008;116(1357):950-954.
-
(2008)
J Ceram Soc Jpn
, vol.116
, Issue.1357
, pp. 950-954
-
-
Murakami, S.1
Hosono, T.2
Jeyadevan, B.3
Kamitakahara, M.4
Ioku, K.5
-
143
-
-
24944452398
-
Research strategies for safety evaluation of nanomaterials, part I: Evaluating the human health implications of exposure to nanoscale materials
-
Thomas K, Sayre P. Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci. 2005;87(2):316-321.
-
(2005)
Toxicol Sci
, vol.87
, Issue.2
, pp. 316-321
-
-
Thomas, K.1
Sayre, P.2
-
144
-
-
20644449754
-
Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles
-
Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-839.
-
(2005)
Environ Health Perspect
, vol.113
, Issue.7
, pp. 823-839
-
-
Oberdorster, G.1
Oberdorster, E.2
Oberdorster, J.3
-
145
-
-
78049462278
-
A review of selected engineered nanoparticles in the atmosphere: Sources, transformations, and techniques for sampling and analysis
-
Majestic BJ, Erdakos GB, Lewandowski M, et al. A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis. Int J Occup Environ Health. 2010;16(4):488-507.
-
(2010)
Int J Occup Environ Health
, vol.16
, Issue.4
, pp. 488-507
-
-
Majestic, B.J.1
Erdakos, G.B.2
Lewandowski, M.3
-
146
-
-
84931070634
-
Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment
-
Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. Nanomedicine. 2015;11(5):1285-1298.
-
(2015)
Nanomedicine
, vol.11
, Issue.5
, pp. 1285-1298
-
-
Madl, A.K.1
Kovochich, M.2
Liong, M.3
Finley, B.L.4
Paustenbach, D.J.5
Oberdörster, G.6
-
147
-
-
33750374618
-
Nanostructured biomaterials for tissue engineering bone
-
Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol. 2007;103:275-308.
-
(2007)
Adv Biochem Eng Biotechnol
, vol.103
, pp. 275-308
-
-
Webster, T.J.1
Ahn, E.S.2
-
148
-
-
84876699519
-
Nano-bio effects: Interaction of nanomaterials with cells
-
Cheng L-C, Jiang X, Wang J, Chen C, Liu R-S. Nano-bio effects: interaction of nanomaterials with cells. Nanoscale. 2013;5(9):3547-3569.
-
(2013)
Nanoscale
, vol.5
, Issue.9
, pp. 3547-3569
-
-
Cheng, L.-C.1
Jiang, X.2
Wang, J.3
Chen, C.4
Liu, R.-S.5
-
149
-
-
84864919690
-
Biocompatibility and toxicity of nanoparticles and nanotubes
-
Li X, Wang L, Fan Y, Feng Q, Cui F-Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:19.
-
(2012)
J Nanomater
, vol.2012
, pp. 19
-
-
Li, X.1
Wang, L.2
Fan, Y.3
Feng, Q.4
Cui, F.-Z.5
-
150
-
-
84856385247
-
Nanoparticles: A review of particle toxicology following inhalation exposure
-
Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012;24(2):125-135.
-
(2012)
Inhal Toxicol
, vol.24
, Issue.2
, pp. 125-135
-
-
Bakand, S.1
Hayes, A.2
Dechsakulthorn, F.3
-
151
-
-
79952109269
-
Nanotechnology and nanomaterials: Toxicology, risk assessment, and regulations
-
Fan AM, Alexeeff G. Nanotechnology and nanomaterials: toxicology, risk assessment, and regulations. J Nanosci Nanotechnol. 2010;10(12):8646-8657.
-
(2010)
J Nanosci Nanotechnol
, vol.10
, Issue.12
, pp. 8646-8657
-
-
Fan, A.M.1
Alexeeff, G.2
-
152
-
-
37549042771
-
Nanotoxicity: The growing need for in vivo study
-
Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18(6):565-571.
-
(2007)
Curr Opin Biotechnol
, vol.18
, Issue.6
, pp. 565-571
-
-
Fischer, H.C.1
Chan, W.C.2
-
153
-
-
34548645103
-
Nanomedicine: Real commercial potential or just hype?
-
Webster TJ. Nanomedicine: real commercial potential or just hype? Int J Nanomedicine. 2006;1(4):373-374.
-
(2006)
Int J Nanomedicine
, vol.1
, Issue.4
, pp. 373-374
-
-
Webster, T.J.1
-
154
-
-
84867658407
-
Nanotechnology in medicine: From inception to market domination
-
Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv. 2012;2012:7.
-
(2012)
J Drug Deliv
, vol.2012
, pp. 7
-
-
Morigi, V.1
Tocchio, A.2
Bellavite Pellegrini, C.3
Sakamoto, J.H.4
Arnone, M.5
Tasciotti, E.6
|