메뉴 건너뛰기




Volumn 10, Issue 8, 2014, Pages 1469-1479

Influence of chondroitin sulfate and hyaluronic acid presence in nanofibers and its alignment on the bone marrow stromal cells: Cartilage regeneration

Author keywords

Aligned Nanofibers; Cartilage; Chondroitin Sulfate; Hyaluronic Acid; Mesenchymal Stromal Cells; Micro Nanostructure; Nanofibers; Polycaprolactone

Indexed keywords

ALIGNMENT; BIOMETRICS; BIOMIMETICS; BONE; CARTILAGE; COLLAGEN; CROSSLINKING; GLYCOPROTEINS; HYALURONIC ACID; NANOFIBERS; ORGANIC ACIDS; PHYSIOLOGY; POLYCAPROLACTONE; RATS; RELIGIOUS BUILDINGS; REPAIR; STEM CELLS; TISSUE; TISSUE CULTURE;

EID: 84899680676     PISSN: 15507033     EISSN: 15507041     Source Type: Journal    
DOI: 10.1166/jbn.2014.1831     Document Type: Article
Times cited : (56)

References (77)
  • 1
    • 56749179723 scopus 로고    scopus 로고
    • Bilayered scaffolds for osteochondral tissue engineering
    • T. M. O'Shea and X. Miao, Bilayered scaffolds for osteochondral tissue engineering. Tissue Engineering Part B: Reviews 14, 447 (2008).
    • (2008) Tissue Engineering Part B: Reviews , vol.14 , pp. 447
    • O'Shea, T.M.1    Miao, X.2
  • 3
    • 9344256687 scopus 로고    scopus 로고
    • Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds
    • R. M. Schek, J. M. Taboas, S. J. Segvich, S. J. Hollister, and P. H. Krebsbach, Engineered osteochondral grafts using biphasic composite solid free-form fabricated scaffolds. Tissue Engineering 10, 1376 (2004).
    • (2004) Tissue Engineering , vol.10 , pp. 1376
    • Schek, R.M.1    Taboas, J.M.2    Segvich, S.J.3    Hollister, S.J.4    Krebsbach, P.H.5
  • 6
    • 33746080463 scopus 로고    scopus 로고
    • Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro
    • H. J. Shin, C. H. Lee, I. H. Cho, Y. J. Kim, Y. J. Lee, I. Kim, K. D. Park, N. Yui, and J. W. Shin, Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: Mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. Journal of Biomaterials Science, Polymer Edition 17, 103 (2006).
    • (2006) Journal of Biomaterials Science, Polymer Edition , vol.17 , pp. 103
    • Shin, H.J.1    Lee, C.H.2    Cho, I.H.3    Kim, Y.J.4    Lee, Y.J.5    Kim, I.6    Park, K.D.7    Yui, N.8    Shin, J.W.9
  • 8
    • 70349223850 scopus 로고    scopus 로고
    • Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants
    • C. Erggelet, M. Endres, K. Neumann, L. Morawietz, J. Ringe, K. Haberstroh, M. Sittinger, and C. Kaps, Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. Journal of Orthopaedic Research 27, 1353 (2009).
    • (2009) Journal of Orthopaedic Research , vol.27 , pp. 1353
    • Erggelet, C.1    Endres, M.2    Neumann, K.3    Morawietz, L.4    Ringe, J.5    Haberstroh, K.6    Sittinger, M.7    Kaps, C.8
  • 9
    • 18244382780 scopus 로고    scopus 로고
    • A new biotechnology for articular cartilage repair: Subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2)
    • N. Tamai, A. Myoui, M. Hirao, T. Kaito, T. Ochi, J. Tanaka, K. Takaoka, and H. Yoshikawa, A new biotechnology for articular cartilage repair: Subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2). Osteoarthritis and Cartilage 13, 405 (2005).
    • (2005) Osteoarthritis and Cartilage , vol.13 , pp. 405
    • Tamai, N.1    Myoui, A.2    Hirao, M.3    Kaito, T.4    Ochi, T.5    Tanaka, J.6    Takaoka, K.7    Yoshikawa, H.8
  • 11
    • 0033035478 scopus 로고    scopus 로고
    • Articular cartilage repair: Are the intrinsic biological constraints undermining this process insuperable?
    • E. B. Hunziker, Articular cartilage repair: Are the intrinsic biological constraints undermining this process insuperable? Osteoarthritis and Cartilage 7, 15 (1999).
    • (1999) Osteoarthritis and Cartilage , vol.7 , pp. 15
    • Hunziker, E.B.1
  • 13
    • 0032999913 scopus 로고    scopus 로고
    • Determination of 3D cartilage thickness data from MR imaging: Computational method and reproducibility in the living
    • T. Stammberger, F. Eckstein, K. H. Englmeier, and M. Reiser, Determination of 3D cartilage thickness data from MR imaging: Computational method and reproducibility in the living. Magnetic Resonance in Medicine 41, 529 (1999).
    • (1999) Magnetic Resonance in Medicine , vol.41 , pp. 529
    • Stammberger, T.1    Eckstein, F.2    Englmeier, K.H.3    Reiser, M.4
  • 14
    • 0032990771 scopus 로고    scopus 로고
    • Thickness of human articular cartilage in joints of the lower limb
    • D. E. T. Shepherd and B. B. Seedhom, Thickness of human articular cartilage in joints of the lower limb. Annals of the Rheumatic Diseases 58, 27 (1999).
    • (1999) Annals of the Rheumatic Diseases , vol.58 , pp. 27
    • Shepherd, D.E.T.1    Seedhom, B.B.2
  • 15
    • 51749083093 scopus 로고    scopus 로고
    • Articular cartilage: Structure, injuries and review of management
    • A. M. Bhosale and J. B. Richardson, Articular cartilage: Structure, injuries and review of management. British Medical Bulletin 87, 77 (2008).
    • (2008) British Medical Bulletin , vol.87 , pp. 77
    • Bhosale, A.M.1    Richardson, J.B.2
  • 16
    • 0036083985 scopus 로고    scopus 로고
    • Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects
    • E. B. Hunziker, Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthritis and Cartilage 10, 432 (2002).
    • (2002) Osteoarthritis and Cartilage , vol.10 , pp. 432
    • Hunziker, E.B.1
  • 17
    • 0036151502 scopus 로고    scopus 로고
    • Collagen of articular cartilage
    • D. Eyre, Collagen of articular cartilage. Arthritis research 4, 30 (2002).
    • (2002) Arthritis Research , vol.4 , pp. 30
    • Eyre, D.1
  • 18
    • 22444448450 scopus 로고    scopus 로고
    • Current strategies for articular cartilage repair
    • S. Redman, S. Oldfield, and C. Archer, Current strategies for articular cartilage repair. Eur. Cell Mater. 9, 23 (2005).
    • (2005) Eur. Cell Mater. , vol.9 , pp. 23
    • Redman, S.1    Oldfield, S.2    Archer, C.3
  • 25
    • 27744606356 scopus 로고    scopus 로고
    • Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs
    • T. Woodfield, C. A. V. Blitterswijk, J. D. Wijn, T. Sims, A. Hollander, and J. Riesle, Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs. Tissue Engineering 11, 1297 (2005).
    • (2005) Tissue Engineering , vol.11 , pp. 1297
    • Woodfield, T.1    Blitterswijk, C.A.V.2    Wijn, J.D.3    Sims, T.4    Hollander, A.5    Riesle, J.6
  • 26
    • 67650128152 scopus 로고    scopus 로고
    • Review paper: A review of the cellular response on electrospun nanofibers for tissue engineering
    • D. Nisbet, J. Forsythe, W. Shen, D. Finkelstein, and M. Horne, Review paper: A review of the cellular response on electrospun nanofibers for tissue engineering. J. Biomater. Appl. 24, 7 (2009).
    • (2009) J. Biomater. Appl. , vol.24 , pp. 7
    • Nisbet, D.1    Forsythe, J.2    Shen, W.3    Finkelstein, D.4    Horne, M.5
  • 27
    • 84864378867 scopus 로고    scopus 로고
    • Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: In vitro evaluation with human mesenchymal stem cells
    • M. S. Peach, R. James, U. S. Toti, M. Deng, N. L. Morozowich, H. R. Allcock, C. T. Laurencin, and S. G. Kumbar, Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: In vitro evaluation with human mesenchymal stem cells. Biomedical Materials 7, 045016 (2012).
    • (2012) Biomedical Materials , vol.7 , pp. 045016
    • Peach, M.S.1    James, R.2    Toti, U.S.3    Deng, M.4    Morozowich, N.L.5    Allcock, H.R.6    Laurencin, C.T.7    Kumbar, S.G.8
  • 29
    • 79960496535 scopus 로고    scopus 로고
    • Biomimetic structures: Biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for load-bearing bone regeneration
    • M. Deng, S. G. Kumbar, L. S. Nair, A. L. Weikel, H. R. Allcock, and C. T. Laurencin, Biomimetic structures: Biological implications of dipeptide-substituted polyphosphazene-polyester blend nanofiber matrices for load-bearing bone regeneration. Adv. Funct. Mater. 21, 2641 (2011).
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 2641
    • Deng, M.1    Kumbar, S.G.2    Nair, L.S.3    Weikel, A.L.4    Allcock, H.R.5    Laurencin, C.T.6
  • 30
    • 84890619129 scopus 로고    scopus 로고
    • Application of nanotechnology into life science: Benefit or risk
    • Y. S. Lee and M. H. Cho, Application of nanotechnology into life science: Benefit or risk. Biomedical Nanostructures 1, 491 (2007).
    • (2007) Biomedical Nanostructures , vol.1 , pp. 491
    • Lee, Y.S.1    Cho, M.H.2
  • 31
    • 21844475885 scopus 로고    scopus 로고
    • Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves
    • B. Zhu, Q. Lu, J. Yin, J. Hu, and Z. Wang, Alignment of osteoblast-like cells and cell-produced collagen matrix induced by nanogrooves. Tissue Engineering 11, 825 (2005).
    • (2005) Tissue Engineering , vol.11 , pp. 825
    • Zhu, B.1    Lu, Q.2    Yin, J.3    Hu, J.4    Wang, Z.5
  • 32
    • 73249137941 scopus 로고    scopus 로고
    • Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon
    • E. Donnelly, M. G. Ascenzi, and C. Farnum, Primary cilia are highly oriented with respect to collagen direction and long axis of extensor tendon. Journal of Orthopaedic Research 28, 77 (2010).
    • (2010) Journal of Orthopaedic Research , vol.28 , pp. 77
    • Donnelly, E.1    Ascenzi, M.G.2    Farnum, C.3
  • 34
    • 78449309123 scopus 로고    scopus 로고
    • Composite scaffolds: Bridging nanofiber and microsphere architectures to improve bioactivity of mechanically competent constructs
    • J. L. Brown, M. S. Peach, L. S. Nair, S. G. Kumbar, and C. T. Laurencin, Composite scaffolds: Bridging nanofiber and microsphere architectures to improve bioactivity of mechanically competent constructs. Journal of Biomedical Materials Research Part A 95A, 1150-1158 (2010).
    • (2010) Journal of Biomedical Materials Research Part A , vol.95 A , pp. 1150-1158
    • Brown, J.L.1    Peach, M.S.2    Nair, L.S.3    Kumbar, S.G.4    Laurencin, C.T.5
  • 36
    • 75149114534 scopus 로고    scopus 로고
    • The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering
    • K. Y. Chang, L. H. Hung, I. Chu, C. S. Ko, and Y. D. Lee, The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. Journal of Biomedical Materials Research Part A 92, 712 (2010).
    • (2010) Journal of Biomedical Materials Research Part A , vol.92 , pp. 712
    • Chang, K.Y.1    Hung, L.H.2    Chu, I.3    Ko, C.S.4    Lee, Y.D.5
  • 38
    • 33746301785 scopus 로고    scopus 로고
    • Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering
    • C. T. Lee, C. P. Huang, and Y.-D. Lee, Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering. Biomacromolecules 7, 2200 (2006).
    • (2006) Biomacromolecules , vol.7 , pp. 2200
    • Lee, C.T.1    Huang, C.P.2    Lee, Y.-D.3
  • 40
    • 27644457827 scopus 로고    scopus 로고
    • Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes
    • S. Nishimoto, M. Takagi, S. Wakitani, T. Nihira, and T. Yoshida, Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. Journal of Bioscience and Bioengineering 100, 123 (2005).
    • (2005) Journal of Bioscience and Bioengineering , vol.100 , pp. 123
    • Nishimoto, S.1    Takagi, M.2    Wakitani, S.3    Nihira, T.4    Yoshida, T.5
  • 42
    • 78951478099 scopus 로고    scopus 로고
    • Preparation of collagen-chondroitin sulfate-hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro
    • L. Zhang, K. Li, W. Xiao, L. Zheng, Y. Xiao, H. Fan, and X. Zhang, Preparation of collagen-chondroitin sulfate-hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydrate Polymers 84, 118 (2010).
    • (2010) Carbohydrate Polymers , vol.84 , pp. 118
    • Zhang, L.1    Li, K.2    Xiao, W.3    Zheng, L.4    Xiao, Y.5    Fan, H.6    Zhang, X.7
  • 43
    • 65349116649 scopus 로고    scopus 로고
    • Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis
    • C. Chung and J. A. Burdick, Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Engineering Part A 15, 243 (2008).
    • (2008) Tissue Engineering Part A , vol.15 , pp. 243
    • Chung, C.1    Burdick, J.A.2
  • 44
    • 8344289067 scopus 로고    scopus 로고
    • Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: A preliminary study
    • A. Hegewald, J. Ringe, J. Bartel, I. Krüger, M. Notter, D. Barnewitz, C. Kaps, and M. Sittinger, Hyaluronic acid and autologous synovial fluid induce chondrogenic differentiation of equine mesenchymal stem cells: A preliminary study. Tissue and Cell 36, 431 (2004).
    • (2004) Tissue and Cell , vol.36 , pp. 431
    • Hegewald, A.1    Ringe, J.2    Bartel, J.3    Krüger, I.4    Notter, M.5    Barnewitz, D.6    Kaps, C.7    Sittinger, M.8
  • 46
    • 0031713567 scopus 로고    scopus 로고
    • Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation
    • S. D. Gillogly, M. Voight, and T. Blackburn, Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. Journal of Orthopaedic Sports Physical Therapy 28, 241 (1998).
    • (1998) Journal of Orthopaedic Sports Physical Therapy , vol.28 , pp. 241
    • Gillogly, S.D.1    Voight, M.2    Blackburn, T.3
  • 47
    • 24744435742 scopus 로고    scopus 로고
    • Treatment of full-thickness chondral defects with autologous chondrocyte implantation
    • S. D. Gillogly and T. H. Myers, Treatment of full-thickness chondral defects with autologous chondrocyte implantation. Orthopedic Clinics of North America 36, 433 (2005).
    • (2005) Orthopedic Clinics of North America , vol.36 , pp. 433
    • Gillogly, S.D.1    Myers, T.H.2
  • 49
    • 84879418183 scopus 로고    scopus 로고
    • Osteochondral tissue engineering: Current strategies and challenges
    • S. P. Nukavarapu and D. L. Dorcemus, Osteochondral tissue engineering: Current strategies and challenges. Biotechnology Advances 31, 706 (2013).
    • (2013) Biotechnology Advances , vol.31 , pp. 706
    • Nukavarapu, S.P.1    Dorcemus, D.L.2
  • 50
    • 27644501104 scopus 로고    scopus 로고
    • Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits
    • X. X. Shao, D. W. Hutmacher, S. T. Ho, J. C. H. Goh, and E. H. Lee, Evaluation of a hybrid scaffold/cell construct in repair of high-load-bearing osteochondral defects in rabbits. Biomaterials 27, 1071 (2006).
    • (2006) Biomaterials , vol.27 , pp. 1071
    • Shao, X.X.1    Hutmacher, D.W.2    Ho, S.T.3    Goh, J.C.H.4    Lee, E.H.5
  • 51
    • 79551491920 scopus 로고    scopus 로고
    • Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: Assessment of the physical properties and cellular response
    • N. Thuaksuban, T. Nuntanaranont, W. Pattanachot, S. Suttapreyasri, and L. K. Cheung, Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: Assessment of the physical properties and cellular response. Biomedical Materials 6, 015009 (2011).
    • (2011) Biomedical Materials , vol.6 , pp. 015009
    • Thuaksuban, N.1    Nuntanaranont, T.2    Pattanachot, W.3    Suttapreyasri, S.4    Cheung, L.K.5
  • 52
    • 52649150222 scopus 로고    scopus 로고
    • Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: Accelerated versus simulated physiological conditions
    • C. X. F. Lam, M. M. Savalani, S. H. Teoh, and D. W. Hutmacher, Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: Accelerated versus simulated physiological conditions. Biomedical Materials 3, 034108 (2008).
    • (2008) Biomedical Materials , vol.3 , pp. 034108
    • Lam, C.X.F.1    Savalani, M.M.2    Teoh, S.H.3    Hutmacher, D.W.4
  • 53
    • 77954473530 scopus 로고    scopus 로고
    • An electrospun polycaprolactonecollagen membrane for the resurfacing of cartilage defects
    • S. T. B. Ho, A. K. Ekaputra, J. H. Hui, and D. W. Hutmacher, An electrospun polycaprolactonecollagen membrane for the resurfacing of cartilage defects. Polymer International 59, 808 (2010).
    • (2010) Polymer International , vol.59 , pp. 808
    • Ho, S.T.B.1    Ekaputra, A.K.2    Hui, J.H.3    Hutmacher, D.W.4
  • 54
    • 66049089260 scopus 로고    scopus 로고
    • Fabrication and characterization of poly (γ-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering
    • K. Y. Chang, L. W. Cheng, G. H. Ho, Y. P. Huang, and Y. D. Lee, Fabrication and characterization of poly (γ-glutamic acid)-graft- chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomaterialia 5, 1937 (2009).
    • (2009) Acta Biomaterialia , vol.5 , pp. 1937
    • Chang, K.Y.1    Cheng, L.W.2    Ho, G.H.3    Huang, Y.P.4    Lee, Y.D.5
  • 55
  • 57
    • 25844480253 scopus 로고    scopus 로고
    • Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts
    • Y. Zhang, J. Venugopal, Z. M. Huang, C. Lim, and S. Ramakrishna, Characterization of the surface biocompatibility of the electrospun PCL-collagen nanofibers using fibroblasts. Biomacromolecules 6, 2583 (2005).
    • (2005) Biomacromolecules , vol.6 , pp. 2583
    • Zhang, Y.1    Venugopal, J.2    Huang, Z.M.3    Lim, C.4    Ramakrishna, S.5
  • 58
    • 28744438866 scopus 로고    scopus 로고
    • The in vivo degradation, absorption and excretion of PCL-based implant
    • H. Sun, L. Mei, C. Song, X. Cui, and P. Wang, The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials 27, 1735 (2006).
    • (2006) Biomaterials , vol.27 , pp. 1735
    • Sun, H.1    Mei, L.2    Song, C.3    Cui, X.4    Wang, P.5
  • 59
    • 0036442026 scopus 로고    scopus 로고
    • Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers
    • S. H. Choi and T. G. Park, Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers. J. Biomater. Sci. Polym. Ed. 13, 1163 (2002).
    • (2002) J. Biomater. Sci. Polym. Ed. , vol.13 , pp. 1163
    • Choi, S.H.1    Park, T.G.2
  • 63
    • 0141534359 scopus 로고    scopus 로고
    • Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering
    • C. H. Chang, H. C. Liu, C. C. Lin, C. H. Chou, and F. H. Lin, Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials 24, 4853 (2003).
    • (2003) Biomaterials , vol.24 , pp. 4853
    • Chang, C.H.1    Liu, H.C.2    Lin, C.C.3    Chou, C.H.4    Lin, F.H.5
  • 64
    • 33847090946 scopus 로고    scopus 로고
    • Porous gelatin-chondroitin-hyaluronate tri copolymer scaffold containing microspheres loaded with TGF 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair
    • H. Fan, Y. Hu, L. Qin, X. Li, H. Wu, and R. Lv, Porous gelatin-chondroitin-hyaluronate tri copolymer scaffold containing microspheres loaded with TGF 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. Journal of Biomedical Materials Research Part A 77, 785 (2006).
    • (2006) Journal of Biomedical Materials Research Part A , vol.77 , pp. 785
    • Fan, H.1    Hu, Y.2    Qin, L.3    Li, X.4    Wu, H.5    Lv, R.6
  • 65
    • 33747048195 scopus 로고    scopus 로고
    • Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold
    • H. Fan, Y. Hu, C. Zhang, X. Li, R. Lv, L. Qin, and R. Zhu, Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/ hyaluronate hybrid scaffold. Biomaterials 27, 4573 (2006).
    • (2006) Biomaterials , vol.27 , pp. 4573
    • Fan, H.1    Hu, Y.2    Zhang, C.3    Li, X.4    Lv, R.5    Qin, L.6    Zhu, R.7
  • 66
    • 67049167743 scopus 로고    scopus 로고
    • Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage
    • J. K. Wise, A. L. Yarin, C. M. Megaridis, and M. Cho, Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Engineering Part A 15, 913 (2008).
    • (2008) Tissue Engineering Part A , vol.15 , pp. 913
    • Wise, J.K.1    Yarin, A.L.2    Megaridis, C.M.3    Cho, M.4
  • 69
    • 84893205476 scopus 로고    scopus 로고
    • Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering
    • doi:10.1166/jbn.2013.1753
    • Y. N. A. A. Cheng, C. M. Valmikinathan, P. Lee, D. Liang, X. Yu, and S. G. Kumbar, Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: Bone tissue engineering. J. Biomed. Nanotech. doi:10.1166/jbn.2013.1753 (2013).
    • (2013) J. Biomed. Nanotech.
    • Cheng, Y.N.A.A.1    Valmikinathan, C.M.2    Lee, P.3    Liang, D.4    Yu, X.5    Kumbar, S.G.6
  • 70
    • 0024361474 scopus 로고
    • Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: A rapid screening procedure for mucopolysaccharidoses
    • J. De Jong, R. Wevers, C. Laarakkers, and B. Poorthuis, Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: A rapid screening procedure for mucopolysaccharidoses. Clinical Chemistry 35, 1472 (1989).
    • (1989) Clinical Chemistry , vol.35 , pp. 1472
    • De Jong, J.1    Wevers, R.2    Laarakkers, C.3    Poorthuis, B.4
  • 71
    • 0035034761 scopus 로고    scopus 로고
    • A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections: Its application to determine the effects of Diacerhein on cartilage in an ovine model of osteoarthritis
    • D. Burkhardt, S. Y. Hwa, and P. Ghosh, A novel microassay for the quantitation of the sulfated glycosaminoglycan content of histological sections: Its application to determine the effects of Diacerhein on cartilage in an ovine model of osteoarthritis. Osteoarthritis and Cartilage 9, 238 (2001).
    • (2001) Osteoarthritis and Cartilage , vol.9 , pp. 238
    • Burkhardt, D.1    Hwa, S.Y.2    Ghosh, P.3
  • 72
    • 70350497620 scopus 로고    scopus 로고
    • Biomimetic apatite-coated PCL scaffolds: Effect of surface nanotopography on cellular functions
    • I. G. Beşkardeş and M. Gümüş derelioǧlu, Biomimetic apatite-coated PCL scaffolds: Effect of surface nanotopography on cellular functions. Journal of Bioactive and Compatible Polymers 24, 507 (2009).
    • (2009) Journal of Bioactive and Compatible Polymers , vol.24 , pp. 507
    • Beşkardeş, I.G.1    Gümüşderelioǧlu, M.2
  • 73
    • 33846188184 scopus 로고    scopus 로고
    • In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method
    • S. H. Oh, I. K. Park, J. M. Kim, and J. H. Lee, In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28, 1664 (2007).
    • (2007) Biomaterials , vol.28 , pp. 1664
    • Oh, S.H.1    Park, I.K.2    Kim, J.M.3    Lee, J.H.4
  • 74
    • 33846677220 scopus 로고    scopus 로고
    • A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage
    • F. T. Moutos, L. E. Freed, and F. Guilak, A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Materials 6, 162 (2007).
    • (2007) Nature Materials , vol.6 , pp. 162
    • Moutos, F.T.1    Freed, L.E.2    Guilak, F.3
  • 76
    • 33846582053 scopus 로고    scopus 로고
    • The effect of nanofiber alignment on the maturation of engineered meniscus constructs
    • B. M. Baker and R. L. Mauck, The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28, 1967 (2007).
    • (2007) Biomaterials , vol.28 , pp. 1967
    • Baker, B.M.1    Mauck, R.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.