-
2
-
-
84881028723
-
Toward biotechnological production of adipic acid and precursors from biorenewables
-
Polen T., Spelberg M., Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J. Biotechnol. 2013, 167:75-84.
-
(2013)
J. Biotechnol.
, vol.167
, pp. 75-84
-
-
Polen, T.1
Spelberg, M.2
Bott, M.3
-
4
-
-
84888428404
-
Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes
-
Claypool J.T., Raman D.R. Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes. Bioresour. Technol. 2013, 150:486-495.
-
(2013)
Bioresour. Technol.
, vol.150
, pp. 486-495
-
-
Claypool, J.T.1
Raman, D.R.2
-
5
-
-
0035818010
-
Synthesis of a broad array of highly functionalized, enantiomerically pure cyclohexanecarboxylic acid derivatives by microbial dihydroxylation of benzoic acid and subsequent oxidative and rearrangement reactions
-
Myers A.G., Siegel D.R., Buzard D.J., Charest M.G. Synthesis of a broad array of highly functionalized, enantiomerically pure cyclohexanecarboxylic acid derivatives by microbial dihydroxylation of benzoic acid and subsequent oxidative and rearrangement reactions. Org. Lett. 2001, 3:2923-2926.
-
(2001)
Org. Lett.
, vol.3
, pp. 2923-2926
-
-
Myers, A.G.1
Siegel, D.R.2
Buzard, D.J.3
Charest, M.G.4
-
6
-
-
0036256708
-
Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis
-
Cheng Q., Thomas S.M., Rouviere P. Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis. Appl. Microbiol. Biotechnol. 2002, 58:704-711.
-
(2002)
Appl. Microbiol. Biotechnol.
, vol.58
, pp. 704-711
-
-
Cheng, Q.1
Thomas, S.M.2
Rouviere, P.3
-
7
-
-
84878561015
-
Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes
-
Damm M., Gutmann B., Kappe C.O. Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes. Chemsuschem 2013, 6:978-982.
-
(2013)
Chemsuschem
, vol.6
, pp. 978-982
-
-
Damm, M.1
Gutmann, B.2
Kappe, C.O.3
-
8
-
-
84898657924
-
Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration
-
Li X., Wu D., Lu T., Yi G., Su H., Zhang Y. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration. Angew. Chem. Int. Ed. Engl. 2014, 53:4200-4204.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, pp. 4200-4204
-
-
Li, X.1
Wu, D.2
Lu, T.3
Yi, G.4
Su, H.5
Zhang, Y.6
-
10
-
-
33645454064
-
Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts
-
Raja R., Thomas J.M., Xu M., Harris K.D., Greenhill-Hooper M., Quill K. Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts. Chem. Commun. (Camb.) 2006, 448-450.
-
(2006)
Chem. Commun. (Camb.)
, pp. 448-450
-
-
Raja, R.1
Thomas, J.M.2
Xu, M.3
Harris, K.D.4
Greenhill-Hooper, M.5
Quill, K.6
-
11
-
-
0032508584
-
A Green route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide
-
Sato K., Aoki M., Noyori R. A Green route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998, 281:1646-1647.
-
(1998)
Science
, vol.281
, pp. 1646-1647
-
-
Sato, K.1
Aoki, M.2
Noyori, R.3
-
12
-
-
79954511892
-
A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks
-
van Duuren J.B., Brehmer B., Mars A.E., Eggink G., Dos Santos V.A., Sanders J.P. A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol. Bioeng. 2011, 108:1298-1306.
-
(2011)
Biotechnol. Bioeng.
, vol.108
, pp. 1298-1306
-
-
van Duuren, J.B.1
Brehmer, B.2
Mars, A.E.3
Eggink, G.4
Dos Santos, V.A.5
Sanders, J.P.6
-
13
-
-
84941281420
-
U.S. Environmental Protection Agency, Inventory of U. S Greenhouse Gas Emissions and Sinks
-
1990-2009.
-
O.o.A.P. U.S. Environmental Protection Agency, Inventory of U. S Greenhouse Gas Emissions and Sinks. 2011, 1990-2009.
-
(2011)
-
-
-
14
-
-
34547988496
-
White biotechnology: ready to partner and invest in
-
Kircher M. White biotechnology: ready to partner and invest in. Biotechnol. J. 2006, 1:787-794.
-
(2006)
Biotechnol. J.
, vol.1
, pp. 787-794
-
-
Kircher, M.1
-
15
-
-
80051997568
-
Selective hydrogenation of trans,trans-muconic acid to adipic acid over a titania-supported rhenium catalyst
-
X.She H.M., Brown X., Zhang B.K., Ahring Y.Wang Selective hydrogenation of trans,trans-muconic acid to adipic acid over a titania-supported rhenium catalyst. Chemsuschem 2011, 4:1071-1073.
-
(2011)
Chemsuschem
, vol.4
, pp. 1071-1073
-
-
She, H.M.X.1
Brown, X.2
Zhang, B.K.3
Ahring, Y.W.4
-
16
-
-
84941279866
-
-
Reed Business Information, New York, NY
-
ICIS Chemical Business 2010, 22-23. Reed Business Information, New York, NY.
-
(2010)
Chemical Business
, pp. 22-23
-
-
-
17
-
-
77957329119
-
Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
-
Ajikumar P.K., Xiao W.H., Tyo K.E., Wang Y., Simeon F., Leonard E., Mucha O., Phon T.H., Pfeifer B., Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 2010, 330:70-74.
-
(2010)
Science
, vol.330
, pp. 70-74
-
-
Ajikumar, P.K.1
Xiao, W.H.2
Tyo, K.E.3
Wang, Y.4
Simeon, F.5
Leonard, E.6
Mucha, O.7
Phon, T.H.8
Pfeifer, B.9
Stephanopoulos, G.10
-
18
-
-
84879184862
-
A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-gamma-butyrolactone
-
Martin C.H., Dhamankar H., Tseng H.C., Sheppard M.J., Reisch C.R., Prather K.L.J. A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-gamma-butyrolactone. Nat. Commun. 2013, 4:1414-1422.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1414-1422
-
-
Martin, C.H.1
Dhamankar, H.2
Tseng, H.C.3
Sheppard, M.J.4
Reisch, C.R.5
Prather, K.L.J.6
-
19
-
-
59649099262
-
Production of glucaric acid from a synthetic pathway in recombinant E. coli
-
Moon T.S., Yoon S.H., Lanza A.M., Roy-Mayhew J.D., Prather K.L. Production of glucaric acid from a synthetic pathway in recombinant E. coli. Appl. Environ. Microbiol. 2009, 75:589-595.
-
(2009)
Appl. Environ. Microbiol.
, vol.75
, pp. 589-595
-
-
Moon, T.S.1
Yoon, S.H.2
Lanza, A.M.3
Roy-Mayhew, J.D.4
Prather, K.L.5
-
20
-
-
84899051891
-
Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
-
Paddon C.J., Keasling J.D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 2014, 12:355-367.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 355-367
-
-
Paddon, C.J.1
Keasling, J.D.2
-
21
-
-
84876784070
-
High-level semi-synthetic production of the potent antimalarial artemisinin
-
Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., Leavell M.D., Tai A., Main A., Eng D., Polichuk D.R., Teoh K.H., Reed D.W., Treynor T., Lenihan J., Fleck M., Bajad S., Dang G., Dengrove D., Diola D., Dorin G., Ellens K.W., Fickes S., Galazzo J., Gaucher S.P., Geistlinger T., Henry R., Hepp M., Horning T., Iqbal T., Jiang H., Kizer L., Lieu B., Melis D., Moss N., Regentin R., Secrest S., Tsuruta H., Vazquez R., Westblade L.F., Xu L., Yu M., Zhang Y., Zhao L., Lievense J., Covello P.S., Keasling J.D., Reiling K.K., Renninger N.S., Newman J.D. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 2013, 496:528-532.
-
(2013)
Nature
, vol.496
, pp. 528-532
-
-
Paddon, C.J.1
Westfall, P.J.2
Pitera, D.J.3
Benjamin, K.4
Fisher, K.5
McPhee, D.6
Leavell, M.D.7
Tai, A.8
Main, A.9
Eng, D.10
Polichuk, D.R.11
Teoh, K.H.12
Reed, D.W.13
Treynor, T.14
Lenihan, J.15
Fleck, M.16
Bajad, S.17
Dang, G.18
Dengrove, D.19
Diola, D.20
Dorin, G.21
Ellens, K.W.22
Fickes, S.23
Galazzo, J.24
Gaucher, S.P.25
Geistlinger, T.26
Henry, R.27
Hepp, M.28
Horning, T.29
Iqbal, T.30
Jiang, H.31
Kizer, L.32
Lieu, B.33
Melis, D.34
Moss, N.35
Regentin, R.36
Secrest, S.37
Tsuruta, H.38
Vazquez, R.39
Westblade, L.F.40
Xu, L.41
Yu, M.42
Zhang, Y.43
Zhao, L.44
Lievense, J.45
Covello, P.S.46
Keasling, J.D.47
Reiling, K.K.48
Renninger, N.S.49
Newman, J.D.50
more..
-
22
-
-
84923320438
-
Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol
-
Sheppard M.J., Kunjapur A.M., Wenck S.J., Prather K.L.J. Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat. Commun. 2014, 5:5031-5040.
-
(2014)
Nat. Commun.
, vol.5
, pp. 5031-5040
-
-
Sheppard, M.J.1
Kunjapur, A.M.2
Wenck, S.J.3
Prather, K.L.J.4
-
23
-
-
79959374585
-
Metabolic engineering of E. coli for direct production of 1,4-butanediol
-
Yim H., Haselbeck R., Niu W., Pujol-Baxley C., Burgard A., Boldt J., Khandurina J., Trawick J.D., Osterhout R.E., Stephen R., Estadilla J., Teisan S., Schreyer H.B., Andrae S., Yang T.H., Lee S.Y., Burk M.J., Van Dien S. Metabolic engineering of E. coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 2011, 7:445-452.
-
(2011)
Nat. Chem. Biol.
, vol.7
, pp. 445-452
-
-
Yim, H.1
Haselbeck, R.2
Niu, W.3
Pujol-Baxley, C.4
Burgard, A.5
Boldt, J.6
Khandurina, J.7
Trawick, J.D.8
Osterhout, R.E.9
Stephen, R.10
Estadilla, J.11
Teisan, S.12
Schreyer, H.B.13
Andrae, S.14
Yang, T.H.15
Lee, S.Y.16
Burk, M.J.17
Van Dien, S.18
-
24
-
-
0037809721
-
Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid
-
Thomas J.M., Raja R., Johnson B.F., O'Connell T.J., Sankar G., Khimyak T. Bimetallic nanocatalysts for the conversion of muconic acid to adipic acid. Chem. Commun. (Camb.) 2003, 1126-1127.
-
(2003)
Chem. Commun. (Camb.)
, pp. 1126-1127
-
-
Thomas, J.M.1
Raja, R.2
Johnson, B.F.3
O'Connell, T.J.4
Sankar, G.5
Khimyak, T.6
-
25
-
-
84890852316
-
Biosynthesis of adipic acid
-
Han L., Chen W., Yuan F., Zhang Y., Wang Q., Ma Y. Biosynthesis of adipic acid. Chin. J. Biotechnol. 2013, 29:1374-1385.
-
(2013)
Chin. J. Biotechnol.
, vol.29
, pp. 1374-1385
-
-
Han, L.1
Chen, W.2
Yuan, F.3
Zhang, Y.4
Wang, Q.5
Ma, Y.6
-
26
-
-
84876518857
-
Biological methods for preparing adipic acid
-
in: USPTO (Ed.) US Patent, US Patent
-
S. Picataggio, T. Beardslee, Biological methods for preparing adipic acid, in: USPTO (Ed.) US Patent, US Patent, 2012.
-
(2012)
-
-
Picataggio, S.1
Beardslee, T.2
-
27
-
-
84931420611
-
Direct biosynthesis of adipic acid from a synthetic pathway in recombinant E. coli
-
Yu J.L., Xia X.X., Zhong J.J., Qian Z.G. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant E. coli. Biotechnol. Bioeng. 2014, 111:2580-2586.
-
(2014)
Biotechnol. Bioeng.
, vol.111
, pp. 2580-2586
-
-
Yu, J.L.1
Xia, X.X.2
Zhong, J.J.3
Qian, Z.G.4
-
28
-
-
79955390876
-
Microorganisms for the production of adipic acid and other compounds
-
in: USPTO (Ed.) US Patent USA
-
A.P. Burgard, P. Pharkya, R.E. Osterhout, Microorganisms for the production of adipic acid and other compounds, in: USPTO (Ed.) US Patent USA, 2011.
-
(2011)
-
-
Burgard, A.P.1
Pharkya, P.2
Osterhout, R.E.3
-
29
-
-
79951643655
-
Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid
-
Noack H., Georgiev V., Blomberg M.R., Siegbahn P.E., Johansson A.J. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorg. Chem. 2011, 50:1194-1202.
-
(2011)
Inorg. Chem.
, vol.50
, pp. 1194-1202
-
-
Noack, H.1
Georgiev, V.2
Blomberg, M.R.3
Siegbahn, P.E.4
Johansson, A.J.5
-
30
-
-
0034600899
-
Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane
-
Dugal M., Sankar G., Raja R., Thomas J.M. Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane. Angew. Chem. Int. Ed. Engl. 2000, 39:2310-2313.
-
(2000)
Angew. Chem. Int. Ed. Engl.
, vol.39
, pp. 2310-2313
-
-
Dugal, M.1
Sankar, G.2
Raja, R.3
Thomas, J.M.4
-
31
-
-
84919490601
-
One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light
-
Hwang K.C., Sagadevan A. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science 2014, 346:1495-1498.
-
(2014)
Science
, vol.346
, pp. 1495-1498
-
-
Hwang, K.C.1
Sagadevan, A.2
-
33
-
-
67649592632
-
Sustainability in catalytic oxidation: an alternative approach or a structural evolution?
-
Cavani F., Teles J.H. Sustainability in catalytic oxidation: an alternative approach or a structural evolution?. Chemsuschem 2009, 2:508-534.
-
(2009)
Chemsuschem
, vol.2
, pp. 508-534
-
-
Cavani, F.1
Teles, J.H.2
-
34
-
-
77955427578
-
Recyclable process for sustainable adipic acid production in microemulsions
-
Blach P., Bostrom Z., Franceschi-Messant S., Lattes A., Perez E., Rico-Lattes I. Recyclable process for sustainable adipic acid production in microemulsions. Tetrahedron 2010, 66:7124-7128.
-
(2010)
Tetrahedron
, vol.66
, pp. 7124-7128
-
-
Blach, P.1
Bostrom, Z.2
Franceschi-Messant, S.3
Lattes, A.4
Perez, E.5
Rico-Lattes, I.6
-
35
-
-
79251596379
-
Metabolic engineering of E. coli for biotechnological production of high-value organic acids and alcohols
-
Yu C., Cao Y.J., Zou H.B., Xian M. Metabolic engineering of E. coli for biotechnological production of high-value organic acids and alcohols. Appl. Microbiol. Biotechnol. 2011, 89:573-583.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 573-583
-
-
Yu, C.1
Cao, Y.J.2
Zou, H.B.3
Xian, M.4
-
36
-
-
84941289539
-
Metabolic engineering of cis,cis-muconic acid and b-carboxy-cis,cis muconic acid production in an E. coli heterologous host
-
Bruzas I.R., Finney K.B., Welsh J.D., Hotta K., Fox D.T., Koppisch A.T. Metabolic engineering of cis,cis-muconic acid and b-carboxy-cis,cis muconic acid production in an E. coli heterologous host. Abstr. Pap. Am. Chem. Soc. 2013, 245.
-
(2013)
Abstr. Pap. Am. Chem. Soc.
, vol.245
-
-
Bruzas, I.R.1
Finney, K.B.2
Welsh, J.D.3
Hotta, K.4
Fox, D.T.5
Koppisch, A.T.6
-
37
-
-
84870834865
-
Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
-
Weber C., Brueckner C., Weinreb S., Lehr C., Essl C., Boles E. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78:8421-8430.
-
(2012)
Appl. Environ. Microbiol.
, vol.78
, pp. 8421-8430
-
-
Weber, C.1
Brueckner, C.2
Weinreb, S.3
Lehr, C.4
Essl, C.5
Boles, E.6
-
38
-
-
84900542507
-
Production of muconic acid from genetically engineered microorganisms
-
in: USPTO (Ed.) US Patent, US Patent
-
R.R. Yocum, W. Gong, S. Dole, R. Sillers, M. Gandhi, J.G. Pero, Production of muconic acid from genetically engineered microorganisms, in: USPTO (Ed.) US Patent, US Patent, 2013.
-
(2013)
-
-
Yocum, R.R.1
Gong, W.2
Dole, S.3
Sillers, R.4
Gandhi, M.5
Pero, J.G.6
-
39
-
-
77950863739
-
Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli
-
Moon T.S., Dueber J.E., Shiue E., Prather K.L. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 2010, 12:298-305.
-
(2010)
Metab. Eng.
, vol.12
, pp. 298-305
-
-
Moon, T.S.1
Dueber, J.E.2
Shiue, E.3
Prather, K.L.4
-
40
-
-
84891045972
-
Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport
-
Shiue E., Prather K.L. Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab Eng. 2014, 22:22-31.
-
(2014)
Metab Eng.
, vol.22
, pp. 22-31
-
-
Shiue, E.1
Prather, K.L.2
-
41
-
-
58149374098
-
The biological role of d-glucaric acid and its derivatives: potential use in medicine
-
Zoltaszek R., Hanausek M., Kilianska Z.M., Walaszek Z. The biological role of d-glucaric acid and its derivatives: potential use in medicine. Postepy Hig Med Dosw 2008, 62:451-462.
-
(2008)
Postepy Hig Med Dosw
, vol.62
, pp. 451-462
-
-
Zoltaszek, R.1
Hanausek, M.2
Kilianska, Z.M.3
Walaszek, Z.4
-
42
-
-
0028286911
-
Environmentally compatible synthesis of adipic acid from d-glucose
-
Draths K.M., Frost J.W. Environmentally compatible synthesis of adipic acid from d-glucose. J. Am. Chem. Soc. 1994, 116:399-400.
-
(1994)
J. Am. Chem. Soc.
, vol.116
, pp. 399-400
-
-
Draths, K.M.1
Frost, J.W.2
-
43
-
-
0141908155
-
Altered glucose transport and shikimate pathway product yields in E-coli
-
Yi J., Draths K.M., Li K., Frost J.W. Altered glucose transport and shikimate pathway product yields in E-coli. Biotechnol. Prog. 2003, 19:1450-1459.
-
(2003)
Biotechnol. Prog.
, vol.19
, pp. 1450-1459
-
-
Yi, J.1
Draths, K.M.2
Li, K.3
Frost, J.W.4
-
44
-
-
0033198744
-
Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of d-xylose, l-arabinose, and d-glucose carbon sources
-
Li K., Frost J.W. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of d-xylose, l-arabinose, and d-glucose carbon sources. Biotechnol. Prog. 1999, 15:876-883.
-
(1999)
Biotechnol. Prog.
, vol.15
, pp. 876-883
-
-
Li, K.1
Frost, J.W.2
-
45
-
-
0025648658
-
Genomic direction of synthesis during plasmid-based biocatalysis
-
Draths J.W.F.K.M. Genomic direction of synthesis during plasmid-based biocatalysis. J. Am. Chem. Soc. 1990, 112:9630-9632.
-
(1990)
J. Am. Chem. Soc.
, vol.112
, pp. 9630-9632
-
-
Draths, J.W.F.K.M.1
-
46
-
-
84875265625
-
Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
-
Curran K.A., Leavitt J., Karim A., Alper H.S. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 2013, 15:55-66.
-
(2013)
Metab. Eng.
, vol.15
, pp. 55-66
-
-
Curran, K.A.1
Leavitt, J.2
Karim, A.3
Alper, H.S.4
-
47
-
-
66149122278
-
Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p
-
Moxley J.F., Jewett M.C., Antoniewicz M.R., Villas-Boas S.G., Alper H., Wheeler R.T., Tong L., Hinnebusch A.G., Ideker T., Nielsen J., Stephanopoulos G. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:6477-6482.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 6477-6482
-
-
Moxley, J.F.1
Jewett, M.C.2
Antoniewicz, M.R.3
Villas-Boas, S.G.4
Alper, H.5
Wheeler, R.T.6
Tong, L.7
Hinnebusch, A.G.8
Ideker, T.9
Nielsen, J.10
Stephanopoulos, G.11
-
48
-
-
33845442201
-
Engineering yeast transcription machinery for improved ethanol tolerance and production
-
Alper H., Moxley J., Nevoigt E., Fink G.R., Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314:1565-1568.
-
(2006)
Science
, vol.314
, pp. 1565-1568
-
-
Alper, H.1
Moxley, J.2
Nevoigt, E.3
Fink, G.R.4
Stephanopoulos, G.5
-
49
-
-
78650633438
-
Lignin depolymerization and conversion: a review of thermochemical methods
-
Pandey M.P., Kim C.S. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 2011, 34:29-41.
-
(2011)
Chem. Eng. Technol.
, vol.34
, pp. 29-41
-
-
Pandey, M.P.1
Kim, C.S.2
-
50
-
-
84911460597
-
Formic-acid-induced depolymerization of oxidized lignin to aromatics
-
Rahimi A., Ulbrich A., Coon J.J., Stahl S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515:249-252.
-
(2014)
Nature
, vol.515
, pp. 249-252
-
-
Rahimi, A.1
Ulbrich, A.2
Coon, J.J.3
Stahl, S.S.4
-
51
-
-
84906861590
-
Lignin depolymerization with phenol via redistribution mechanism in ionic liquids
-
Nanayakkara S., Patti A.F., Saito K. Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sust. Chem. Eng. 2014, 2:2159-2164.
-
(2014)
ACS Sust. Chem. Eng.
, vol.2
, pp. 2159-2164
-
-
Nanayakkara, S.1
Patti, A.F.2
Saito, K.3
-
52
-
-
84901604698
-
Base catalyzed depolymerization of lignin: influence of organosolv lignin nature
-
Erdocia X., Prado R., Corcuera M.A., Labidi J. Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenergy 2014, 66:379-386.
-
(2014)
Biomass Bioenergy
, vol.66
, pp. 379-386
-
-
Erdocia, X.1
Prado, R.2
Corcuera, M.A.3
Labidi, J.4
-
53
-
-
84896958151
-
Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol
-
Warner G., Hansen T.S., Riisager A., Beach E.S., Barta K., Anastas P.T. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol. Bioresour. Technol. 2014, 161:78-83.
-
(2014)
Bioresour. Technol.
, vol.161
, pp. 78-83
-
-
Warner, G.1
Hansen, T.S.2
Riisager, A.3
Beach, E.S.4
Barta, K.5
Anastas, P.T.6
-
54
-
-
0003655723
-
-
VCH, Weinheim, Federal Republic of Germany; Deerfield Beach, FL, USA
-
Ullmann F., Gerhartz W., Yamamoto Y.S., Campbell F.T., Pfefferkorn R., Rounsaville J.F., Ullmann F. Ullmann's Encyclopedia of Industrial Chemistry 1985, VCH, Weinheim, Federal Republic of Germany; Deerfield Beach, FL, USA. Fifth completely rev. ed.
-
(1985)
Ullmann's Encyclopedia of Industrial Chemistry
-
-
Ullmann, F.1
Gerhartz, W.2
Yamamoto, Y.S.3
Campbell, F.T.4
Pfefferkorn, R.5
Rounsaville, J.F.6
Ullmann, F.7
-
55
-
-
79951946091
-
Depolymerization of steam-treated lignin for the production of green chemicals
-
Lavoie J.M., Bare W., Bilodeau M. Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour. Technol. 2011, 102:4917-4920.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 4917-4920
-
-
Lavoie, J.M.1
Bare, W.2
Bilodeau, M.3
-
56
-
-
84896931921
-
Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products
-
Nanayakkara S., Patti A.F., Saito K. Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem. 2014, 16:1897-1903.
-
(2014)
Green Chem.
, vol.16
, pp. 1897-1903
-
-
Nanayakkara, S.1
Patti, A.F.2
Saito, K.3
-
57
-
-
80054757000
-
Microbial degradation of aromatic compounds-from one strategy to four
-
Fuchs G., Boll M., Heider J. Microbial degradation of aromatic compounds-from one strategy to four. Nat. Rev. Microbiol. 2011, 9:803-816.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 803-816
-
-
Fuchs, G.1
Boll, M.2
Heider, J.3
-
58
-
-
84929401437
-
Adipic acid production from lignin
-
Vardon D.R., Franden M.A., Johnson C.W., Karp E.M., Guarnieri M.T., Linger J.G., Salm M.J., Strathmann T.J., Beckham G.T. Adipic acid production from lignin. Energy Environ. Sci. 2015.
-
(2015)
Energy Environ. Sci.
-
-
Vardon, D.R.1
Franden, M.A.2
Johnson, C.W.3
Karp, E.M.4
Guarnieri, M.T.5
Linger, J.G.6
Salm, M.J.7
Strathmann, T.J.8
Beckham, G.T.9
-
59
-
-
0036933805
-
Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440
-
Jimenez J.I., Minambres B., Garcia J.L., Diaz E. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol. 2002, 4:824-841.
-
(2002)
Environ. Microbiol.
, vol.4
, pp. 824-841
-
-
Jimenez, J.I.1
Minambres, B.2
Garcia, J.L.3
Diaz, E.4
-
60
-
-
80054104927
-
Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield
-
van Duuren J.B.J.H., Wijte D., Leprince A., Karge B., Puchalka J., Wery J., dos Santos V.A.P.M., Eggink G., Mars A.E. Generation of a catR deficient mutant of P. putida KT2440 that produces cis, cis-muconate from benzoate at high rate and yield. J. Biotechnol. 2011, 156:163-172.
-
(2011)
J. Biotechnol.
, vol.156
, pp. 163-172
-
-
van Duuren, J.B.J.H.1
Wijte, D.2
Leprince, A.3
Karge, B.4
Puchalka, J.5
Wery, J.6
dos Santos, V.A.P.M.7
Eggink, G.8
Mars, A.E.9
-
61
-
-
0026718930
-
Characterization of Pseudomonas-Putida mutants unable to catabolize benzoate-cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal dna fragment able to substitute for xyls in activation of the tol lower-pathway promoter
-
Jeffrey W.H., Cuskey S.M., Chapman P.J., Resnick S., Olsen R.H. Characterization of Pseudomonas-Putida mutants unable to catabolize benzoate-cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal dna fragment able to substitute for xyls in activation of the tol lower-pathway promoter. J. Bacteriol. 1992, 174:4986-4996.
-
(1992)
J. Bacteriol.
, vol.174
, pp. 4986-4996
-
-
Jeffrey, W.H.1
Cuskey, S.M.2
Chapman, P.J.3
Resnick, S.4
Olsen, R.H.5
-
62
-
-
0032570025
-
Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme
-
McFall S.M., Chugani S.A., Chakrabarty A.M. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 1998, 223:257-267.
-
(1998)
Gene
, vol.223
, pp. 257-267
-
-
McFall, S.M.1
Chugani, S.A.2
Chakrabarty, A.M.3
-
63
-
-
84856577901
-
PH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1
-
van Duuren J.B.J.H., Wijte D., Karge B., dos Santos V.A.P.M., Yang Y., Mars A.E., Eggink G. pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol. Prog. 2012, 28:85-92.
-
(2012)
Biotechnol. Prog.
, vol.28
, pp. 85-92
-
-
van Duuren, J.B.J.H.1
Wijte, D.2
Karge, B.3
dos Santos, V.A.P.M.4
Yang, Y.5
Mars, A.E.6
Eggink, G.7
-
64
-
-
0025641853
-
In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600
-
Powlowski J., Shingler V. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 1990, 172:6834-6840.
-
(1990)
J. Bacteriol.
, vol.172
, pp. 6834-6840
-
-
Powlowski, J.1
Shingler, V.2
-
65
-
-
84941289540
-
Enzymatic macromolecular lignin depolymerization in vitro without peroxidases
-
135-CELL
-
Nutsubidze N., Sarkanen S., Shashikanth S. Enzymatic macromolecular lignin depolymerization in vitro without peroxidases. Abstr. Pap. Am. Chem. Soc. 1996, 211:135-CELL.
-
(1996)
Abstr. Pap. Am. Chem. Soc.
, vol.211
-
-
Nutsubidze, N.1
Sarkanen, S.2
Shashikanth, S.3
-
66
-
-
84867658533
-
Organosolv lignin depolymerization with different base catalysts
-
Toledano A., Serrano L., Labidi J. Organosolv lignin depolymerization with different base catalysts. J. Chem. Technol. Biotechnol. 2012, 87:1593-1599.
-
(2012)
J. Chem. Technol. Biotechnol.
, vol.87
, pp. 1593-1599
-
-
Toledano, A.1
Serrano, L.2
Labidi, J.3
-
67
-
-
84941289541
-
Experimental and computational design of lignin depolymerization catalysts
-
Chmely S.C., Kim S., Bomble Y.J., Chang C., Moens L., Nimlos M.R., Beckham G.T. Experimental and computational design of lignin depolymerization catalysts. Abstr. Pap. Am. Chem. Soc. 2011, 242.
-
(2011)
Abstr. Pap. Am. Chem. Soc.
, vol.242
-
-
Chmely, S.C.1
Kim, S.2
Bomble, Y.J.3
Chang, C.4
Moens, L.5
Nimlos, M.R.6
Beckham, G.T.7
-
68
-
-
0024494204
-
Biosynthesis of inositol in yeast. Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus
-
Dean-Johnson M., Henry S.A. Biosynthesis of inositol in yeast. Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus. J. Biol. Chem. 1989, 264:1274-1283.
-
(1989)
J. Biol. Chem.
, vol.264
, pp. 1274-1283
-
-
Dean-Johnson, M.1
Henry, S.A.2
-
69
-
-
0028800519
-
Inositol monophosphatase activity from the E. coli suhB gene product
-
Matsuhisa A., Suzuki N., Noda T., Shiba K. Inositol monophosphatase activity from the E. coli suhB gene product. J. Bacteriol. 1995, 177:200-205.
-
(1995)
J. Bacteriol.
, vol.177
, pp. 200-205
-
-
Matsuhisa, A.1
Suzuki, N.2
Noda, T.3
Shiba, K.4
-
70
-
-
62649130286
-
Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58
-
Yoon S.H., Moon T.S., Iranpour P., Lanza A.M., Prather K.J. Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58. J. Bacteriol. 2009, 191:1565-1573.
-
(2009)
J. Bacteriol.
, vol.191
, pp. 1565-1573
-
-
Yoon, S.H.1
Moon, T.S.2
Iranpour, P.3
Lanza, A.M.4
Prather, K.J.5
-
71
-
-
14344261707
-
Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney
-
Arner R.J., Prabhu K.S., Reddy C.C. Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney. Biochem. Biophys. Res. Commun. 2004, 324:1386-1392.
-
(2004)
Biochem. Biophys. Res. Commun.
, vol.324
, pp. 1386-1392
-
-
Arner, R.J.1
Prabhu, K.S.2
Reddy, C.C.3
-
72
-
-
68449088806
-
Synthetic protein scaffolds provide modular control over metabolic flux
-
Dueber J.E., Wu G.C., Malmirchegini G.R., Moon T.S., Petzold C.J., Ullal A.V., Prather K.L., Keasling J.D. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 2009, 27:753-759.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 753-759
-
-
Dueber, J.E.1
Wu, G.C.2
Malmirchegini, G.R.3
Moon, T.S.4
Petzold, C.J.5
Ullal, A.V.6
Prather, K.L.7
Keasling, J.D.8
-
73
-
-
0029083125
-
Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates
-
Steffensen W.S., Alexander M. Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates. Appl. Environ. Microbiol. 1995, 61:2859-2862.
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 2859-2862
-
-
Steffensen, W.S.1
Alexander, M.2
-
74
-
-
0037229833
-
MRNA differential display in a microbial enrichment culture: Simultaneous identification of three cyclohexanone monooxygenases from three species
-
Brzostowicz P.C., Walters D.M., Thomas S.M., Nagarajan V., Rouviere P.E. mRNA differential display in a microbial enrichment culture: Simultaneous identification of three cyclohexanone monooxygenases from three species. Appl. Environ. Microbiol. 2003, 69:334-342.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 334-342
-
-
Brzostowicz, P.C.1
Walters, D.M.2
Thomas, S.M.3
Nagarajan, V.4
Rouviere, P.E.5
-
75
-
-
0036526342
-
Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation
-
Thykaer J., Christensen B., Nielsen J. Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation. Metab. Eng. 2002, 4:151-158.
-
(2002)
Metab. Eng.
, vol.4
, pp. 151-158
-
-
Thykaer, J.1
Christensen, B.2
Nielsen, J.3
-
76
-
-
0242487787
-
Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard A.P., Pharkya P., Maranas C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84:647-657.
-
(2003)
Biotechnol. Bioeng.
, vol.84
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
77
-
-
84898548508
-
A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains
-
Choon Y.W., Mohamad M.S., Deris S., Illias R.M., Chong C.K., Chai L.E. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains. Bioproces.s Biosyst. Eng. 2014, 37:521-532.
-
(2014)
Bioproces.s Biosyst. Eng.
, vol.37
, pp. 521-532
-
-
Choon, Y.W.1
Mohamad, M.S.2
Deris, S.3
Illias, R.M.4
Chong, C.K.5
Chai, L.E.6
-
78
-
-
73949137685
-
Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols
-
Yang Y., Lu W., Zhang X., Xie W., Cai M., Gross R.A. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols. Biomacromolecules 2010, 11:259-268.
-
(2010)
Biomacromolecules
, vol.11
, pp. 259-268
-
-
Yang, Y.1
Lu, W.2
Zhang, X.3
Xie, W.4
Cai, M.5
Gross, R.A.6
-
79
-
-
23844500315
-
Alpha, omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica
-
Smit M.S., Mokgoro M.M., Setati E., Nicaud J.M. Alpha, omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol. Lett. 2005, 27:859-864.
-
(2005)
Biotechnol. Lett.
, vol.27
, pp. 859-864
-
-
Smit, M.S.1
Mokgoro, M.M.2
Setati, E.3
Nicaud, J.M.4
-
80
-
-
0026636011
-
Metabolic engineering of Candida-Tropicalis for the production of long-chain dicarboxylic-acids
-
Picataggio S., Rohrer T., Deanda K., Lanning D., Reynolds R., Mielenz J., Eirich L.D. Metabolic engineering of Candida-Tropicalis for the production of long-chain dicarboxylic-acids. Bio-Technol. 1992, 10:894-898.
-
(1992)
Bio-Technol.
, vol.10
, pp. 894-898
-
-
Picataggio, S.1
Rohrer, T.2
Deanda, K.3
Lanning, D.4
Reynolds, R.5
Mielenz, J.6
Eirich, L.D.7
-
81
-
-
0142136150
-
Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20,336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids
-
Craft D.L., Madduri K.M., Eshoo M., Wilson C.R. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20,336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids. Appl. Environ. Microbiol. 2003, 69:5983-5991.
-
(2003)
Appl. Environ. Microbiol.
, vol.69
, pp. 5983-5991
-
-
Craft, D.L.1
Madduri, K.M.2
Eshoo, M.3
Wilson, C.R.4
-
82
-
-
84867586056
-
Bio-based adipic acid from renewable oils
-
Picataggio T.B.S. Bio-based adipic acid from renewable oils. Lipid Technol. 2012, 24:223-225.
-
(2012)
Lipid Technol.
, vol.24
, pp. 223-225
-
-
Picataggio, T.B.S.1
-
83
-
-
84988603405
-
Computational approaches to metabolic engineering utilizing systems biology and synthetic biology
-
Fong S.S. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology. Comput. Struct. Biotechnol. J. 2014, 11:28-34.
-
(2014)
Comput. Struct. Biotechnol. J.
, vol.11
, pp. 28-34
-
-
Fong, S.S.1
-
84
-
-
84877804801
-
Modular optimization of multi-gene pathways for fatty acids production in E. coli
-
Xu P., Gu Q., Wang W.Y., Wong L., Bower A.G.W., Collins C.H., Koffas M.A.G. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 2013, 4:1409-1416.
-
(2013)
Nat. Commun.
, vol.4
, pp. 1409-1416
-
-
Xu, P.1
Gu, Q.2
Wang, W.Y.3
Wong, L.4
Bower, A.G.W.5
Collins, C.H.6
Koffas, M.A.G.7
-
85
-
-
84857688085
-
Determination of the ribosome-binding sequence and spacer length between binding site and initiation codon for efficient protein expression in Bifidobacterium longum 105-A
-
He J.L., Sakaguchi K., Suzuki T. Determination of the ribosome-binding sequence and spacer length between binding site and initiation codon for efficient protein expression in Bifidobacterium longum 105-A. J. Biosci. Bioeng. 2012, 113:442-444.
-
(2012)
J. Biosci. Bioeng.
, vol.113
, pp. 442-444
-
-
He, J.L.1
Sakaguchi, K.2
Suzuki, T.3
-
86
-
-
77955588048
-
Distance between RBS and AUG plays an important role in overexpression of recombinant proteins
-
Berwal S.K., Sreejith R.K., Pal J.K. Distance between RBS and AUG plays an important role in overexpression of recombinant proteins. Anal. Biochem. 2010, 405:275-277.
-
(2010)
Anal. Biochem.
, vol.405
, pp. 275-277
-
-
Berwal, S.K.1
Sreejith, R.K.2
Pal, J.K.3
-
87
-
-
33646580027
-
Hairpin RNA: a secondary structure of primary importance
-
Svoboda P., Di Cara A. Hairpin RNA: a secondary structure of primary importance. Cell Mol. Life Sci. 2006, 63:901-918.
-
(2006)
Cell Mol. Life Sci.
, vol.63
, pp. 901-918
-
-
Svoboda, P.1
Di Cara, A.2
-
88
-
-
84859768457
-
Parts plus pipes: synthetic biology approaches to metabolic engineering
-
Boyle P.M., Silver P.A. Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab. Eng. 2012, 14:223-232.
-
(2012)
Metab. Eng.
, vol.14
, pp. 223-232
-
-
Boyle, P.M.1
Silver, P.A.2
-
89
-
-
84861982164
-
Recent progress in consolidated bioprocessing
-
Olson D.G., McBride J.E., Shaw A.J., Lynd L.R. Recent progress in consolidated bioprocessing. Curr. Opin. Biotechnol. 2012, 23:396-405.
-
(2012)
Curr. Opin. Biotechnol.
, vol.23
, pp. 396-405
-
-
Olson, D.G.1
McBride, J.E.2
Shaw, A.J.3
Lynd, L.R.4
-
90
-
-
84903831403
-
Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose
-
Merklein K., Fong S.S., Deng Y. Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochem. Eng. J. 2014, 90:239-244.
-
(2014)
Biochem. Eng. J.
, vol.90
, pp. 239-244
-
-
Merklein, K.1
Fong, S.S.2
Deng, Y.3
-
91
-
-
80052027512
-
Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol
-
Deng Y., Fong S.S. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab. Eng. 2011, 13:570-577.
-
(2011)
Metab. Eng.
, vol.13
, pp. 570-577
-
-
Deng, Y.1
Fong, S.S.2
-
92
-
-
84942195854
-
Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6
-
Deng Y., Mao Y. Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6. J. Appl. Microbiol. 2015.
-
(2015)
J. Appl. Microbiol.
-
-
Deng, Y.1
Mao, Y.2
-
93
-
-
84890842396
-
Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents
-
Saha B., Abu-Omar M.M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem. 2014, 16:24-38.
-
(2014)
Green Chem.
, vol.16
, pp. 24-38
-
-
Saha, B.1
Abu-Omar, M.M.2
-
94
-
-
84878078206
-
Emerging catalytic processes for the production of adipic acid
-
Van de Vyver S., Roman-Leshkov Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 2013, 3:1465-1479.
-
(2013)
Catal. Sci. Technol.
, vol.3
, pp. 1465-1479
-
-
Van de Vyver, S.1
Roman-Leshkov, Y.2
-
96
-
-
0034054685
-
Expression of outer membrane proteins in E. coli growing at acid pH
-
Sato M., Machida K., Arikado E., Saito H., Kakegawa T., Kobayashi H. Expression of outer membrane proteins in E. coli growing at acid pH. Appl. Environ. Microbiol. 2000, 66:943-947.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 943-947
-
-
Sato, M.1
Machida, K.2
Arikado, E.3
Saito, H.4
Kakegawa, T.5
Kobayashi, H.6
-
97
-
-
80053189299
-
A systems biology approach sheds new light on E. coli acid resistance
-
Stincone A., Daudi N., Rahman A.S., Antczak P., Henderson I., Cole J., Johnson M.D., Lund P., Falciani F. A systems biology approach sheds new light on E. coli acid resistance. Nucleic Acids Res. 2011, 39:7512-7528.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 7512-7528
-
-
Stincone, A.1
Daudi, N.2
Rahman, A.S.3
Antczak, P.4
Henderson, I.5
Cole, J.6
Johnson, M.D.7
Lund, P.8
Falciani, F.9
-
98
-
-
80051980539
-
Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum
-
S.D.Brown A.M., Guss T.V., Karpinets J.M., Parks N., Smolin S.H., Yang M.L., Land D.M., Klingeman A., Bhandiwad M., Rodriguez B., Raman X.J., Shao J.R., Mielenz J.C., Smith M., Keller L.R.Lynd Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum. Proc. Natl. Acad. Sci. U. S. A. 2011, 108:13752-13757.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 13752-13757
-
-
Brown, A.M.S.D.1
Guss, T.V.2
Karpinets, J.M.3
Parks, N.4
Smolin, S.H.5
Yang, M.L.6
Land, D.M.7
Klingeman, A.8
Bhandiwad, M.9
Rodriguez, B.10
Raman, X.J.11
Shao, J.R.12
Mielenz, J.C.13
Smith, M.14
Keller, L.R.L.15
-
99
-
-
77954265373
-
Adaptive evolution of E. coli K-12 MG1655 during growth on a nonnative carbon source, l-1,2-propanediol
-
Lee D.H., Palsson B.O. Adaptive evolution of E. coli K-12 MG1655 during growth on a nonnative carbon source, l-1,2-propanediol. Appl. Environ. Microbiol. 2010, 76:4158-4168.
-
(2010)
Appl. Environ. Microbiol.
, vol.76
, pp. 4158-4168
-
-
Lee, D.H.1
Palsson, B.O.2
-
100
-
-
84925637685
-
Improving olefin tolerance and production in E. coli using native and evolved AcrB
-
n/a-n/a.
-
Mingardon F., Clement C., Hirano K., Nhan M., Luning E.G., Chanal A., Mukhopadhyay A. Improving olefin tolerance and production in E. coli using native and evolved AcrB. Biotechnol. Bioeng. 2015, n/a-n/a.
-
(2015)
Biotechnol. Bioeng.
-
-
Mingardon, F.1
Clement, C.2
Hirano, K.3
Nhan, M.4
Luning, E.G.5
Chanal, A.6
Mukhopadhyay, A.7
-
101
-
-
57449100055
-
Improved thermostability and acetic acid tolerance of E. coli via directed evolution of homoserine o-succinyltransferase
-
E.A.Mordukhova H.S., Lee J.G.Pan Improved thermostability and acetic acid tolerance of E. coli via directed evolution of homoserine o-succinyltransferase. Appl. Environ. Microbiol. 2008, 74:7660-7668.
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 7660-7668
-
-
Mordukhova, H.S.E.A.1
Lee, J.G.P.2
-
102
-
-
84896129574
-
Enhancing tolerance to short-chain alcohols by engineering the E. coli AcrB efflux pump to secrete the non-native substrate n-butanol
-
Fisher M.A., Boyarskiy S., Yamada M.R., Kong N., Bauer S., Tullman-Ercek D. Enhancing tolerance to short-chain alcohols by engineering the E. coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol. 2013, 3:30-40.
-
(2013)
ACS Synth. Biol.
, vol.3
, pp. 30-40
-
-
Fisher, M.A.1
Boyarskiy, S.2
Yamada, M.R.3
Kong, N.4
Bauer, S.5
Tullman-Ercek, D.6
|