메뉴 건너뛰기




Volumn 10, Issue , 2015, Pages 6039-6054

Nanomedicine applications in orthopedic medicine: State of the art

Author keywords

Implantable materials; Nanomedicine; Nanotoxicology; Orthopedics; Tissue engineering

Indexed keywords

NANOCOATING; NANOMATERIAL; NANOTUBE; POLYMER;

EID: 84943146045     PISSN: 11769114     EISSN: 11782013     Source Type: Journal    
DOI: 10.2147/IJN.S73737     Document Type: Review
Times cited : (59)

References (154)
  • 1
    • 77953683770 scopus 로고    scopus 로고
    • Targeting nanoparticles to cancer
    • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90-99.
    • (2010) Pharmacol Res , vol.62 , Issue.2 , pp. 90-99
    • Wang, M.1    Thanou, M.2
  • 2
    • 33749599209 scopus 로고    scopus 로고
    • Nanomedicine for implants: A review of studies and necessary experimental tools
    • Liu H, Webster TJ. Nanomedicine for implants: a review of studies and necessary experimental tools. Biomaterials. 2007;28(2):354-369.
    • (2007) Biomaterials , vol.28 , Issue.2 , pp. 354-369
    • Liu, H.1    Webster, T.J.2
  • 7
    • 84870330878 scopus 로고    scopus 로고
    • Nanoparticles and their potential for application in bone
    • Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine. 2012;7:4545-4557.
    • (2012) Int J Nanomedicine , vol.7 , pp. 4545-4557
    • Tautzenberger, A.1    Kovtun, A.2    Ignatius, A.3
  • 8
    • 84928484351 scopus 로고    scopus 로고
    • Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells
    • Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH. Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res. 2014;(2) Article 14017.
    • (2014) Bone Res , Issue.2
    • Wang, P.1    Zhao, L.2    Liu, J.3    Weir, M.D.4    Zhou, X.5    Xu, H.H.6
  • 9
    • 78751697635 scopus 로고    scopus 로고
    • Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications
    • Simchi A, Tamjid E, Pishbin F, Boccaccini AR. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22-39.
    • (2011) Nanomedicine , vol.7 , Issue.1 , pp. 22-39
    • Simchi, A.1    Tamjid, E.2    Pishbin, F.3    Boccaccini, A.R.4
  • 10
    • 84890381496 scopus 로고    scopus 로고
    • Bone tissue engineering using 3D printing
    • Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Mater Today. 2013;16(12):496-504.
    • (2013) Mater Today , vol.16 , Issue.12 , pp. 496-504
    • Bose, S.1    Vahabzadeh, S.2    Bandyopadhyay, A.3
  • 11
    • 55749100987 scopus 로고    scopus 로고
    • Nanotechnology and nanomaterials: Promises for improved tissue regeneration
    • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4(1):66-80.
    • (2009) Nano Today , vol.4 , Issue.1 , pp. 66-80
    • Zhang, L.1    Webster, T.J.2
  • 13
    • 77954481625 scopus 로고    scopus 로고
    • Synthesis and characterization of collagen/hydroxyapatite: Magnetite composite material for bone cancer treatment
    • Andronescu E, Ficai M, Voicu G, Ficai D, Maganu M, Ficai A. Synthesis and characterization of collagen/hydroxyapatite: magnetite composite material for bone cancer treatment. J Mater Sci Mater Med. 2010;21(7):2237-2242.
    • (2010) J Mater Sci Mater Med , vol.21 , Issue.7 , pp. 2237-2242
    • Andronescu, E.1    Ficai, M.2    Voicu, G.3    Ficai, D.4    Maganu, M.5    Ficai, A.6
  • 14
    • 84947648686 scopus 로고    scopus 로고
    • Active implant combining human stem cell microtissues and growth factors for bone-regenerative nanomedicine
    • Schiavi J, Keller L, Morand D-N, et al. Active implant combining human stem cell microtissues and growth factors for bone-regenerative nanomedicine. Nanomedicine. 2015;10(5):753-763.
    • (2015) Nanomedicine , vol.10 , Issue.5 , pp. 753-763
    • Schiavi, J.1    Keller, L.2    Morand, D.-N.3
  • 15
    • 84899903327 scopus 로고    scopus 로고
    • Chitosan-based scaffolds for bone tissue engineering
    • Levengood SKL, Zhang M. Chitosan-based scaffolds for bone tissue engineering. J Mater Chem B. 2014;2(21):3161-3184.
    • (2014) J Mater Chem B , vol.2 , Issue.21 , pp. 3161-3184
    • Levengood, S.1    Zhang, M.2
  • 16
    • 77956406108 scopus 로고    scopus 로고
    • Chitosan composites for bone tissue engineering-an overview
    • Venkatesan J, Kim S-K. Chitosan composites for bone tissue engineering-an overview. Mar Drugs. 2010;8(8):2252-2266.
    • (2010) Mar Drugs , vol.8 , Issue.8 , pp. 2252-2266
    • Venkatesan, J.1    Kim, S.-K.2
  • 17
    • 33846280901 scopus 로고    scopus 로고
    • Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells
    • Kim J, Kim IS, Cho TH, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830-1837.
    • (2007) Biomaterials , vol.28 , Issue.10 , pp. 1830-1837
    • Kim, J.1    Kim, I.S.2    Cho, T.H.3
  • 18
    • 77954383096 scopus 로고    scopus 로고
    • Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration
    • Patterson J, Siew R, Herring SW, Lin ASP, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010;31(26):6772-6781.
    • (2010) Biomaterials , vol.31 , Issue.26 , pp. 6772-6781
    • Patterson, J.1    Siew, R.2    Herring, S.W.3    Lin, A.4    Guldberg, R.5    Stayton, P.S.6
  • 19
    • 84899680676 scopus 로고    scopus 로고
    • Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: Cartilage regeneration
    • Lee P, Tran K, Chang W, Shelke NB, Kumbar SG, Yu X. Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: cartilage regeneration. J Biomed Nanotechnol. 2014;10(8):1469-1479.
    • (2014) J Biomed Nanotechnol , vol.10 , Issue.8 , pp. 1469-1479
    • Lee, P.1    Tran, K.2    Chang, W.3    Shelke, N.B.4    Kumbar, S.G.5    Yu, X.6
  • 20
    • 84861622526 scopus 로고    scopus 로고
    • Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells
    • Correia C, Bhumiratana S, Yan L-P, et al. Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater. 2012;8(7):2483-2492.
    • (2012) Acta Biomater , vol.8 , Issue.7 , pp. 2483-2492
    • Correia, C.1    Bhumiratana, S.2    Yan, L.-P.3
  • 21
    • 84904648794 scopus 로고    scopus 로고
    • Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration
    • Zhang W, Zhu C, Ye D, et al. Porous silk scaffolds for delivery of growth factors and stem cells to enhance bone regeneration. PloS One. 2014;9(7):e102371.
    • (2014) Plos One , vol.9 , Issue.7
    • Zhang, W.1    Zhu, C.2    Ye, D.3
  • 22
    • 79961037608 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery
    • Zhang Y, Fan W, Nothdurft L, et al. In vitro and in vivo evaluation of adenovirus combined silk fibroin scaffolds for bone morphogenetic protein-7 gene delivery. Tissue Eng Part C Methods. 2011;17(8):789-797.
    • (2011) Tissue Eng Part C Methods , vol.17 , Issue.8 , pp. 789-797
    • Zhang, Y.1    Fan, W.2    Nothdurft, L.3
  • 23
    • 33749552865 scopus 로고    scopus 로고
    • Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold
    • Xin X, Hussain M, Mao JJ. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials. 2007;28(2):316-325.
    • (2007) Biomaterials , vol.28 , Issue.2 , pp. 316-325
    • Xin, X.1    Hussain, M.2    Mao, J.J.3
  • 24
    • 10644242750 scopus 로고    scopus 로고
    • Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds
    • Park GE, Pattison MA, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26(16):3075-3082.
    • (2005) Biomaterials , vol.26 , Issue.16 , pp. 3075-3082
    • Park, G.E.1    Pattison, M.A.2    Park, K.3    Webster, T.J.4
  • 25
    • 84895474183 scopus 로고    scopus 로고
    • An overview of poly(Lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering
    • Gentile P, Chiono V, Carmagnola I, Hatton PV. An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci. 2014;15(3):3640-3659.
    • (2014) Int J Mol Sci , vol.15 , Issue.3 , pp. 3640-3659
    • Gentile, P.1    Chiono, V.2    Carmagnola, I.3    Hatton, P.V.4
  • 26
    • 79959549546 scopus 로고    scopus 로고
    • Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites
    • Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites. Mater Lett. 2011;65(15-16):2530-2533.
    • (2011) Mater Lett , vol.65 , Issue.15-16 , pp. 2530-2533
    • Tamjid, E.1    Bagheri, R.2    Vossoughi, M.3    Simchi, A.4
  • 27
    • 80052129827 scopus 로고    scopus 로고
    • Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites
    • Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites. Mater Sci Eng C. 2011;31(7):1526-1533.
    • (2011) Mater Sci Eng C , vol.31 , Issue.7 , pp. 1526-1533
    • Tamjid, E.1    Bagheri, R.2    Vossoughi, M.3    Simchi, A.4
  • 28
    • 84891512464 scopus 로고    scopus 로고
    • Polycaprolactone scaffold engineered for sustained release of resveratrol: Therapeutic enhancement in bone tissue engineering
    • Kamath MS, Ahmed SSSJ, Dhanasekaran M, Santosh SW. Polycaprolactone scaffold engineered for sustained release of resveratrol: therapeutic enhancement in bone tissue engineering. Int J Nanomedicine. 2014;9:183-195.
    • (2014) Int J Nanomedicine , vol.9 , pp. 183-195
    • Kamath, M.S.1    Ahmed, S.2    Dhanasekaran, M.3    Santosh, S.W.4
  • 30
    • 84870791066 scopus 로고    scopus 로고
    • Enhanced osteoblast responses to poly(Methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering
    • Xing ZC, Han SJ, Shin YS, et al. Enhanced osteoblast responses to poly(methyl methacrylate)/hydroxyapatite electrospun nanocomposites for bone tissue engineering. J Biomater Sci Polym Ed. 2013;24(1):61-76.
    • (2013) J Biomater Sci Polym Ed , vol.24 , Issue.1 , pp. 61-76
    • Xing, Z.C.1    Han, S.J.2    Shin, Y.S.3
  • 31
    • 77952327337 scopus 로고    scopus 로고
    • Polymethylmethacrylate: Properties and contemporary uses in orthopaedics
    • Jaeblon T. Polymethylmethacrylate: properties and contemporary uses in orthopaedics. J Am Acad Orthop Surg. 2010;18(5):297-305.
    • (2010) J am Acad Orthop Surg , vol.18 , Issue.5 , pp. 297-305
    • Jaeblon, T.1
  • 32
    • 84891716114 scopus 로고    scopus 로고
    • Poly (Lactic acid) production for tissue engineering applications
    • Lopes MS, Jardini AL, Filho RM. Poly (lactic acid) production for tissue engineering applications. Procedia Eng. 2012;42(0):1402-1413.
    • (2012) Procedia Eng , vol.42 , pp. 1402-1413
    • Lopes, M.S.1    Jardini, A.L.2    Filho, R.M.3
  • 33
    • 84897469526 scopus 로고    scopus 로고
    • Current strategies to improve the bioactivity of PEEK
    • Ma R, Tang T. Current strategies to improve the bioactivity of PEEK. Int J Mol Sci. 2014;15(4):5426-5445.
    • (2014) Int J Mol Sci , vol.15 , Issue.4 , pp. 5426-5445
    • Ma, R.1    Tang, T.2
  • 34
    • 84920749453 scopus 로고    scopus 로고
    • High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants
    • Evans NT, Torstrick FB, Lee CSD, et al. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants. Acta Biomater. 2015;13(0):159-167.
    • (2015) Acta Biomater , vol.13 , pp. 159-167
    • Evans, N.T.1    Torstrick, F.B.2    Lee, C.3
  • 35
    • 84870320878 scopus 로고    scopus 로고
    • In vitro and in vivo studies of surface-structured implants for bone formation
    • Xia L, Feng B, Wang P, et al. In vitro and in vivo studies of surface-structured implants for bone formation. Int J Nanomedicine. 2012;7:4873.
    • (2012) Int J Nanomedicine , vol.7 , pp. 4873
    • Xia, L.1    Feng, B.2    Wang, P.3
  • 36
    • 84901291375 scopus 로고    scopus 로고
    • Nanostructured titanium-based materials for medical implants: Modeling and development
    • Mishnaevsky Jr L, Levashov E, Valiev RZ, et al. Nanostructured titanium-based materials for medical implants: Modeling and development. Mater Sci Eng R Rep. 2014;81(0):1-19.
    • (2014) Mater Sci Eng R Rep , vol.81 , pp. 1-19
    • Mishnaevsky, L.1    Levashov, E.2    Valiev, R.Z.3
  • 37
    • 2342440651 scopus 로고    scopus 로고
    • Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo
    • Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731-4739.
    • (2004) Biomaterials , vol.25 , Issue.19 , pp. 4731-4739
    • Webster, T.J.1    Ejiofor, J.U.2
  • 38
    • 84876411301 scopus 로고    scopus 로고
    • Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue
    • Ryu JJ, Shrotriya P. Influence of roughness on surface instability of medical grade cobalt-chromium alloy (CoCrMo) during contact corrosion-fatigue. Appl Surf Sci. 2013;273:536-541.
    • (2013) Appl Surf Sci , vol.273 , pp. 536-541
    • Ryu, J.J.1    Shrotriya, P.2
  • 39
    • 84875372006 scopus 로고    scopus 로고
    • Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability
    • Yamanaka K, Mori M, Chiba A. Nanoarchitectured Co-Cr-Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability. Acta Biomater. 2013;9(4):6259-6267.
    • (2013) Acta Biomater , vol.9 , Issue.4 , pp. 6259-6267
    • Yamanaka, K.1    Mori, M.2    Chiba, A.3
  • 40
    • 79957901154 scopus 로고    scopus 로고
    • Antibacterial nano-structured titania coating incorporated with silver nanoparticles
    • Zhao L, Wang H, Huo K, et al. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials. 2011;32(24):5706-5716.
    • (2011) Biomaterials , vol.32 , Issue.24 , pp. 5706-5716
    • Zhao, L.1    Wang, H.2    Huo, K.3
  • 41
    • 84903266002 scopus 로고    scopus 로고
    • Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants
    • Esfandiari N, Simchi A, Bagheri R. Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants. J Biomed Mater Res A. 2014;102(8):2625-2635.
    • (2014) J Biomed Mater Res A , vol.102 , Issue.8 , pp. 2625-2635
    • Esfandiari, N.1    Simchi, A.2    Bagheri, R.3
  • 42
    • 84888646624 scopus 로고    scopus 로고
    • Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts
    • Pauksch L, Hartmann S, Rohnke M, et al. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014;10(1):439-449.
    • (2014) Acta Biomater , vol.10 , Issue.1 , pp. 439-449
    • Pauksch, L.1    Hartmann, S.2    Rohnke, M.3
  • 43
    • 84877750400 scopus 로고    scopus 로고
    • Intergranular corrosion resistance of nanostructured austenitic stainless steel
    • Krawczynska AT, Gloc M, Lublinska K. Intergranular corrosion resistance of nanostructured austenitic stainless steel. J Mater Sci. 2013;48(13):4517-4523.
    • (2013) J Mater Sci , vol.48 , Issue.13 , pp. 4517-4523
    • Krawczynska, A.T.1    Gloc, M.2    Lublinska, K.3
  • 44
    • 84934343235 scopus 로고    scopus 로고
    • Surface nanostructure formations in an AISI 316L stainless steel induced by pulsed electron beam treatment
    • Cai Y, Zhang K, Zhang Z, Dong J, Lei Y, Zhang T. Surface nanostructure formations in an AISI 316L stainless steel induced by pulsed electron beam treatment. J Nanomater. 2015;2015:5.
    • (2015) J Nanomater , vol.2015 , pp. 5
    • Cai, Y.1    Zhang, K.2    Zhang, Z.3    Dong, J.4    Lei, Y.5    Zhang, T.6
  • 46
    • 84928156416 scopus 로고    scopus 로고
    • Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering
    • Zhou C, Deng C, Chen X, et al. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. J Mech Behav Biomed Mater. 2015(0).
    • (2015) J Mech Behav Biomed Mater
    • Zhou, C.1    Deng, C.2    Chen, X.3
  • 47
    • 84922229216 scopus 로고    scopus 로고
    • Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity
    • Bosco R, Iafisco M, Tampieri A, Jansen JA, Leeuwenburgh SCG, van den Beucken JJJP. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity. Appl Surf Sci. 2015;328(0):516-524.
    • (2015) Appl Surf Sci , vol.328 , pp. 516-524
    • Bosco, R.1    Iafisco, M.2    Tampieri, A.3    Jansen, J.A.4    Leeuwenburgh, S.5    Van Den Beucken, J.J.J.P.6
  • 48
    • 84873101462 scopus 로고    scopus 로고
    • Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential
    • Patel KD, El-Fiqi A, Lee H-HH-Y, et al. Chitosan-nanobioactive glass electrophoretic coatings with bone regenerative and drug delivering potential. J Mater Chem. 2012;22(47):24945-24956.
    • (2012) J Mater Chem , vol.22 , Issue.47 , pp. 24945-24956
    • Patel, K.D.1    El-Fiqi, A.2    Lee, H.-H.-Y.3
  • 49
    • 0038518249 scopus 로고    scopus 로고
    • Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina
    • Price RL, Haberstroh KM, Webster TJ. Enhanced functions of osteoblasts on nanostructured surfaces of carbon and alumina. Med Biol Eng Comput. 2003;41(3):372-375.
    • (2003) Med Biol Eng Comput , vol.41 , Issue.3 , pp. 372-375
    • Price, R.L.1    Haberstroh, K.M.2    Webster, T.J.3
  • 50
    • 80053155807 scopus 로고    scopus 로고
    • Carbon nanostructures for orthopedic medical applications
    • Yang L, Zhang L, Webster TJ. Carbon nanostructures for orthopedic medical applications. Nanomedicine. 2011;6(7):1231-1244.
    • (2011) Nanomedicine , vol.6 , Issue.7 , pp. 1231-1244
    • Yang, L.1    Zhang, L.2    Webster, T.J.3
  • 51
    • 84886437375 scopus 로고    scopus 로고
    • Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering
    • Newman P, Minett A, Ellis-Behnke R, Zreiqat H. Carbon nanotubes: their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine. 2013;9(8):1139-1158.
    • (2013) Nanomedicine , vol.9 , Issue.8 , pp. 1139-1158
    • Newman, P.1    Minett, A.2    Ellis-Behnke, R.3    Zreiqat, H.4
  • 52
    • 84924311212 scopus 로고    scopus 로고
    • The promising application of graphene oxide as coating materials in orthopedic implants: Preparation, characterization and cell behavior
    • Zhao C, Lu X, Zanden C, Liu J. The promising application of graphene oxide as coating materials in orthopedic implants: preparation, characterization and cell behavior. Biomed Mater. 2015;10(1):015019.
    • (2015) Biomed Mater , vol.10 , Issue.1
    • Zhao, C.1    Lu, X.2    Zanden, C.3    Liu, J.4
  • 53
    • 84887693294 scopus 로고    scopus 로고
    • Nanodiamonds for surface engineering of orthopedic implants: Enhanced biocompatibility in human osteosarcoma cell culture
    • Mansoorianfar M, Shokrgozar MA, Mehrjoo M, Tamjid E, Simchi A. Nanodiamonds for surface engineering of orthopedic implants: enhanced biocompatibility in human osteosarcoma cell culture. Diam Relat Mater. 2013;40(0):107-114.
    • (2013) Diam Relat Mater , vol.40 , pp. 107-114
    • Mansoorianfar, M.1    Shokrgozar, M.A.2    Mehrjoo, M.3    Tamjid, E.4    Simchi, A.5
  • 54
    • 84903264971 scopus 로고    scopus 로고
    • Obieta I. 16-Biomedical applications of ceramic nanocomposites
    • Banerjee R, Manna I, editors, UK: Woodhead Publishing
    • Garmendia N, Olalde B, Obieta I. 16-Biomedical applications of ceramic nanocomposites. In: Banerjee R, Manna I, editors. Ceramic Nanocomposites: Cambridge, UK: Woodhead Publishing; 2013:530-547.
    • (2013) Ceramic Nanocomposites: Cambridge , pp. 530-547
    • Garmendia, N.1    Olalde, B.2
  • 55
    • 84920652296 scopus 로고    scopus 로고
    • Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders
    • Gain AK, Zhang L, Liu W. Microstructure and material properties of porous hydroxyapatite-zirconia nanocomposites using polymethyl methacrylate powders. Mater Des. 2015;67(0):136-144.
    • (2015) Mater Des , vol.67 , pp. 136-144
    • Gain, A.K.1    Zhang, L.2    Liu, W.3
  • 56
    • 84921835086 scopus 로고    scopus 로고
    • Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications
    • Hickey DJ, Ercan B, Sun L, Webster TJ. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Acta Biomater. 2015;14(0):175-184.
    • (2015) Acta Biomater , vol.14 , pp. 175-184
    • Hickey, D.J.1    Ercan, B.2    Sun, L.3    Webster, T.J.4
  • 57
    • 84873407465 scopus 로고    scopus 로고
    • Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements
    • Liao CZ, Li K, Wong HM, Tong WY, Yeung KWK, Tjong SC. Novel polypropylene biocomposites reinforced with carbon nanotubes and hydroxyapatite nanorods for bone replacements. Mater Sci Eng C. 2013;33(3):1380-1388.
    • (2013) Mater Sci Eng C , vol.33 , Issue.3 , pp. 1380-1388
    • Liao, C.Z.1    Li, K.2    Wong, H.M.3    Tong, W.Y.4    Yeung, K.W.K.5    Tjong, S.C.6
  • 58
    • 84876413787 scopus 로고    scopus 로고
    • Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings
    • Liu X, Mou Y, Wu S, Man HC. Synthesis of silver-incorporated hydroxyapatite nanocomposites for antimicrobial implant coatings. Appl Surf Sci. 2013;273(0):748-757.
    • (2013) Appl Surf Sci , vol.273 , pp. 748-757
    • Liu, X.1    Mou, Y.2    Wu, S.3    Man, H.C.4
  • 59
    • 84906668362 scopus 로고    scopus 로고
    • Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium
    • Yan Y, Zhang X, Huang Y, Ding Q, Pang X. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci. 2014;314(0):348-357.
    • (2014) Appl Surf Sci , vol.314 , pp. 348-357
    • Yan, Y.1    Zhang, X.2    Huang, Y.3    Ding, Q.4    Pang, X.5
  • 60
    • 84878324983 scopus 로고    scopus 로고
    • Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system
    • Pishbin F, Mourino V, Gilchrist JB, et al. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9(7):7469-7479.
    • (2013) Acta Biomater , vol.9 , Issue.7 , pp. 7469-7479
    • Pishbin, F.1    Mourino, V.2    Gilchrist, J.B.3
  • 61
    • 84877341536 scopus 로고    scopus 로고
    • Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA
    • Zhou C, Shi Q, Guo W, et al. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl Mater interfaces. 2013;5(9):3847-3854.
    • (2013) ACS Appl Mater Interfaces , vol.5 , Issue.9 , pp. 3847-3854
    • Zhou, C.1    Shi, Q.2    Guo, W.3
  • 62
    • 84893205476 scopus 로고    scopus 로고
    • Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering
    • Cheng Y, Ramos D, Lee P, Liang D, Yu X, Kumbar SG. Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. J Biomed Nanotechnol. 2014;10(2):287-298.
    • (2014) J Biomed Nanotechnol , vol.10 , Issue.2 , pp. 287-298
    • Cheng, Y.1    Ramos, D.2    Lee, P.3    Liang, D.4    Yu, X.5    Kumbar, S.G.6
  • 63
    • 12344265826 scopus 로고    scopus 로고
    • Bone reconstruction: From bioceramics to tissue engineering
    • El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2(1):87-101.
    • (2005) Expert Rev Med Devices , vol.2 , Issue.1 , pp. 87-101
    • El-Ghannam, A.1
  • 64
    • 84899889621 scopus 로고    scopus 로고
    • Biomimetic porous scaffolds for bone tissue engineering
    • Wu S, Liu X, Yeung KWK, Liu C, Yang X. Biomimetic porous scaffolds for bone tissue engineering. Mater Sci Eng R Rep. 2014;80(0):1-36.
    • (2014) Mater Sci Eng R Rep , vol.80 , pp. 1-36
    • Wu, S.1    Liu, X.2    Yeung, K.3    Liu, C.4    Yang, X.5
  • 65
    • 0036368621 scopus 로고    scopus 로고
    • Bone regeneration graft materials
    • Hoexter DL. Bone regeneration graft materials. J Oral Implantol. 2002;28(6):290-294.
    • (2002) J Oral Implantol , vol.28 , Issue.6 , pp. 290-294
    • Hoexter, D.L.1
  • 66
    • 84884682307 scopus 로고    scopus 로고
    • Tissue engineering and regenerative medicine: Past, present, and future
    • Salgado AJ, Oliveira JM, Martins A, et al. Tissue engineering and regenerative medicine: past, present, and future. Int Rev Neurobiol. 2013;108:1-33.
    • (2013) Int Rev Neurobiol , vol.108 , pp. 1-33
    • Salgado, A.J.1    Oliveira, J.M.2    Martins, A.3
  • 67
    • 84879607946 scopus 로고    scopus 로고
    • Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering
    • Thibault RA, Mikos AG, Kasper FK. Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthc Mater. 2013;2(1):13-24.
    • (2013) Adv Healthc Mater , vol.2 , Issue.1 , pp. 13-24
    • Thibault, R.A.1    Mikos, A.G.2    Kasper, F.K.3
  • 68
    • 42149178627 scopus 로고    scopus 로고
    • Biomaterials for bone tissue engineering
    • Stevens MM. Biomaterials for bone tissue engineering. Mater Today. 2008;11(5):18-25.
    • (2008) Mater Today , vol.11 , Issue.5 , pp. 18-25
    • Stevens, M.M.1
  • 71
    • 84930230921 scopus 로고    scopus 로고
    • Engineering complex orthopaedic tissues via strategic biomimicry
    • Qu D, Mosher CZ, Boushell MK, Lu HH. Engineering complex orthopaedic tissues via strategic biomimicry. Ann Biomed Eng. 2014;3:3.
    • (2014) Ann Biomed Eng , vol.3 , pp. 3
    • Qu, D.1    Mosher, C.Z.2    Boushell, M.K.3    Lu, H.H.4
  • 72
    • 84870796456 scopus 로고    scopus 로고
    • Bone regeneration with BMP-2 delivered from keratose scaffolds
    • de Guzman RC, Saul JM, Ellenburg MD, et al. Bone regeneration with BMP-2 delivered from keratose scaffolds. Biomaterials. 2013;34(6):1644-1656.
    • (2013) Biomaterials , vol.34 , Issue.6 , pp. 1644-1656
    • de Guzman, R.C.1    Saul, J.M.2    Ellenburg, M.D.3
  • 73
    • 0025346401 scopus 로고
    • Bone induction by osteogenin and bone morphogenetic proteins
    • Reddi AH, Cunningham NS. Bone induction by osteogenin and bone morphogenetic proteins. Biomaterials. 1990;11:33-34.
    • (1990) Biomaterials , vol.11 , pp. 33-34
    • Reddi, A.H.1    Cunningham, N.S.2
  • 74
    • 84924912880 scopus 로고    scopus 로고
    • Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications
    • Liu C, Wan P, Tan LL, Wang K, Yang K. Preclinical investigation of an innovative magnesium-based bone graft substitute for potential orthopaedic applications. J Orthop Translat. 2014;2(3):139-148.
    • (2014) J Orthop Translat , vol.2 , Issue.3 , pp. 139-148
    • Liu, C.1    Wan, P.2    Tan, L.L.3    Wang, K.4    Yang, K.5
  • 75
    • 84921950815 scopus 로고    scopus 로고
    • Surface characterization and cytotoxicity response of biodegradable magnesium alloys
    • Pompa L, Rahman ZU, Munoz E, Haider W. Surface characterization and cytotoxicity response of biodegradable magnesium alloys. Mater Sci Eng C. 2015;49(0):761-768.
    • (2015) Mater Sci Eng C , vol.49 , pp. 761-768
    • Pompa, L.1    Rahman, Z.U.2    Munoz, E.3    Haider, W.4
  • 76
    • 84881141775 scopus 로고    scopus 로고
    • Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants
    • Serra G, Morais L, Elias CN, et al. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants. Mater Sci Eng C. 2013;33(7):4197-4202.
    • (2013) Mater Sci Eng C , vol.33 , Issue.7 , pp. 4197-4202
    • Serra, G.1    Morais, L.2    Elias, C.N.3
  • 78
    • 84872679298 scopus 로고    scopus 로고
    • Processing of an ultrafine-grained titanium by high-pressure torsion: An evaluation of the wear properties with and without a TiN coating
    • Wang CT, Gao N, Gee MG, Wood RJK, Langdon TG. Processing of an ultrafine-grained titanium by high-pressure torsion: an evaluation of the wear properties with and without a TiN coating. J Mech Behav Biomed Mater. 2013;17(0):166-175.
    • (2013) J Mech Behav Biomed Mater , vol.17 , pp. 166-175
    • Wang, C.T.1    Gao, N.2    Gee, M.G.3    Wood, R.4    Langdon, T.G.5
  • 79
    • 70349152991 scopus 로고    scopus 로고
    • Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography
    • Park J-W, Kim Y-J, Park CH, et al. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography. Acta Biomater. 2009;5(8):3272-3280.
    • (2009) Acta Biomater , vol.5 , Issue.8 , pp. 3272-3280
    • Park, J.-W.1    Kim, Y.-J.2    Park, C.H.3
  • 80
    • 26844467958 scopus 로고    scopus 로고
    • Better osteoblast adhesion on nanoparticulate selenium-A promising orthopedic implant material
    • Perla V, Webster TJ. Better osteoblast adhesion on nanoparticulate selenium-A promising orthopedic implant material. J Biomed Mater Res A. 2005;75(2):356-364.
    • (2005) J Biomed Mater Res A , vol.75 , Issue.2 , pp. 356-364
    • Perla, V.1    Webster, T.J.2
  • 81
    • 77951543916 scopus 로고    scopus 로고
    • Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material
    • Tran PA, Sarin L, Hurt RH, Webster TJ. Titanium surfaces with adherent selenium nanoclusters as a novel anticancer orthopedic material. J Biomed Mater Res A. 2010;93(4):1417-1428.
    • (2010) J Biomed Mater Res A , vol.93 , Issue.4 , pp. 1417-1428
    • Tran, P.A.1    Sarin, L.2    Hurt, R.H.3    Webster, T.J.4
  • 82
    • 85042589906 scopus 로고    scopus 로고
    • Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications
    • Tran P, Webster TJ. Enhanced osteoblast adhesion on nanostructured selenium compacts for anti-cancer orthopedic applications. Int J Nanomedicine. 2008;3(3):391.
    • (2008) Int J Nanomedicine , vol.3 , Issue.3 , pp. 391
    • Tran, P.1    Webster, T.J.2
  • 83
    • 0011317091 scopus 로고    scopus 로고
    • Nanostructured ceramics for biomedical implants
    • Catledge SA, Fries MD, Vohra YK, et al. Nanostructured ceramics for biomedical implants. J Nanosci Nanotechnol. 2002;2(3-4):293-312.
    • (2002) J Nanosci Nanotechnol , vol.2 , Issue.3-4 , pp. 293-312
    • Catledge, S.A.1    Fries, M.D.2    Vohra, Y.K.3
  • 84
    • 78751697635 scopus 로고    scopus 로고
    • Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications
    • Simchi A, Tamjid E, Pishbin F, Boccaccini A. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine. 2011;7(1):22-39.
    • (2011) Nanomedicine , vol.7 , Issue.1 , pp. 22-39
    • Simchi, A.1    Tamjid, E.2    Pishbin, F.3    Boccaccini, A.4
  • 85
    • 84455192027 scopus 로고    scopus 로고
    • Micromechanisms for improved fracture toughness in nanoceramics
    • Ovid’ko I, Sheinerman A. Micromechanisms for improved fracture toughness in nanoceramics. Rev Adv Mater Sci. 2011;29(2):105-125.
    • (2011) Rev Adv Mater Sci , vol.29 , Issue.2 , pp. 105-125
    • Ovid’Ko, I.1    Sheinerman, A.2
  • 86
    • 84871342931 scopus 로고    scopus 로고
    • Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna
    • Hafezi F, Hosseinnejad F, Fooladi A, Mohit Mafi S, Amiri A, Nourani M. Transplantation of nano-bioglass/gelatin scaffold in a non-autogenous setting for bone regeneration in a rabbit ulna. J Mater Sci Mater Med. 2012;23(11):2783-2792.
    • (2012) J Mater Sci Mater Med , vol.23 , Issue.11 , pp. 2783-2792
    • Hafezi, F.1    Hosseinnejad, F.2    Fooladi, A.3    Mohit Mafi, S.4    Amiri, A.5    Nourani, M.6
  • 87
    • 84947613023 scopus 로고    scopus 로고
    • Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair
    • Epub 2015 Apr 8
    • Agarwal R, García AJ. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev. 2015. Epub 2015 Apr 8.
    • (2015) Adv Drug Deliv Rev
    • Agarwal, R.1    García, A.J.2
  • 88
    • 84925884621 scopus 로고    scopus 로고
    • Antibacterial surface treatment for orthopaedic implants
    • Gallo J, Holinka M, Moucha CS. Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci. 2014;15(8):13849-13880.
    • (2014) Int J Mol Sci , vol.15 , Issue.8 , pp. 13849-13880
    • Gallo, J.1    Holinka, M.2    Moucha, C.S.3
  • 91
    • 84875923713 scopus 로고    scopus 로고
    • Nanocomposites for bone tissue regeneration
    • Sahoo NG, Pan YZ, Li L, He CB. Nanocomposites for bone tissue regeneration. Nanomedicine. 2013;8(4):639-653.
    • (2013) Nanomedicine , vol.8 , Issue.4 , pp. 639-653
    • Sahoo, N.G.1    Pan, Y.Z.2    Li, L.3    He, C.B.4
  • 92
    • 84922234924 scopus 로고    scopus 로고
    • 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications
    • Sadat-Shojai M, Khorasani M-T, Jamshidi A. 3-Dimensional cell-laden nano-hydroxyapatite/protein hydrogels for bone regeneration applications. Mater Sci Eng C. 2015;49(0):835-843.
    • (2015) Mater Sci Eng C , vol.49 , pp. 835-843
    • Sadat-Shojai, M.1    Khorasani, M.-T.2    Jamshidi, A.3
  • 93
    • 84892798333 scopus 로고    scopus 로고
    • Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite
    • Baradaran S, Moghaddam E, Basirun WJ, et al. Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon. 2014;69(0):32-45.
    • (2014) Carbon , vol.69 , pp. 32-45
    • Baradaran, S.1    Moghaddam, E.2    Basirun, W.J.3
  • 94
    • 84868119126 scopus 로고    scopus 로고
    • Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds
    • Wu M, Wang Q, Liu X, Liu H. Biomimetic synthesis and characterization of carbon nanofiber/hydroxyapatite composite scaffolds. Carbon. 2013;51(0):335-345.
    • (2013) Carbon , vol.51 , pp. 335-345
    • Wu, M.1    Wang, Q.2    Liu, X.3    Liu, H.4
  • 95
    • 0035371982 scopus 로고    scopus 로고
    • Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption
    • Deligianni DD, Katsala N, Ladas S, Sotiropoulou D, Amedee J, Missirlis Y. Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption. Biomaterials. 2001;22(11):1241-1251.
    • (2001) Biomaterials , vol.22 , Issue.11 , pp. 1241-1251
    • Deligianni, D.D.1    Katsala, N.2    Ladas, S.3    Sotiropoulou, D.4    Amedee, J.5    Missirlis, Y.6
  • 96
    • 36448947234 scopus 로고    scopus 로고
    • Surface modification of titanium implants using bioactive glasses with air abrasion technologies
    • Koller G, Cook RJ, Thompson ID, Watson TF, Di Silvio L. Surface modification of titanium implants using bioactive glasses with air abrasion technologies. J Mater Sci Mater Med. 2007;18(12):2291-2296.
    • (2007) J Mater Sci Mater Med , vol.18 , Issue.12 , pp. 2291-2296
    • Koller, G.1    Cook, R.J.2    Thompson, I.D.3    Watson, T.F.4    Di Silvio, L.5
  • 97
    • 84893368657 scopus 로고    scopus 로고
    • Interaction of progenitor bone cells with different surface modifications of titanium implant
    • Chen W-C, Chen Y-S, Ko C-L, Lin Y, Kuo T-H, Kuo H-N. Interaction of progenitor bone cells with different surface modifications of titanium implant. Mater Sci Eng C. 2014;37(0):305-313.
    • (2014) Mater Sci Eng C , vol.37 , pp. 305-313
    • Chen, W.-C.1    Chen, Y.-S.2    Ko, C.-L.3    Lin, Y.4    Kuo, T.-H.5    Kuo, H.-N.6
  • 98
    • 79951621704 scopus 로고    scopus 로고
    • Nanoscale surface modifications of medically relevant metals: State-of-the art and perspectives
    • Variola F, Brunski JB, Orsini G, de Oliveira PT, Wazen R, Nanci A. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 2011;3(2):335-353.
    • (2011) Nanoscale , vol.3 , Issue.2 , pp. 335-353
    • Variola, F.1    Brunski, J.B.2    Orsini, G.3    de Oliveira, P.T.4    Wazen, R.5    Nanci, A.6
  • 99
    • 84855525567 scopus 로고    scopus 로고
    • Surface modification of the titanium implant using TEA CO 2 laser pulses in controllable gas atmospheres-Comparative study
    • Ciganovic J, Stasic J, Gakovic B, et al. Surface modification of the titanium implant using TEA CO 2 laser pulses in controllable gas atmospheres-Comparative study. Appl Surf Sci. 2012;258(7):2741-2748.
    • (2012) Appl Surf Sci , vol.258 , Issue.7 , pp. 2741-2748
    • Ciganovic, J.1    Stasic, J.2    Gakovic, B.3
  • 100
    • 84893595491 scopus 로고    scopus 로고
    • Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants
    • Lorenzetti M, Biglino D, Novak S, Kobe S. Photoinduced properties of nanocrystalline TiO2-anatase coating on Ti-based bone implants. Mater Sci Eng C. 2014;37(0):390-398.
    • (2014) Mater Sci Eng C , vol.37 , pp. 390-398
    • Lorenzetti, M.1    Biglino, D.2    Novak, S.3    Kobe, S.4
  • 101
    • 84925606145 scopus 로고    scopus 로고
    • Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures
    • Lin L, Wang H, Ni M, et al. Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Translat. 2014;2(1):35-42.
    • (2014) J Orthop Translat , vol.2 , Issue.1 , pp. 35-42
    • Lin, L.1    Wang, H.2    Ni, M.3
  • 102
    • 1042287251 scopus 로고    scopus 로고
    • Improved biological performance of Ti implants due to surface modification by micro-arc oxidation
    • Li L-H, Kong Y-M, Kim H-W, et al. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials. 2004;25(14):2867-2875.
    • (2004) Biomaterials , vol.25 , Issue.14 , pp. 2867-2875
    • Li, L.-H.1    Kong, Y.-M.2    Kim, H.-W.3
  • 103
    • 84901056619 scopus 로고    scopus 로고
    • Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections
    • Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Mater Sci Eng C. 2014;41(0):240-248.
    • (2014) Mater Sci Eng C , vol.41 , pp. 240-248
    • Ordikhani, F.1    Tamjid, E.2    Simchi, A.3
  • 104
    • 77954312509 scopus 로고    scopus 로고
    • Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion
    • Rosales-Leal JI, Rodríguez-Valverde MA, Mazzaglia G, et al. Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surf A Physicochem Eng Asp. 2010;365(1-3):222-229.
    • (2010) Colloids Surf a Physicochem Eng Asp , vol.365 , Issue.1-3 , pp. 222-229
    • Rosales-Leal, J.I.1    Rodríguez-Valverde, M.A.2    Mazzaglia, G.3
  • 105
    • 84884412810 scopus 로고    scopus 로고
    • Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants
    • Wu S, Liu X, Yeung KW, et al. Surface nano-architectures and their effects on the mechanical properties and corrosion behavior of Ti-based orthopedic implants. Surf Coat Technol. 2013;233:13-26.
    • (2013) Surf Coat Technol , vol.233 , pp. 13-26
    • Wu, S.1    Liu, X.2    Yeung, K.W.3
  • 106
    • 84925354721 scopus 로고    scopus 로고
    • A new complex ceramic coating with carbon nanotubes, hydroxyapatite and TiO2 nanotubes on Ti surface for biomedical applications
    • Prodana M, Duta M, Ionita D, et al. A new complex ceramic coating with carbon nanotubes, hydroxyapatite and TiO2 nanotubes on Ti surface for biomedical applications. Ceram Int. 2015;41(5, Part A):6318-6325.
    • (2015) Ceram Int , vol.41 , Issue.5 , pp. 6318-6325
    • Prodana, M.1    Duta, M.2    Ionita, D.3
  • 107
    • 84925082782 scopus 로고    scopus 로고
    • Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits
    • Salou L, Hoornaert A, Louarn G, Layrolle P. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. Acta Biomater. 2015;11(0):494-502.
    • (2015) Acta Biomater , vol.11 , pp. 494-502
    • Salou, L.1    Hoornaert, A.2    Louarn, G.3    Layrolle, P.4
  • 108
    • 84873465845 scopus 로고    scopus 로고
    • The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia
    • Prodanov L, Lamers E, Domanski M, Luttge R, Jansen JA, Walboomers XF. The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia. Biomaterials. 2013;34(12):2920-2927.
    • (2013) Biomaterials , vol.34 , Issue.12 , pp. 2920-2927
    • Prodanov, L.1    Lamers, E.2    Domanski, M.3    Luttge, R.4    Jansen, J.A.5    Walboomers, X.F.6
  • 109
    • 84903317160 scopus 로고    scopus 로고
    • Modification of implant material surface properties by means of oxide nano-structured coatings deposition
    • Safonov V, Zykova A, Smolik J, Rogowska R, Lukyanchenko V, Kolesnikov D. Modification of implant material surface properties by means of oxide nano-structured coatings deposition. Appl Surf Sci. 2014;310(0):174-179.
    • (2014) Appl Surf Sci , vol.310 , pp. 174-179
    • Safonov, V.1    Zykova, A.2    Smolik, J.3    Rogowska, R.4    Lukyanchenko, V.5    Kolesnikov, D.6
  • 110
    • 84909594679 scopus 로고    scopus 로고
    • Generation of functionalized polymer nanolayer on implant surface via initiated chemical vapor deposition (ICVD)
    • Park SW, Lee D, Lee HR, et al. Generation of functionalized polymer nanolayer on implant surface via initiated chemical vapor deposition (iCVD). J Colloid Interface Sci. 2015;439(0):34-41.
    • (2015) J Colloid Interface Sci , vol.439 , pp. 34-41
    • Park, S.W.1    Lee, D.2    Lee, H.R.3
  • 111
    • 84908170396 scopus 로고    scopus 로고
    • Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential
    • Ordikhani F, Simchi A. Long-term antibiotic delivery by chitosan-based composite coatings with bone regenerative potential. Appl Surf Sci. 2014;317(0):56-66.
    • (2014) Appl Surf Sci , vol.317 , pp. 56-66
    • Ordikhani, F.1    Simchi, A.2
  • 112
    • 84887081819 scopus 로고    scopus 로고
    • A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants
    • Ahmed RA, Fekry AM, Farghali RA. A study of calcium carbonate/multiwalled-carbon nanotubes/chitosan composite coatings on Ti-6Al-4V alloy for orthopedic implants. Appl Surf Sci. 2013;285, Part B(0):309-316.
    • (2013) Appl Surf Sci , vol.285 , pp. 309-316
    • Ahmed, R.A.1    Fekry, A.M.2    Farghali, R.A.3
  • 113
    • 84923378552 scopus 로고    scopus 로고
    • Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity
    • Ordikhani F, Ramezani Farani M, Dehghani M, Tamjid E, Simchi A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon. 2015;84(0):91-102.
    • (2015) Carbon , vol.84 , pp. 91-102
    • Ordikhani, F.1    Ramezani Farani, M.2    Dehghani, M.3    Tamjid, E.4    Simchi, A.5
  • 114
    • 0242522346 scopus 로고    scopus 로고
    • The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants
    • Nguyen HQ, Deporter DA, Pilliar RM, Valiquette N, Yakubovich R. The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials. 2004;25(5):865-876.
    • (2004) Biomaterials , vol.25 , Issue.5 , pp. 865-876
    • Nguyen, H.Q.1    Deporter, D.A.2    Pilliar, R.M.3    Valiquette, N.4    Yakubovich, R.5
  • 115
    • 84906781823 scopus 로고    scopus 로고
    • Biofunctional porous anodized titanium implants for enhanced bone regeneration
    • Shim IK, Chung HJ, Jung MR, et al. Biofunctional porous anodized titanium implants for enhanced bone regeneration. J Biomed Mater Res A. 2014;102(10):3639-3648.
    • (2014) J Biomed Mater Res A , vol.102 , Issue.10 , pp. 3639-3648
    • Shim, I.K.1    Chung, H.J.2    Jung, M.R.3
  • 116
    • 84901056619 scopus 로고    scopus 로고
    • Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant associated infections
    • Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant associated infections. Mater Sci Eng C. 2014(41):240-248.
    • (2014) Mater Sci Eng C , Issue.41 , pp. 240-248
    • Ordikhani, F.1    Tamjid, E.2    Simchi, A.3
  • 117
    • 33846142467 scopus 로고    scopus 로고
    • Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material
    • Radin S, Ducheyne P. Controlled release of vancomycin from thin sol-gel films on titanium alloy fracture plate material. Biomaterials. 2007;28(9):1721-1729.
    • (2007) Biomaterials , vol.28 , Issue.9 , pp. 1721-1729
    • Radin, S.1    Ducheyne, P.2
  • 118
    • 84899050472 scopus 로고    scopus 로고
    • Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants
    • Mattioli-Belmonte M, Cometa S, Ferretti C, et al. Characterization and cytocompatibility of an antibiotic/chitosan/cyclodextrins nanocoating on titanium implants. Carbohydr Polym. 2014;110(0):173-182.
    • (2014) Carbohydr Polym , vol.110 , pp. 173-182
    • Mattioli-Belmonte, M.1    Cometa, S.2    Ferretti, C.3
  • 119
    • 84883873284 scopus 로고    scopus 로고
    • In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections
    • Chennell P, Feschet-Chassot E, Devers T, Awitor KO, Descamps S, Sautou V. In vitro evaluation of TiO2 nanotubes as cefuroxime carriers on orthopaedic implants for the prevention of periprosthetic joint infections. Int J Pharm. 2013;455(1-2):298-305.
    • (2013) Int J Pharm , vol.455 , Issue.1-2 , pp. 298-305
    • Chennell, P.1    Feschet-Chassot, E.2    Devers, T.3    Awitor, K.O.4    Descamps, S.5    Sautou, V.6
  • 120
    • 70849136593 scopus 로고    scopus 로고
    • Tiny medicine: Nanomaterial-based biosensors
    • Yun YH, Eteshola E, Bhattacharya A, et al. Tiny medicine: nanomaterial-based biosensors. Sensors (Basel). 2009;9(11):9275-9299.
    • (2009) Sensors (Basel) , vol.9 , Issue.11 , pp. 9275-9299
    • Yun, Y.H.1    Eteshola, E.2    Bhattacharya, A.3
  • 122
    • 1542530046 scopus 로고    scopus 로고
    • Advances toward bioapplications of carbon nanotubes
    • Lin Y, Taylor S, Li H, et al. Advances toward bioapplications of carbon nanotubes. J Mater Chem. 2004;14(4):527-541.
    • (2004) J Mater Chem , vol.14 , Issue.4 , pp. 527-541
    • Lin, Y.1    Taylor, S.2    Li, H.3
  • 124
    • 47249105511 scopus 로고    scopus 로고
    • Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation
    • Sirinrath S, Thomas JW. Multiwalled carbon nanotubes enhance electrochemical properties of titanium to determine in situ bone formation. Nanotechnology. 2008;19(29):295101.
    • (2008) Nanotechnology , vol.19 , Issue.29
    • Sirinrath, S.1    Thomas, J.W.2
  • 125
    • 33947708859 scopus 로고    scopus 로고
    • A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding
    • Yun Y, Bange A, Heineman WR, et al. A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding. Sens Actuators B Chem. 2007;123(1):177-182.
    • (2007) Sens Actuators B Chem , vol.123 , Issue.1 , pp. 177-182
    • Yun, Y.1    Bange, A.2    Heineman, W.R.3
  • 126
    • 33645114820 scopus 로고    scopus 로고
    • Fabrication and characterization of carbon nanotube-titanium nitride composites with enhanced electrical and electrochemical properties
    • Jiang L, Gao L. Fabrication and characterization of carbon nanotube-titanium nitride composites with enhanced electrical and electrochemical properties. J Am Ceram Soc. 2006;89(1):156-161.
    • (2006) J am Ceram Soc , vol.89 , Issue.1 , pp. 156-161
    • Jiang, L.1    Gao, L.2
  • 128
    • 84860137081 scopus 로고    scopus 로고
    • Orthopaedic applications of nanoparticle-based stem cell therapies
    • Wimpenny I, Markides H, El Haj AJ. Orthopaedic applications of nanoparticle-based stem cell therapies. Stem Cell Res Ther. 2012;3(2):13.
    • (2012) Stem Cell Res Ther , vol.3 , Issue.2 , pp. 13
    • Wimpenny, I.1    Markides, H.2    El Haj, A.J.3
  • 129
    • 66449111991 scopus 로고    scopus 로고
    • Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells
    • Hsieh MF, Li JK, Lin CA, et al. Tracking of cellular uptake of hydrophilic CdSe/ZnS quantum dots/hydroxyapatite composites nanoparticles in MC3T3-E1 osteoblast cells. J Nanosci Nanotechnol. 2009;9(4):2758-2762.
    • (2009) J Nanosci Nanotechnol , vol.9 , Issue.4 , pp. 2758-2762
    • Hsieh, M.F.1    Li, J.K.2    Lin, C.A.3
  • 130
    • 84869988600 scopus 로고    scopus 로고
    • Gold nanoparticles as computerized tomography (CT) contrast agents
    • Xi D, Dong S, Meng X, Lu Q, Meng L, Ye J. Gold nanoparticles as computerized tomography (CT) contrast agents. RSC Adv. 2012;2(33):12515-12524.
    • (2012) RSC Adv , vol.2 , Issue.33 , pp. 12515-12524
    • Xi, D.1    Dong, S.2    Meng, X.3    Lu, Q.4    Meng, L.5    Ye, J.6
  • 131
    • 61649105001 scopus 로고    scopus 로고
    • Targeted gold nanoparticles enable molecular CT imaging of cancer
    • Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett. 2008;8(12):4593-4596.
    • (2008) Nano Lett , vol.8 , Issue.12 , pp. 4593-4596
    • Popovtzer, R.1    Agrawal, A.2    Kotov, N.A.3
  • 132
    • 84878328951 scopus 로고    scopus 로고
    • Gold nanoparticle contrast agents in advanced X-ray imaging technologies
    • Ahn S, Jung S, Lee S. Gold nanoparticle contrast agents in advanced X-ray imaging technologies. Molecules. 2013;18(5):5858-5890.
    • (2013) Molecules , vol.18 , Issue.5 , pp. 5858-5890
    • Ahn, S.1    Jung, S.2    Lee, S.3
  • 133
    • 84911915610 scopus 로고    scopus 로고
    • Magnetic resonance functional nano-hydroxyapatite incorporated poly(Caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI
    • Ganesh N, Ashokan A, Rajeshkannan R, Chennazhi K, Koyakutty M, Nair SV. Magnetic resonance functional nano-hydroxyapatite incorporated poly(caprolactone) composite scaffolds for in situ monitoring of bone tissue regeneration by MRI. Tissue Eng A. 2014;20(19-20):2783-2794.
    • (2014) Tissue Eng A , vol.20 , Issue.19-20 , pp. 2783-2794
    • Ganesh, N.1    Ashokan, A.2    Rajeshkannan, R.3    Chennazhi, K.4    Koyakutty, M.5    Nair, S.V.6
  • 134
    • 84975137330 scopus 로고    scopus 로고
    • Functional imaging in diagnostic of orthopedic implant-associated infections
    • Potapova I. Functional imaging in diagnostic of orthopedic implant-associated infections. Diagnostics. 2013;3(4):356.
    • (2013) Diagnostics , vol.3 , Issue.4 , pp. 356
    • Potapova, I.1
  • 136
    • 84897098015 scopus 로고    scopus 로고
    • Carbon nanotube chemiresistor for wireless pH sensing
    • Gou P, Kraut ND, Feigel IM, et al. Carbon nanotube chemiresistor for wireless pH sensing. Sci Rep. 2014;4:4468.
    • (2014) Sci Rep , vol.4 , pp. 4468
    • Gou, P.1    Kraut, N.D.2    Feigel, I.M.3
  • 137
    • 33846882630 scopus 로고    scopus 로고
    • Molecular pathogenesis of osteosarcoma
    • Kansara M, Thomas DM. Molecular pathogenesis of osteosarcoma. DNA Cell Biol. 2007;26(1):1-18.
    • (2007) DNA Cell Biol , vol.26 , Issue.1 , pp. 1-18
    • Kansara, M.1    Thomas, D.M.2
  • 139
    • 84868691970 scopus 로고    scopus 로고
    • In situ forming implants for local chemotherapy and hyperthermia of bone tumors
    • Mohamed M, Borchard G, Jordan O. In situ forming implants for local chemotherapy and hyperthermia of bone tumors. J Drug Deliv Sci Technol. 2012;22:393-408.
    • (2012) J Drug Deliv Sci Technol , vol.22 , pp. 393-408
    • Mohamed, M.1    Borchard, G.2    Jordan, O.3
  • 140
    • 33748291697 scopus 로고    scopus 로고
    • In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field
    • Li B, Jia D, Zhou Y, Hu Q, Cai W. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J Magn Magn Mater. 2006;306(2):223-227.
    • (2006) J Magn Magn Mater , vol.306 , Issue.2 , pp. 223-227
    • Li, B.1    Jia, D.2    Zhou, Y.3    Hu, Q.4    Cai, W.5
  • 141
    • 27844431638 scopus 로고    scopus 로고
    • Preparation of three-dimensional nano-magnetite/chitosan rod
    • Hu Q, Chen F, Li B, Shen J. Preparation of three-dimensional nano-magnetite/chitosan rod. Mater Lett. 2006;60(3):368-370.
    • (2006) Mater Lett , vol.60 , Issue.3 , pp. 368-370
    • Hu, Q.1    Chen, F.2    Li, B.3    Shen, J.4
  • 142
    • 51149105067 scopus 로고    scopus 로고
    • Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer
    • Murakami S, Hosono T, Jeyadevan B, Kamitakahara M, Ioku K. Hydrothermal synthesis of magnetite/hydroxyapatite composite material for hyperthermia therapy for bone cancer. J Ceram Soc Jpn. 2008;116(1357):950-954.
    • (2008) J Ceram Soc Jpn , vol.116 , Issue.1357 , pp. 950-954
    • Murakami, S.1    Hosono, T.2    Jeyadevan, B.3    Kamitakahara, M.4    Ioku, K.5
  • 143
    • 24944452398 scopus 로고    scopus 로고
    • Research strategies for safety evaluation of nanomaterials, part I: Evaluating the human health implications of exposure to nanoscale materials
    • Thomas K, Sayre P. Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci. 2005;87(2):316-321.
    • (2005) Toxicol Sci , vol.87 , Issue.2 , pp. 316-321
    • Thomas, K.1    Sayre, P.2
  • 144
    • 20644449754 scopus 로고    scopus 로고
    • Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles
    • Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-839.
    • (2005) Environ Health Perspect , vol.113 , Issue.7 , pp. 823-839
    • Oberdorster, G.1    Oberdorster, E.2    Oberdorster, J.3
  • 145
    • 78049462278 scopus 로고    scopus 로고
    • A review of selected engineered nanoparticles in the atmosphere: Sources, transformations, and techniques for sampling and analysis
    • Majestic BJ, Erdakos GB, Lewandowski M, et al. A review of selected engineered nanoparticles in the atmosphere: sources, transformations, and techniques for sampling and analysis. Int J Occup Environ Health. 2010;16(4):488-507.
    • (2010) Int J Occup Environ Health , vol.16 , Issue.4 , pp. 488-507
    • Majestic, B.J.1    Erdakos, G.B.2    Lewandowski, M.3
  • 146
    • 84931070634 scopus 로고    scopus 로고
    • Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment
    • Madl AK, Kovochich M, Liong M, Finley BL, Paustenbach DJ, Oberdörster G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants Part II: Importance of physicochemical properties and dose in animal and in vitro studies as a basis for risk assessment. Nanomedicine. 2015;11(5):1285-1298.
    • (2015) Nanomedicine , vol.11 , Issue.5 , pp. 1285-1298
    • Madl, A.K.1    Kovochich, M.2    Liong, M.3    Finley, B.L.4    Paustenbach, D.J.5    Oberdörster, G.6
  • 147
    • 33750374618 scopus 로고    scopus 로고
    • Nanostructured biomaterials for tissue engineering bone
    • Webster TJ, Ahn ES. Nanostructured biomaterials for tissue engineering bone. Adv Biochem Eng Biotechnol. 2007;103:275-308.
    • (2007) Adv Biochem Eng Biotechnol , vol.103 , pp. 275-308
    • Webster, T.J.1    Ahn, E.S.2
  • 148
    • 84876699519 scopus 로고    scopus 로고
    • Nano-bio effects: Interaction of nanomaterials with cells
    • Cheng L-C, Jiang X, Wang J, Chen C, Liu R-S. Nano-bio effects: interaction of nanomaterials with cells. Nanoscale. 2013;5(9):3547-3569.
    • (2013) Nanoscale , vol.5 , Issue.9 , pp. 3547-3569
    • Cheng, L.-C.1    Jiang, X.2    Wang, J.3    Chen, C.4    Liu, R.-S.5
  • 149
    • 84864919690 scopus 로고    scopus 로고
    • Biocompatibility and toxicity of nanoparticles and nanotubes
    • Li X, Wang L, Fan Y, Feng Q, Cui F-Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J Nanomater. 2012;2012:19.
    • (2012) J Nanomater , vol.2012 , pp. 19
    • Li, X.1    Wang, L.2    Fan, Y.3    Feng, Q.4    Cui, F.-Z.5
  • 150
    • 84856385247 scopus 로고    scopus 로고
    • Nanoparticles: A review of particle toxicology following inhalation exposure
    • Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012;24(2):125-135.
    • (2012) Inhal Toxicol , vol.24 , Issue.2 , pp. 125-135
    • Bakand, S.1    Hayes, A.2    Dechsakulthorn, F.3
  • 151
    • 79952109269 scopus 로고    scopus 로고
    • Nanotechnology and nanomaterials: Toxicology, risk assessment, and regulations
    • Fan AM, Alexeeff G. Nanotechnology and nanomaterials: toxicology, risk assessment, and regulations. J Nanosci Nanotechnol. 2010;10(12):8646-8657.
    • (2010) J Nanosci Nanotechnol , vol.10 , Issue.12 , pp. 8646-8657
    • Fan, A.M.1    Alexeeff, G.2
  • 152
    • 37549042771 scopus 로고    scopus 로고
    • Nanotoxicity: The growing need for in vivo study
    • Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18(6):565-571.
    • (2007) Curr Opin Biotechnol , vol.18 , Issue.6 , pp. 565-571
    • Fischer, H.C.1    Chan, W.C.2
  • 153
    • 34548645103 scopus 로고    scopus 로고
    • Nanomedicine: Real commercial potential or just hype?
    • Webster TJ. Nanomedicine: real commercial potential or just hype? Int J Nanomedicine. 2006;1(4):373-374.
    • (2006) Int J Nanomedicine , vol.1 , Issue.4 , pp. 373-374
    • Webster, T.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.