메뉴 건너뛰기




Volumn 25, Issue 1, 2007, Pages 11-22

Nanobiomaterial applications in orthopedics

Author keywords

Biomaterials; Nanocomposites; Nanofibers; Orthopedic; Tissue engineering

Indexed keywords

BIOMATERIAL; BIOMIMETIC MATERIAL; CALCIUM PHOSPHATE; CARBON NANOTUBE; MOLECULAR SCAFFOLD; NANOCOATING; NANOCOMPOSITE; NANOFIBER; NANOMATERIAL; TANTALUM;

EID: 33846076037     PISSN: 07360266     EISSN: None     Source Type: Journal    
DOI: 10.1002/jor.20305     Document Type: Review
Times cited : (349)

References (63)
  • 1
    • 0027595948 scopus 로고
    • Tissue engineering
    • Langer R, Vacanti JP. 1993. Tissue engineering. Science 260:920-926.
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 2
    • 0036342297 scopus 로고    scopus 로고
    • Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering
    • Burdick JA, Anseth KS. 2002. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315-4323.
    • (2002) Biomaterials , vol.23 , pp. 4315-4323
    • Burdick, J.A.1    Anseth, K.S.2
  • 3
    • 27644579095 scopus 로고    scopus 로고
    • Development of nanocomposites for bone grafting
    • Murugan R, Ramakrishna S. 2005. Development of nanocomposites for bone grafting. Comp Sci Tech 65: 2385-2406.
    • (2005) Comp Sci Tech , vol.65 , pp. 2385-2406
    • Murugan, R.1    Ramakrishna, S.2
  • 4
    • 0003125543 scopus 로고
    • Bone biology
    • In: Simon SR, editor. Columbus, OH: American Academy of Orthopedic Surgeons
    • Kaplan FS, Hayes WC, Keaveny TM, et al. 1994. Bone biology. In: Simon SR, editor. Orthopedic basic science. Columbus, OH: American Academy of Orthopedic Surgeons, p 127-185.
    • (1994) Orthopedic Basic Science , pp. 127-185
    • Kaplan, F.S.1    Hayes, W.C.2    Keaveny, T.M.3
  • 5
    • 0034084101 scopus 로고    scopus 로고
    • Enhanced functions of osteoblasts on nanophase ceramics
    • Webster TJ, Ergun C, Doremus RH, et al. 2000. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 21:1803-1810.
    • (2000) Biomaterials , vol.21 , pp. 1803-1810
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3
  • 6
    • 33746714341 scopus 로고    scopus 로고
    • Chondrocytes phenotype in engineered fibrous matrix is regulated by fiber size
    • Li WJ, Jiang YJ, Tuan RS. 2006. Chondrocytes phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng 12:1775-1785.
    • (2006) Tissue Eng , vol.12 , pp. 1775-1785
    • Li, W.J.1    Jiang, Y.J.2    Tuan, R.S.3
  • 7
    • 15244349103 scopus 로고    scopus 로고
    • The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces
    • Benoit DSW, Anseth KS. 2005. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 26:5209-5220.
    • (2005) Biomaterials , vol.26 , pp. 5209-5220
    • Benoit, D.S.W.1    Anseth, K.S.2
  • 8
    • 17144422105 scopus 로고    scopus 로고
    • Mediation of biomaterial-cell interactions by adsorbed proteins: A review
    • Wilson CJ, Clegg RE, Leavesley DI, et al. 2005. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11:1-18.
    • (2005) Tissue Eng , vol.11 , pp. 1-18
    • Wilson, C.J.1    Clegg, R.E.2    Leavesley, D.I.3
  • 9
    • 0034975227 scopus 로고    scopus 로고
    • Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin
    • Webster TJ, Schadler LS, Siegel RW, et al. 2001. Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin. Tissue Eng 7:291-301.
    • (2001) Tissue Eng , vol.7 , pp. 291-301
    • Webster, T.J.1    Schadler, L.S.2    Siegel, R.W.3
  • 10
    • 33845188553 scopus 로고    scopus 로고
    • Anodized Ti and Ti6A14V possessing nanometer surface features enhance osteoblast adhesion
    • Yao C, Perla V, McKenzie J, et al. 2005. Anodized Ti and Ti6A14V possessing nanometer surface features enhance osteoblast adhesion. J Biomed Nanotechnol 1:68-77.
    • (2005) J Biomed Nanotechnol , vol.1 , pp. 68-77
    • Yao, C.1    Perla, V.2    McKenzie, J.3
  • 11
    • 0002780184 scopus 로고
    • Bioactive materials: Mechanisms and bioengineering considerations
    • In: Ducheyne P, Kokubo T, VanBlitterswijk CA, editors. Liederdorp, the Netherlands: Reed Healthcare Communications
    • Ducheyne P, Bianco P, Radin S, et al. 1992. Bioactive materials: mechanisms and bioengineering considerations. In: Ducheyne P, Kokubo T, VanBlitterswijk CA, editors. Bone-bonding biomaterials. Liederdorp, the Netherlands: Reed Healthcare Communications, p 1-112.
    • (1992) Bone-bonding Biomaterials , pp. 1-112
    • Ducheyne, P.1    Bianco, P.2    Radin, S.3
  • 12
    • 33846069386 scopus 로고    scopus 로고
    • Increased osseointegration for tantalum scaffolds coated with nanophase compared to conventional hydroxyapatite
    • (in Press)
    • Sato M, An YH, Slamovich EB, et al. 2006. Increased osseointegration for tantalum scaffolds coated with nanophase compared to conventional hydroxyapatite. Int J Nanomed (in press).
    • (2006) Int J Nanomed
    • Sato, M.1    An, Y.H.2    Slamovich, E.B.3
  • 13
    • 0029239540 scopus 로고
    • In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor
    • Dalton JE, Cook SD. 1995. In vivo mechanical and histological characteristics of HA-coated implants vary with coating vendor. J Biomed Mater Res 29:239-245.
    • (1995) J Biomed Mater Res , vol.29 , pp. 239-245
    • Dalton, J.E.1    Cook, S.D.2
  • 14
    • 0041421230 scopus 로고    scopus 로고
    • In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants
    • Barrere F, VanDerValk CM, Dalmeijer RA, et al. 2003. In vitro and in vivo degradation of biomimetic octacalcium phosphate and carbonate apatite coatings on titanium implants. J Biomed Mater Res 64A:378-387.
    • (2003) J Biomed Mater Res , vol.64 A , pp. 378-387
    • Barrere, F.1    VanDerValk, C.M.2    Dalmeijer, R.A.3
  • 15
    • 0034958951 scopus 로고    scopus 로고
    • Biomimetic coatings on titanium: A crystal growth study of octacalcium phosphate
    • Barrere F, Layrolle P, VanBlitterswijk CA, et al. 2001. Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci Mater Med 12:529-534.
    • (2001) J Mater Sci Mater Med , vol.12 , pp. 529-534
    • Barrere, F.1    Layrolle, P.2    VanBlitterswijk, C.A.3
  • 16
    • 1042266500 scopus 로고    scopus 로고
    • Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity
    • Liu Y, Hunziker EB, Layrolle P, et al. 2004. Bone morphogenetic protein 2 incorporated into biomimetic coatings retains its biological activity. Tissue Eng 10: 101-108.
    • (2004) Tissue Eng , vol.10 , pp. 101-108
    • Liu, Y.1    Hunziker, E.B.2    Layrolle, P.3
  • 17
    • 4444263976 scopus 로고    scopus 로고
    • Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy
    • Stigter M, Bezemer J, DeGroot K, et al. 2004. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 99:127-137.
    • (2004) J Control Release , vol.99 , pp. 127-137
    • Stigter, M.1    Bezemer, J.2    DeGroot, K.3
  • 18
    • 0028618646 scopus 로고
    • Study of the surface characteristics of magnetron-sputter calcium phosphate coatings
    • Wolke JG, VanDijk K, Schaeken HG, et al. 1994. Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res 28: 1477-1484.
    • (1994) J Biomed Mater Res , vol.28 , pp. 1477-1484
    • Wolke, J.G.1    VanDijk, K.2    Schaeken, H.G.3
  • 19
    • 0242320976 scopus 로고    scopus 로고
    • Initial deposition of calcium phosphate ceramic on polyethylene and polydimethylsiloxane by rf magnetron sputtering deposition: The interface chemistry
    • Feddes B, Wolke JG, Vredenberg AM, et al. 2004. Initial deposition of calcium phosphate ceramic on polyethylene and polydimethylsiloxane by rf magnetron sputtering deposition: the interface chemistry. Biomaterials 24:633-639.
    • (2004) Biomaterials , vol.24 , pp. 633-639
    • Feddes, B.1    Wolke, J.G.2    Vredenberg, A.M.3
  • 20
    • 0037351680 scopus 로고    scopus 로고
    • Initial deposition of calcium phosphate ceramic on polystyrene and polytetra-flouroethylene by rf magnetron sputtering deposition
    • Feddes B, Wolke JG, Jansen JA. 2003. Initial deposition of calcium phosphate ceramic on polystyrene and polytetra-flouroethylene by rf magnetron sputtering deposition. J Vac Sci Technol A 21:363-368.
    • (2003) J Vac Sci Technol A , vol.21 , pp. 363-368
    • Feddes, B.1    Wolke, J.G.2    Jansen, J.A.3
  • 21
    • 0242289864 scopus 로고    scopus 로고
    • Electrostatic spray deposition (ESD) of calcium phosphate coatings
    • Leeuwenburgh S, Wolke J, Schoonman J, et al. 2003. Electrostatic spray deposition (ESD) of calcium phosphate coatings. J Biomed Mater Res 66A:330-334.
    • (2003) J Biomed Mater Res , vol.66 A , pp. 330-334
    • Leeuwenburgh, S.1    Wolke, J.2    Schoonman, J.3
  • 22
    • 29144478048 scopus 로고    scopus 로고
    • Novel deposition of nano-sized silicon substituted hydroxyapatite by electrostatic spraying
    • Huang J, Jayasinghe SN, Best SM, et al. 2005. Novel deposition of nano-sized silicon substituted hydroxyapatite by electrostatic spraying. J Biomed Mater Res 16:1137-1142.
    • (2005) J Biomed Mater Res , vol.16 , pp. 1137-1142
    • Huang, J.1    Jayasinghe, S.N.2    Best, S.M.3
  • 23
    • 3543039433 scopus 로고    scopus 로고
    • In vitro assessment of the biological response to nano-sized hydroxyapatite
    • Huang J, Best SM, Bonfield W, et al. 2004. In vitro assessment of the biological response to nano-sized hydroxyapatite. J Mater Sci Mater Med 15:441-445.
    • (2004) J Mater Sci Mater Med , vol.15 , pp. 441-445
    • Huang, J.1    Best, S.M.2    Bonfield, W.3
  • 24
    • 0030848621 scopus 로고    scopus 로고
    • Fuzzy nanoassemblies: Toward layered polymeric multicomposites
    • Decher G. 1997. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232-1237.
    • (1997) Science , vol.277 , pp. 1232-1237
    • Decher, G.1
  • 25
    • 0008537014 scopus 로고
    • Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charges surfaces
    • Decher G, Hong JD, Schmitt J. 1992. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charges surfaces. Thin Solid Films 210: 831-835.
    • (1992) Thin Solid Films , vol.210 , pp. 831-835
    • Decher, G.1    Hong, J.D.2    Schmitt, J.3
  • 26
    • 0033168855 scopus 로고    scopus 로고
    • Osteoblast adhesion on nanophase ceramics
    • Webster TJ, Siegel RW, Bizios R. 1999. Osteoblast adhesion on nanophase ceramics. Biomaterials 20:1221-1227.
    • (1999) Biomaterials , vol.20 , pp. 1221-1227
    • Webster, T.J.1    Siegel, R.W.2    Bizios, R.3
  • 27
    • 0035371983 scopus 로고    scopus 로고
    • Enhanced functions of osteoblast-like cells on nanophase ceramics
    • Webster TJ, Ergun C, Doremus RH, et al. 2001. Enhanced functions of osteoblast-like cells on nanophase ceramics. Biomaterials 22:1327-1333.
    • (2001) Biomaterials , vol.22 , pp. 1327-1333
    • Webster, T.J.1    Ergun, C.2    Doremus, R.H.3
  • 28
    • 0348014765 scopus 로고    scopus 로고
    • Osteoblast function on nanophase alumina materials: Influence of chemistry, phase and topography
    • Price RL, Gutwein LG, Kaledin L, et al. 2003. Osteoblast function on nanophase alumina materials: influence of chemistry, phase and topography. J Biomed Mater Res 67A:1284-1293.
    • (2003) J Biomed Mater Res , vol.67 A , pp. 1284-1293
    • Price, R.L.1    Gutwein, L.G.2    Kaledin, L.3
  • 29
    • 26844467958 scopus 로고    scopus 로고
    • Better osteoblast adhesion on nanoparticulate selenium - A promising orthopedic implant material
    • Perla V, Webster TJ. 2005. Better osteoblast adhesion on nanoparticulate selenium - a promising orthopedic implant material. J Biomed Mater Res 75:356-364.
    • (2005) J Biomed Mater Res , vol.75 , pp. 356-364
    • Perla, V.1    Webster, T.J.2
  • 30
    • 13944274921 scopus 로고    scopus 로고
    • Influence of nanoporous alumina membranes on long-term osteoblast response
    • Popat KC, LearySwan EE, Mukhatyar V, et al. 2005. Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials 26:4516-4522.
    • (2005) Biomaterials , vol.26 , pp. 4516-4522
    • Popat, K.C.1    LearySwan, E.E.2    Mukhatyar, V.3
  • 31
    • 23444434308 scopus 로고    scopus 로고
    • Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation
    • Palin E, Liu H, Webster TJ. 2005. Mimicking the nanofeatures of bone increases bone-forming cell adhesion and proliferation. Nanotechnology 16:1828-1835.
    • (2005) Nanotechnology , vol.16 , pp. 1828-1835
    • Palin, E.1    Liu, H.2    Webster, T.J.3
  • 32
    • 0034985631 scopus 로고    scopus 로고
    • Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo
    • Kikuchi M, Itoh S, Ichinose S, et al. 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials 22:1705-1711.
    • (2001) Biomaterials , vol.22 , pp. 1705-1711
    • Kikuchi, M.1    Itoh, S.2    Ichinose, S.3
  • 33
    • 2342438516 scopus 로고    scopus 로고
    • Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite: nHAC/PLA
    • Liao SS, Cui FZ, Zhu XD. 2004. Osteoblasts adherence and migration through three-dimensional porous mineralized collagen based composite: nHAC/PLA. J Bioact Compat Polym 19:117-130.
    • (2004) J Bioact Compat Polym , vol.19 , pp. 117-130
    • Liao, S.S.1    Cui, F.Z.2    Zhu, X.D.3
  • 34
    • 21144437402 scopus 로고    scopus 로고
    • Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites
    • Liu H, Slamovich EB, Webster TJ. 2005. Increased osteoblast functions on nanophase titania dispersed in poly-lactic-co-glycolic acid composites. Nanotechnology 16: S601-S608.
    • (2005) Nanotechnology , vol.16
    • Liu, H.1    Slamovich, E.B.2    Webster, T.J.3
  • 35
    • 24044535082 scopus 로고    scopus 로고
    • Increased osteoblast function on PLGA composites containing nanophase titania
    • Smith TA, Webster TJ. 2005. Increased osteoblast function on PLGA composites containing nanophase titania. J Biomed Mater Res 74A:677-686.
    • (2005) J Biomed Mater Res , vol.74 A , pp. 677-686
    • Smith, T.A.1    Webster, T.J.2
  • 36
    • 0035999785 scopus 로고    scopus 로고
    • Enhanced functions of osteoblasts on carbon nanofiber compacts
    • Elias KL, Price RL, Webster TJ. 2002. Enhanced functions of osteoblasts on carbon nanofiber compacts. Biomaterials 23:3279-3287.
    • (2002) Biomaterials , vol.23 , pp. 3279-3287
    • Elias, K.L.1    Price, R.L.2    Webster, T.J.3
  • 37
    • 4344691377 scopus 로고    scopus 로고
    • Increased osteoblast viability in the presence of smaller nano-dimensioned carbon fibers
    • Price RL, Webster TJ. 2004. Increased osteoblast viability in the presence of smaller nano-dimensioned carbon fibers. Nanotechnology 15:892-900.
    • (2004) Nanotechnology , vol.15 , pp. 892-900
    • Price, R.L.1    Webster, T.J.2
  • 38
    • 0037400814 scopus 로고    scopus 로고
    • Select bone cell adhesion on formulations containing carbon nanofibers
    • Price RL, Waid MC, Haberstroh KM, et al. 2003. Select bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 24:1877-1887.
    • (2003) Biomaterials , vol.24 , pp. 1877-1887
    • Price, R.L.1    Waid, M.C.2    Haberstroh, K.M.3
  • 39
    • 33846100819 scopus 로고    scopus 로고
    • Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns
    • Khang D, Webster TJ. 2006. Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns. Int J Nanomed 1:65-72.
    • (2006) Int J Nanomed , vol.1 , pp. 65-72
    • Khang, D.1    Webster, T.J.2
  • 40
    • 33846119431 scopus 로고    scopus 로고
    • In vitro cytotoxicity and in vivo biocompatibility of a poly(propylene-fumarate)-based/alumoxane nanocomposite for bone tissue engineering
    • (in Press)
    • Mistry AS, Mikos AG, Jansen JA. 2006. In vitro cytotoxicity and in vivo biocompatibility of a poly(propylene-fumarate)-based/alumoxane nanocomposite for bone tissue engineering. J Biomed Mater Res (in press).
    • (2006) J Biomed Mater Res
    • Mistry, A.S.1    Mikos, A.G.2    Jansen, J.A.3
  • 41
    • 5044234006 scopus 로고    scopus 로고
    • Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering
    • Horch RA, Shahid N, Mistry AS, et al. 2004. Nanoreinforcement of poly(propylene fumarate)-based networks with surface modified alumoxane nanoparticles for bone tissue engineering. Biomacromolecules 5:1990-1998.
    • (2004) Biomacromolecules , vol.5 , pp. 1990-1998
    • Horch, R.A.1    Shahid, N.2    Mistry, A.S.3
  • 42
    • 21144455486 scopus 로고    scopus 로고
    • Rheological behavior and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering
    • Shi X, Hudson JL, Spicer PP, et al. 2005. Rheological behavior and mechanical characterization of injectable poly(propylene fumarate)/ single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16:S531-S538.
    • (2005) Nanotechnology , vol.16
    • Shi, X.1    Hudson, J.L.2    Spicer, P.P.3
  • 43
    • 0037097175 scopus 로고    scopus 로고
    • Electrospun nanofibrous structure: A novel scaffold for tissue engineering
    • Li WJ, Laurencin CT, Caterson EJ, et al. 2002. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60:613-621.
    • (2002) J Biomed Mater Res , vol.60 , pp. 613-621
    • Li, W.J.1    Laurencin, C.T.2    Caterson, E.J.3
  • 44
    • 15244353095 scopus 로고    scopus 로고
    • Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold
    • Li WJ, Tuli R, Huang X, et al. 2005. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Biomaterials 26: 5158-5166.
    • (2005) Biomaterials , vol.26 , pp. 5158-5166
    • Li, W.J.1    Tuli, R.2    Huang, X.3
  • 45
    • 1042301245 scopus 로고    scopus 로고
    • In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
    • Shin M, Yoshimoto H, Vacanti JP. 2004. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 10: 33-41.
    • (2004) Tissue Eng , vol.10 , pp. 33-41
    • Shin, M.1    Yoshimoto, H.2    Vacanti, J.P.3
  • 46
    • 8844263768 scopus 로고    scopus 로고
    • Nano-fibrous scaffolds for tissue engineering
    • Smith LA, Ma PX. 2004. Nano-fibrous scaffolds for tissue engineering. Coll Surf B Biointerf 39:125-131.
    • (2004) Coll Surf B Biointerf , vol.39 , pp. 125-131
    • Smith, L.A.1    Ma, P.X.2
  • 47
    • 0037117591 scopus 로고    scopus 로고
    • Beyond molecules: Self-assembly of mesoscopic and macroscopic components
    • Whitesides GM, Boncheva M. 2002. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci USA 99:4769-4774.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 4769-4774
    • Whitesides, G.M.1    Boncheva, M.2
  • 48
    • 20444432818 scopus 로고    scopus 로고
    • Electrospun chitosan-based nanofibers and their cellular compatibility
    • Bhattarai N, Edmondson D, Veiseh O, et al. 2005. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176-6184.
    • (2005) Biomaterials , vol.26 , pp. 6176-6184
    • Bhattarai, N.1    Edmondson, D.2    Veiseh, O.3
  • 49
    • 4744359026 scopus 로고    scopus 로고
    • Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast
    • Lee CH, Shin HJ, Cho IH, et al. 2005. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26:1261-1270.
    • (2005) Biomaterials , vol.26 , pp. 1261-1270
    • Lee, C.H.1    Shin, H.J.2    Cho, I.H.3
  • 50
    • 13944282071 scopus 로고    scopus 로고
    • Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering
    • Riboldi SA, Sampaolesi M, Neuenschwander P, et al. 2005. Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials 26:4606-4615.
    • (2005) Biomaterials , vol.26 , pp. 4606-4615
    • Riboldi, S.A.1    Sampaolesi, M.2    Neuenschwander, P.3
  • 51
    • 33747416154 scopus 로고    scopus 로고
    • Electrospun nanofibrous scaffolds: Production, characterization, and applications for tissue engineering and drug delivery
    • Li WJ, Mauck RL, Tuan RS. 2005. Electrospun nanofibrous scaffolds: production, characterization, and applications for tissue engineering and drug delivery. J Biomed Nanotechnol 1:259-275.
    • (2005) J Biomed Nanotechnol , vol.1 , pp. 259-275
    • Li, W.J.1    Mauck, R.L.2    Tuan, R.S.3
  • 52
    • 33744942905 scopus 로고    scopus 로고
    • Fabrication and characterization of six electrospun poly(alpha-hydroxy ester) based fibrous scaffolds for tissue engineering applications
    • Li WJ, Cooper JA, Mauck RL, et al. 2006. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester) based fibrous scaffolds for tissue engineering applications. Acta Biomater 2:377-385.
    • (2006) Acta Biomater , vol.2 , pp. 377-385
    • Li, W.J.1    Cooper, J.A.2    Mauck, R.L.3
  • 53
    • 9744231351 scopus 로고    scopus 로고
    • Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical application
    • Nair LS, Bhattacharyya S, Bender JD, et al. 2004. Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical application. Biomacromolecules 5:2212-2220.
    • (2004) Biomacromolecules , vol.5 , pp. 2212-2220
    • Nair, L.S.1    Bhattacharyya, S.2    Bender, J.D.3
  • 54
    • 33846069385 scopus 로고    scopus 로고
    • Polyphosphazene nanofibers for biomedical applications: Preliminary studies. Nanoengineered nanofibrous materials
    • Boston/Dordrecht: Kluwer
    • Laurencin CT, Nair LS. 2004. Polyphosphazene nanofibers for biomedical applications: preliminary studies. Nanoengineered nanofibrous materials, NATO-ASI Proceedings. Boston/Dordrecht: Kluwer; p 281-300.
    • (2004) NATO-ASI Proceedings , pp. 281-300
    • Laurencin, C.T.1    Nair, L.S.2
  • 55
    • 33846087102 scopus 로고    scopus 로고
    • Preparation of poly[bis(carbonylato phenoxy)phosphazenel non-woven nanofiber mats by electrospinning
    • Bhattacharyya S, Lakshmi S, Bender JD, et al. 2003. Preparation of poly[bis(carbonylato phenoxy)phosphazenel non-woven nanofiber mats by electrospinning. MRS Fall Meeting Proceedings F8:10.
    • (2003) MRS Fall Meeting Proceedings , vol.8 F , pp. 10
    • Bhattacharyya, S.1    Lakshmi, S.2    Bender, J.D.3
  • 56
    • 20344394914 scopus 로고    scopus 로고
    • Development of biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers via electrospinning
    • Bhattacharyya S, Lakshmi S, Nair LS, et al. 2005. Development of biodegradable polyphosphazene-nanohydroxyapatite composite nanofibers via electrospinning. MRS Symposium Proceedings 845:91-96.
    • (2005) MRS Symposium Proceedings , vol.845 , pp. 91-96
    • Bhattacharyya, S.1    Lakshmi, S.2    Nair, L.S.3
  • 57
    • 0346123065 scopus 로고    scopus 로고
    • Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds
    • Li WJ, Danielson KG, Alexander PG, et al. 2003. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(ε-caprolactone) scaffolds. J Biomed Mater Res 67A:1105-1114.
    • (2003) J Biomed Mater Res , vol.67 A , pp. 1105-1114
    • Li, W.J.1    Danielson, K.G.2    Alexander, P.G.3
  • 58
    • 3342981338 scopus 로고    scopus 로고
    • A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells
    • Li WJ, Tuli R, Okafor C, et al. 2005. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26:599-609.
    • (2005) Biomaterials , vol.26 , pp. 599-609
    • Li, W.J.1    Tuli, R.2    Okafor, C.3
  • 59
    • 11144316132 scopus 로고    scopus 로고
    • Mesenchymal stem cell-based cartilage tissue engineering: Cells, scaffold and biology
    • Song L, Baksh D, Tuan RS. 2004. Mesenchymal stem cell-based cartilage tissue engineering: cells, scaffold and biology. Cytotherapy 6:596-601.
    • (2004) Cytotherapy , vol.6 , pp. 596-601
    • Song, L.1    Baksh, D.2    Tuan, R.S.3
  • 60
    • 0141426820 scopus 로고    scopus 로고
    • Current state of cartilage tissue engineering
    • Tuli R, Li WJ, Tuan RS. 2003. Current state of cartilage tissue engineering. Arthritis Res Ther 5:235-238.
    • (2003) Arthritis Res Ther , vol.5 , pp. 235-238
    • Tuli, R.1    Li, W.J.2    Tuan, R.S.3
  • 61
    • 33644908463 scopus 로고    scopus 로고
    • Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering
    • Sahoo S, Ouyang H, Goh J, et al. 2006. Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng 12:91-99.
    • (2006) Tissue Eng , vol.12 , pp. 91-99
    • Sahoo, S.1    Ouyang, H.2    Goh, J.3
  • 62
    • 0344825277 scopus 로고    scopus 로고
    • Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites
    • Savaiano JK, Webster TJ. 2004. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites. Biomaterials 25:1205-1213.
    • (2004) Biomaterials , vol.25 , pp. 1205-1213
    • Savaiano, J.K.1    Webster, T.J.2
  • 63
    • 0036773620 scopus 로고    scopus 로고
    • Nanostructured polymer: Nanophase ceramic composites enhance osteoblast and chondrocyte adhesion
    • Kay S, Thapa A, Haberstroh KM, et al. 2002. Nanostructured polymer: nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng 8:753-761.
    • (2002) Tissue Eng , vol.8 , pp. 753-761
    • Kay, S.1    Thapa, A.2    Haberstroh, K.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.