메뉴 건너뛰기




Volumn 105, Issue , 2016, Pages 16-26

Biological production of adipic acid from renewable substrates: Current and future methods

Author keywords

Adipic acid; Biocatalysis; Biosynthesis; Consolidated bioprocessing (CBP); Fermentation; Metabolite over production

Indexed keywords

BIOCHEMISTRY; BIOSYNTHESIS; CARBON; CATALYSIS; FERMENTATION; GREENHOUSE GASES; INTERNATIONAL TRADE; METABOLIC ENGINEERING; REINFORCED PLASTICS; SOLVENTS; SYNTHETIC RESINS;

EID: 84941299813     PISSN: 1369703X     EISSN: 1873295X     Source Type: Journal    
DOI: 10.1016/j.bej.2015.08.015     Document Type: Review
Times cited : (78)

References (102)
  • 2
    • 84881028723 scopus 로고    scopus 로고
    • Toward biotechnological production of adipic acid and precursors from biorenewables
    • Polen T., Spelberg M., Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J. Biotechnol. 2013, 167:75-84.
    • (2013) J. Biotechnol. , vol.167 , pp. 75-84
    • Polen, T.1    Spelberg, M.2    Bott, M.3
  • 4
    • 84888428404 scopus 로고    scopus 로고
    • Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes
    • Claypool J.T., Raman D.R. Development and validation of a technoeconomic analysis tool for early-stage evaluation of bio-based chemical production processes. Bioresour. Technol. 2013, 150:486-495.
    • (2013) Bioresour. Technol. , vol.150 , pp. 486-495
    • Claypool, J.T.1    Raman, D.R.2
  • 5
    • 0035818010 scopus 로고    scopus 로고
    • Synthesis of a broad array of highly functionalized, enantiomerically pure cyclohexanecarboxylic acid derivatives by microbial dihydroxylation of benzoic acid and subsequent oxidative and rearrangement reactions
    • Myers A.G., Siegel D.R., Buzard D.J., Charest M.G. Synthesis of a broad array of highly functionalized, enantiomerically pure cyclohexanecarboxylic acid derivatives by microbial dihydroxylation of benzoic acid and subsequent oxidative and rearrangement reactions. Org. Lett. 2001, 3:2923-2926.
    • (2001) Org. Lett. , vol.3 , pp. 2923-2926
    • Myers, A.G.1    Siegel, D.R.2    Buzard, D.J.3    Charest, M.G.4
  • 6
    • 0036256708 scopus 로고    scopus 로고
    • Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis
    • Cheng Q., Thomas S.M., Rouviere P. Biological conversion of cyclic alkanes and cyclic alcohols into dicarboxylic acids: biochemical and molecular basis. Appl. Microbiol. Biotechnol. 2002, 58:704-711.
    • (2002) Appl. Microbiol. Biotechnol. , vol.58 , pp. 704-711
    • Cheng, Q.1    Thomas, S.M.2    Rouviere, P.3
  • 7
    • 84878561015 scopus 로고    scopus 로고
    • Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes
    • Damm M., Gutmann B., Kappe C.O. Continuous-flow synthesis of adipic acid from cyclohexene using hydrogen peroxide in high-temperature explosive regimes. Chemsuschem 2013, 6:978-982.
    • (2013) Chemsuschem , vol.6 , pp. 978-982
    • Damm, M.1    Gutmann, B.2    Kappe, C.O.3
  • 8
    • 84898657924 scopus 로고    scopus 로고
    • Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration
    • Li X., Wu D., Lu T., Yi G., Su H., Zhang Y. Highly efficient chemical process to convert mucic acid into adipic acid and DFT studies of the mechanism of the rhenium-catalyzed deoxydehydration. Angew. Chem. Int. Ed. Engl. 2014, 53:4200-4204.
    • (2014) Angew. Chem. Int. Ed. Engl. , vol.53 , pp. 4200-4204
    • Li, X.1    Wu, D.2    Lu, T.3    Yi, G.4    Su, H.5    Zhang, Y.6
  • 10
    • 33645454064 scopus 로고    scopus 로고
    • Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts
    • Raja R., Thomas J.M., Xu M., Harris K.D., Greenhill-Hooper M., Quill K. Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts. Chem. Commun. (Camb.) 2006, 448-450.
    • (2006) Chem. Commun. (Camb.) , pp. 448-450
    • Raja, R.1    Thomas, J.M.2    Xu, M.3    Harris, K.D.4    Greenhill-Hooper, M.5    Quill, K.6
  • 11
    • 0032508584 scopus 로고    scopus 로고
    • A Green route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide
    • Sato K., Aoki M., Noyori R. A Green route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide. Science 1998, 281:1646-1647.
    • (1998) Science , vol.281 , pp. 1646-1647
    • Sato, K.1    Aoki, M.2    Noyori, R.3
  • 12
    • 79954511892 scopus 로고    scopus 로고
    • A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks
    • van Duuren J.B., Brehmer B., Mars A.E., Eggink G., Dos Santos V.A., Sanders J.P. A limited LCA of bio-adipic acid: manufacturing the nylon-6,6 precursor adipic acid using the benzoic acid degradation pathway from different feedstocks. Biotechnol. Bioeng. 2011, 108:1298-1306.
    • (2011) Biotechnol. Bioeng. , vol.108 , pp. 1298-1306
    • van Duuren, J.B.1    Brehmer, B.2    Mars, A.E.3    Eggink, G.4    Dos Santos, V.A.5    Sanders, J.P.6
  • 13
    • 84941281420 scopus 로고    scopus 로고
    • U.S. Environmental Protection Agency, Inventory of U. S Greenhouse Gas Emissions and Sinks
    • 1990-2009.
    • O.o.A.P. U.S. Environmental Protection Agency, Inventory of U. S Greenhouse Gas Emissions and Sinks. 2011, 1990-2009.
    • (2011)
  • 14
    • 34547988496 scopus 로고    scopus 로고
    • White biotechnology: ready to partner and invest in
    • Kircher M. White biotechnology: ready to partner and invest in. Biotechnol. J. 2006, 1:787-794.
    • (2006) Biotechnol. J. , vol.1 , pp. 787-794
    • Kircher, M.1
  • 15
    • 80051997568 scopus 로고    scopus 로고
    • Selective hydrogenation of trans,trans-muconic acid to adipic acid over a titania-supported rhenium catalyst
    • X.She H.M., Brown X., Zhang B.K., Ahring Y.Wang Selective hydrogenation of trans,trans-muconic acid to adipic acid over a titania-supported rhenium catalyst. Chemsuschem 2011, 4:1071-1073.
    • (2011) Chemsuschem , vol.4 , pp. 1071-1073
    • She, H.M.X.1    Brown, X.2    Zhang, B.K.3    Ahring, Y.W.4
  • 16
    • 84941279866 scopus 로고    scopus 로고
    • Reed Business Information, New York, NY
    • ICIS Chemical Business 2010, 22-23. Reed Business Information, New York, NY.
    • (2010) Chemical Business , pp. 22-23
  • 18
    • 84879184862 scopus 로고    scopus 로고
    • A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-gamma-butyrolactone
    • Martin C.H., Dhamankar H., Tseng H.C., Sheppard M.J., Reisch C.R., Prather K.L.J. A platform pathway for production of 3-hydroxyacids provides a biosynthetic route to 3-hydroxy-gamma-butyrolactone. Nat. Commun. 2013, 4:1414-1422.
    • (2013) Nat. Commun. , vol.4 , pp. 1414-1422
    • Martin, C.H.1    Dhamankar, H.2    Tseng, H.C.3    Sheppard, M.J.4    Reisch, C.R.5    Prather, K.L.J.6
  • 20
    • 84899051891 scopus 로고    scopus 로고
    • Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development
    • Paddon C.J., Keasling J.D. Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat. Rev. Microbiol. 2014, 12:355-367.
    • (2014) Nat. Rev. Microbiol. , vol.12 , pp. 355-367
    • Paddon, C.J.1    Keasling, J.D.2
  • 22
    • 84923320438 scopus 로고    scopus 로고
    • Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol
    • Sheppard M.J., Kunjapur A.M., Wenck S.J., Prather K.L.J. Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat. Commun. 2014, 5:5031-5040.
    • (2014) Nat. Commun. , vol.5 , pp. 5031-5040
    • Sheppard, M.J.1    Kunjapur, A.M.2    Wenck, S.J.3    Prather, K.L.J.4
  • 26
    • 84876518857 scopus 로고    scopus 로고
    • Biological methods for preparing adipic acid
    • in: USPTO (Ed.) US Patent, US Patent
    • S. Picataggio, T. Beardslee, Biological methods for preparing adipic acid, in: USPTO (Ed.) US Patent, US Patent, 2012.
    • (2012)
    • Picataggio, S.1    Beardslee, T.2
  • 27
    • 84931420611 scopus 로고    scopus 로고
    • Direct biosynthesis of adipic acid from a synthetic pathway in recombinant E. coli
    • Yu J.L., Xia X.X., Zhong J.J., Qian Z.G. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant E. coli. Biotechnol. Bioeng. 2014, 111:2580-2586.
    • (2014) Biotechnol. Bioeng. , vol.111 , pp. 2580-2586
    • Yu, J.L.1    Xia, X.X.2    Zhong, J.J.3    Qian, Z.G.4
  • 28
    • 79955390876 scopus 로고    scopus 로고
    • Microorganisms for the production of adipic acid and other compounds
    • in: USPTO (Ed.) US Patent USA
    • A.P. Burgard, P. Pharkya, R.E. Osterhout, Microorganisms for the production of adipic acid and other compounds, in: USPTO (Ed.) US Patent USA, 2011.
    • (2011)
    • Burgard, A.P.1    Pharkya, P.2    Osterhout, R.E.3
  • 29
    • 79951643655 scopus 로고    scopus 로고
    • Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid
    • Noack H., Georgiev V., Blomberg M.R., Siegbahn P.E., Johansson A.J. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorg. Chem. 2011, 50:1194-1202.
    • (2011) Inorg. Chem. , vol.50 , pp. 1194-1202
    • Noack, H.1    Georgiev, V.2    Blomberg, M.R.3    Siegbahn, P.E.4    Johansson, A.J.5
  • 30
    • 0034600899 scopus 로고    scopus 로고
    • Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane
    • Dugal M., Sankar G., Raja R., Thomas J.M. Designing a heterogeneous catalyst for the production of adipic acid by aerial oxidation of cyclohexane. Angew. Chem. Int. Ed. Engl. 2000, 39:2310-2313.
    • (2000) Angew. Chem. Int. Ed. Engl. , vol.39 , pp. 2310-2313
    • Dugal, M.1    Sankar, G.2    Raja, R.3    Thomas, J.M.4
  • 31
    • 84919490601 scopus 로고    scopus 로고
    • One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light
    • Hwang K.C., Sagadevan A. One-pot room-temperature conversion of cyclohexane to adipic acid by ozone and UV light. Science 2014, 346:1495-1498.
    • (2014) Science , vol.346 , pp. 1495-1498
    • Hwang, K.C.1    Sagadevan, A.2
  • 32
  • 33
    • 67649592632 scopus 로고    scopus 로고
    • Sustainability in catalytic oxidation: an alternative approach or a structural evolution?
    • Cavani F., Teles J.H. Sustainability in catalytic oxidation: an alternative approach or a structural evolution?. Chemsuschem 2009, 2:508-534.
    • (2009) Chemsuschem , vol.2 , pp. 508-534
    • Cavani, F.1    Teles, J.H.2
  • 35
    • 79251596379 scopus 로고    scopus 로고
    • Metabolic engineering of E. coli for biotechnological production of high-value organic acids and alcohols
    • Yu C., Cao Y.J., Zou H.B., Xian M. Metabolic engineering of E. coli for biotechnological production of high-value organic acids and alcohols. Appl. Microbiol. Biotechnol. 2011, 89:573-583.
    • (2011) Appl. Microbiol. Biotechnol. , vol.89 , pp. 573-583
    • Yu, C.1    Cao, Y.J.2    Zou, H.B.3    Xian, M.4
  • 36
    • 84941289539 scopus 로고    scopus 로고
    • Metabolic engineering of cis,cis-muconic acid and b-carboxy-cis,cis muconic acid production in an E. coli heterologous host
    • Bruzas I.R., Finney K.B., Welsh J.D., Hotta K., Fox D.T., Koppisch A.T. Metabolic engineering of cis,cis-muconic acid and b-carboxy-cis,cis muconic acid production in an E. coli heterologous host. Abstr. Pap. Am. Chem. Soc. 2013, 245.
    • (2013) Abstr. Pap. Am. Chem. Soc. , vol.245
    • Bruzas, I.R.1    Finney, K.B.2    Welsh, J.D.3    Hotta, K.4    Fox, D.T.5    Koppisch, A.T.6
  • 37
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
    • Weber C., Brueckner C., Weinreb S., Lehr C., Essl C., Boles E. Biosynthesis of cis,cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2012, 78:8421-8430.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 8421-8430
    • Weber, C.1    Brueckner, C.2    Weinreb, S.3    Lehr, C.4    Essl, C.5    Boles, E.6
  • 38
    • 84900542507 scopus 로고    scopus 로고
    • Production of muconic acid from genetically engineered microorganisms
    • in: USPTO (Ed.) US Patent, US Patent
    • R.R. Yocum, W. Gong, S. Dole, R. Sillers, M. Gandhi, J.G. Pero, Production of muconic acid from genetically engineered microorganisms, in: USPTO (Ed.) US Patent, US Patent, 2013.
    • (2013)
    • Yocum, R.R.1    Gong, W.2    Dole, S.3    Sillers, R.4    Gandhi, M.5    Pero, J.G.6
  • 39
    • 77950863739 scopus 로고    scopus 로고
    • Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli
    • Moon T.S., Dueber J.E., Shiue E., Prather K.L. Use of modular, synthetic scaffolds for improved production of glucaric acid in engineered E. coli. Metab. Eng. 2010, 12:298-305.
    • (2010) Metab. Eng. , vol.12 , pp. 298-305
    • Moon, T.S.1    Dueber, J.E.2    Shiue, E.3    Prather, K.L.4
  • 40
    • 84891045972 scopus 로고    scopus 로고
    • Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport
    • Shiue E., Prather K.L. Improving d-glucaric acid production from myo-inositol in E. coli by increasing MIOX stability and myo-inositol transport. Metab Eng. 2014, 22:22-31.
    • (2014) Metab Eng. , vol.22 , pp. 22-31
    • Shiue, E.1    Prather, K.L.2
  • 41
    • 58149374098 scopus 로고    scopus 로고
    • The biological role of d-glucaric acid and its derivatives: potential use in medicine
    • Zoltaszek R., Hanausek M., Kilianska Z.M., Walaszek Z. The biological role of d-glucaric acid and its derivatives: potential use in medicine. Postepy Hig Med Dosw 2008, 62:451-462.
    • (2008) Postepy Hig Med Dosw , vol.62 , pp. 451-462
    • Zoltaszek, R.1    Hanausek, M.2    Kilianska, Z.M.3    Walaszek, Z.4
  • 42
    • 0028286911 scopus 로고
    • Environmentally compatible synthesis of adipic acid from d-glucose
    • Draths K.M., Frost J.W. Environmentally compatible synthesis of adipic acid from d-glucose. J. Am. Chem. Soc. 1994, 116:399-400.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 399-400
    • Draths, K.M.1    Frost, J.W.2
  • 43
    • 0141908155 scopus 로고    scopus 로고
    • Altered glucose transport and shikimate pathway product yields in E-coli
    • Yi J., Draths K.M., Li K., Frost J.W. Altered glucose transport and shikimate pathway product yields in E-coli. Biotechnol. Prog. 2003, 19:1450-1459.
    • (2003) Biotechnol. Prog. , vol.19 , pp. 1450-1459
    • Yi, J.1    Draths, K.M.2    Li, K.3    Frost, J.W.4
  • 44
    • 0033198744 scopus 로고    scopus 로고
    • Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of d-xylose, l-arabinose, and d-glucose carbon sources
    • Li K., Frost J.W. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of d-xylose, l-arabinose, and d-glucose carbon sources. Biotechnol. Prog. 1999, 15:876-883.
    • (1999) Biotechnol. Prog. , vol.15 , pp. 876-883
    • Li, K.1    Frost, J.W.2
  • 45
    • 0025648658 scopus 로고
    • Genomic direction of synthesis during plasmid-based biocatalysis
    • Draths J.W.F.K.M. Genomic direction of synthesis during plasmid-based biocatalysis. J. Am. Chem. Soc. 1990, 112:9630-9632.
    • (1990) J. Am. Chem. Soc. , vol.112 , pp. 9630-9632
    • Draths, J.W.F.K.M.1
  • 46
    • 84875265625 scopus 로고    scopus 로고
    • Metabolic engineering of muconic acid production in Saccharomyces cerevisiae
    • Curran K.A., Leavitt J., Karim A., Alper H.S. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 2013, 15:55-66.
    • (2013) Metab. Eng. , vol.15 , pp. 55-66
    • Curran, K.A.1    Leavitt, J.2    Karim, A.3    Alper, H.S.4
  • 48
    • 33845442201 scopus 로고    scopus 로고
    • Engineering yeast transcription machinery for improved ethanol tolerance and production
    • Alper H., Moxley J., Nevoigt E., Fink G.R., Stephanopoulos G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 2006, 314:1565-1568.
    • (2006) Science , vol.314 , pp. 1565-1568
    • Alper, H.1    Moxley, J.2    Nevoigt, E.3    Fink, G.R.4    Stephanopoulos, G.5
  • 49
    • 78650633438 scopus 로고    scopus 로고
    • Lignin depolymerization and conversion: a review of thermochemical methods
    • Pandey M.P., Kim C.S. Lignin depolymerization and conversion: a review of thermochemical methods. Chem. Eng. Technol. 2011, 34:29-41.
    • (2011) Chem. Eng. Technol. , vol.34 , pp. 29-41
    • Pandey, M.P.1    Kim, C.S.2
  • 50
    • 84911460597 scopus 로고    scopus 로고
    • Formic-acid-induced depolymerization of oxidized lignin to aromatics
    • Rahimi A., Ulbrich A., Coon J.J., Stahl S.S. Formic-acid-induced depolymerization of oxidized lignin to aromatics. Nature 2014, 515:249-252.
    • (2014) Nature , vol.515 , pp. 249-252
    • Rahimi, A.1    Ulbrich, A.2    Coon, J.J.3    Stahl, S.S.4
  • 51
    • 84906861590 scopus 로고    scopus 로고
    • Lignin depolymerization with phenol via redistribution mechanism in ionic liquids
    • Nanayakkara S., Patti A.F., Saito K. Lignin depolymerization with phenol via redistribution mechanism in ionic liquids. ACS Sust. Chem. Eng. 2014, 2:2159-2164.
    • (2014) ACS Sust. Chem. Eng. , vol.2 , pp. 2159-2164
    • Nanayakkara, S.1    Patti, A.F.2    Saito, K.3
  • 52
    • 84901604698 scopus 로고    scopus 로고
    • Base catalyzed depolymerization of lignin: influence of organosolv lignin nature
    • Erdocia X., Prado R., Corcuera M.A., Labidi J. Base catalyzed depolymerization of lignin: influence of organosolv lignin nature. Biomass Bioenergy 2014, 66:379-386.
    • (2014) Biomass Bioenergy , vol.66 , pp. 379-386
    • Erdocia, X.1    Prado, R.2    Corcuera, M.A.3    Labidi, J.4
  • 53
    • 84896958151 scopus 로고    scopus 로고
    • Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol
    • Warner G., Hansen T.S., Riisager A., Beach E.S., Barta K., Anastas P.T. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol. Bioresour. Technol. 2014, 161:78-83.
    • (2014) Bioresour. Technol. , vol.161 , pp. 78-83
    • Warner, G.1    Hansen, T.S.2    Riisager, A.3    Beach, E.S.4    Barta, K.5    Anastas, P.T.6
  • 55
    • 79951946091 scopus 로고    scopus 로고
    • Depolymerization of steam-treated lignin for the production of green chemicals
    • Lavoie J.M., Bare W., Bilodeau M. Depolymerization of steam-treated lignin for the production of green chemicals. Bioresour. Technol. 2011, 102:4917-4920.
    • (2011) Bioresour. Technol. , vol.102 , pp. 4917-4920
    • Lavoie, J.M.1    Bare, W.2    Bilodeau, M.3
  • 56
    • 84896931921 scopus 로고    scopus 로고
    • Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products
    • Nanayakkara S., Patti A.F., Saito K. Chemical depolymerization of lignin involving the redistribution mechanism with phenols and repolymerization of depolymerized products. Green Chem. 2014, 16:1897-1903.
    • (2014) Green Chem. , vol.16 , pp. 1897-1903
    • Nanayakkara, S.1    Patti, A.F.2    Saito, K.3
  • 57
    • 80054757000 scopus 로고    scopus 로고
    • Microbial degradation of aromatic compounds-from one strategy to four
    • Fuchs G., Boll M., Heider J. Microbial degradation of aromatic compounds-from one strategy to four. Nat. Rev. Microbiol. 2011, 9:803-816.
    • (2011) Nat. Rev. Microbiol. , vol.9 , pp. 803-816
    • Fuchs, G.1    Boll, M.2    Heider, J.3
  • 59
    • 0036933805 scopus 로고    scopus 로고
    • Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440
    • Jimenez J.I., Minambres B., Garcia J.L., Diaz E. Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol. 2002, 4:824-841.
    • (2002) Environ. Microbiol. , vol.4 , pp. 824-841
    • Jimenez, J.I.1    Minambres, B.2    Garcia, J.L.3    Diaz, E.4
  • 61
    • 0026718930 scopus 로고
    • Characterization of Pseudomonas-Putida mutants unable to catabolize benzoate-cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal dna fragment able to substitute for xyls in activation of the tol lower-pathway promoter
    • Jeffrey W.H., Cuskey S.M., Chapman P.J., Resnick S., Olsen R.H. Characterization of Pseudomonas-Putida mutants unable to catabolize benzoate-cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal dna fragment able to substitute for xyls in activation of the tol lower-pathway promoter. J. Bacteriol. 1992, 174:4986-4996.
    • (1992) J. Bacteriol. , vol.174 , pp. 4986-4996
    • Jeffrey, W.H.1    Cuskey, S.M.2    Chapman, P.J.3    Resnick, S.4    Olsen, R.H.5
  • 62
    • 0032570025 scopus 로고    scopus 로고
    • Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme
    • McFall S.M., Chugani S.A., Chakrabarty A.M. Transcriptional activation of the catechol and chlorocatechol operons: variations on a theme. Gene 1998, 223:257-267.
    • (1998) Gene , vol.223 , pp. 257-267
    • McFall, S.M.1    Chugani, S.A.2    Chakrabarty, A.M.3
  • 63
    • 84856577901 scopus 로고    scopus 로고
    • PH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1
    • van Duuren J.B.J.H., Wijte D., Karge B., dos Santos V.A.P.M., Yang Y., Mars A.E., Eggink G. pH-stat fed-batch process to enhance the production of cis,cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. Biotechnol. Prog. 2012, 28:85-92.
    • (2012) Biotechnol. Prog. , vol.28 , pp. 85-92
    • van Duuren, J.B.J.H.1    Wijte, D.2    Karge, B.3    dos Santos, V.A.P.M.4    Yang, Y.5    Mars, A.E.6    Eggink, G.7
  • 64
    • 0025641853 scopus 로고
    • In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600
    • Powlowski J., Shingler V. In vitro analysis of polypeptide requirements of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600. J. Bacteriol. 1990, 172:6834-6840.
    • (1990) J. Bacteriol. , vol.172 , pp. 6834-6840
    • Powlowski, J.1    Shingler, V.2
  • 65
    • 84941289540 scopus 로고    scopus 로고
    • Enzymatic macromolecular lignin depolymerization in vitro without peroxidases
    • 135-CELL
    • Nutsubidze N., Sarkanen S., Shashikanth S. Enzymatic macromolecular lignin depolymerization in vitro without peroxidases. Abstr. Pap. Am. Chem. Soc. 1996, 211:135-CELL.
    • (1996) Abstr. Pap. Am. Chem. Soc. , vol.211
    • Nutsubidze, N.1    Sarkanen, S.2    Shashikanth, S.3
  • 66
    • 84867658533 scopus 로고    scopus 로고
    • Organosolv lignin depolymerization with different base catalysts
    • Toledano A., Serrano L., Labidi J. Organosolv lignin depolymerization with different base catalysts. J. Chem. Technol. Biotechnol. 2012, 87:1593-1599.
    • (2012) J. Chem. Technol. Biotechnol. , vol.87 , pp. 1593-1599
    • Toledano, A.1    Serrano, L.2    Labidi, J.3
  • 68
    • 0024494204 scopus 로고
    • Biosynthesis of inositol in yeast. Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus
    • Dean-Johnson M., Henry S.A. Biosynthesis of inositol in yeast. Primary structure of myo-inositol-1-phosphate synthase (EC 5.5.1.4) and functional analysis of its structural gene, the INO1 locus. J. Biol. Chem. 1989, 264:1274-1283.
    • (1989) J. Biol. Chem. , vol.264 , pp. 1274-1283
    • Dean-Johnson, M.1    Henry, S.A.2
  • 69
    • 0028800519 scopus 로고
    • Inositol monophosphatase activity from the E. coli suhB gene product
    • Matsuhisa A., Suzuki N., Noda T., Shiba K. Inositol monophosphatase activity from the E. coli suhB gene product. J. Bacteriol. 1995, 177:200-205.
    • (1995) J. Bacteriol. , vol.177 , pp. 200-205
    • Matsuhisa, A.1    Suzuki, N.2    Noda, T.3    Shiba, K.4
  • 70
    • 62649130286 scopus 로고    scopus 로고
    • Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58
    • Yoon S.H., Moon T.S., Iranpour P., Lanza A.M., Prather K.J. Cloning and characterization of uronate dehydrogenases from two pseudomonads and Agrobacterium tumefaciens strain C58. J. Bacteriol. 2009, 191:1565-1573.
    • (2009) J. Bacteriol. , vol.191 , pp. 1565-1573
    • Yoon, S.H.1    Moon, T.S.2    Iranpour, P.3    Lanza, A.M.4    Prather, K.J.5
  • 71
    • 14344261707 scopus 로고    scopus 로고
    • Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney
    • Arner R.J., Prabhu K.S., Reddy C.C. Molecular cloning, expression, and characterization of myo-inositol oxygenase from mouse, rat, and human kidney. Biochem. Biophys. Res. Commun. 2004, 324:1386-1392.
    • (2004) Biochem. Biophys. Res. Commun. , vol.324 , pp. 1386-1392
    • Arner, R.J.1    Prabhu, K.S.2    Reddy, C.C.3
  • 73
    • 0029083125 scopus 로고
    • Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates
    • Steffensen W.S., Alexander M. Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates. Appl. Environ. Microbiol. 1995, 61:2859-2862.
    • (1995) Appl. Environ. Microbiol. , vol.61 , pp. 2859-2862
    • Steffensen, W.S.1    Alexander, M.2
  • 74
    • 0037229833 scopus 로고    scopus 로고
    • MRNA differential display in a microbial enrichment culture: Simultaneous identification of three cyclohexanone monooxygenases from three species
    • Brzostowicz P.C., Walters D.M., Thomas S.M., Nagarajan V., Rouviere P.E. mRNA differential display in a microbial enrichment culture: Simultaneous identification of three cyclohexanone monooxygenases from three species. Appl. Environ. Microbiol. 2003, 69:334-342.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 334-342
    • Brzostowicz, P.C.1    Walters, D.M.2    Thomas, S.M.3    Nagarajan, V.4    Rouviere, P.E.5
  • 75
    • 0036526342 scopus 로고    scopus 로고
    • Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation
    • Thykaer J., Christensen B., Nielsen J. Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation. Metab. Eng. 2002, 4:151-158.
    • (2002) Metab. Eng. , vol.4 , pp. 151-158
    • Thykaer, J.1    Christensen, B.2    Nielsen, J.3
  • 76
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A.P., Pharkya P., Maranas C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84:647-657.
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 77
    • 84898548508 scopus 로고    scopus 로고
    • A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains
    • Choon Y.W., Mohamad M.S., Deris S., Illias R.M., Chong C.K., Chai L.E. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains. Bioproces.s Biosyst. Eng. 2014, 37:521-532.
    • (2014) Bioproces.s Biosyst. Eng. , vol.37 , pp. 521-532
    • Choon, Y.W.1    Mohamad, M.S.2    Deris, S.3    Illias, R.M.4    Chong, C.K.5    Chai, L.E.6
  • 78
    • 73949137685 scopus 로고    scopus 로고
    • Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols
    • Yang Y., Lu W., Zhang X., Xie W., Cai M., Gross R.A. Two-step biocatalytic route to biobased functional polyesters from omega-carboxy fatty acids and diols. Biomacromolecules 2010, 11:259-268.
    • (2010) Biomacromolecules , vol.11 , pp. 259-268
    • Yang, Y.1    Lu, W.2    Zhang, X.3    Xie, W.4    Cai, M.5    Gross, R.A.6
  • 79
    • 23844500315 scopus 로고    scopus 로고
    • Alpha, omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica
    • Smit M.S., Mokgoro M.M., Setati E., Nicaud J.M. Alpha, omega-Dicarboxylic acid accumulation by acyl-CoA oxidase deficient mutants of Yarrowia lipolytica. Biotechnol. Lett. 2005, 27:859-864.
    • (2005) Biotechnol. Lett. , vol.27 , pp. 859-864
    • Smit, M.S.1    Mokgoro, M.M.2    Setati, E.3    Nicaud, J.M.4
  • 81
    • 0142136150 scopus 로고    scopus 로고
    • Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20,336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids
    • Craft D.L., Madduri K.M., Eshoo M., Wilson C.R. Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20,336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids. Appl. Environ. Microbiol. 2003, 69:5983-5991.
    • (2003) Appl. Environ. Microbiol. , vol.69 , pp. 5983-5991
    • Craft, D.L.1    Madduri, K.M.2    Eshoo, M.3    Wilson, C.R.4
  • 82
    • 84867586056 scopus 로고    scopus 로고
    • Bio-based adipic acid from renewable oils
    • Picataggio T.B.S. Bio-based adipic acid from renewable oils. Lipid Technol. 2012, 24:223-225.
    • (2012) Lipid Technol. , vol.24 , pp. 223-225
    • Picataggio, T.B.S.1
  • 83
    • 84988603405 scopus 로고    scopus 로고
    • Computational approaches to metabolic engineering utilizing systems biology and synthetic biology
    • Fong S.S. Computational approaches to metabolic engineering utilizing systems biology and synthetic biology. Comput. Struct. Biotechnol. J. 2014, 11:28-34.
    • (2014) Comput. Struct. Biotechnol. J. , vol.11 , pp. 28-34
    • Fong, S.S.1
  • 85
    • 84857688085 scopus 로고    scopus 로고
    • Determination of the ribosome-binding sequence and spacer length between binding site and initiation codon for efficient protein expression in Bifidobacterium longum 105-A
    • He J.L., Sakaguchi K., Suzuki T. Determination of the ribosome-binding sequence and spacer length between binding site and initiation codon for efficient protein expression in Bifidobacterium longum 105-A. J. Biosci. Bioeng. 2012, 113:442-444.
    • (2012) J. Biosci. Bioeng. , vol.113 , pp. 442-444
    • He, J.L.1    Sakaguchi, K.2    Suzuki, T.3
  • 86
    • 77955588048 scopus 로고    scopus 로고
    • Distance between RBS and AUG plays an important role in overexpression of recombinant proteins
    • Berwal S.K., Sreejith R.K., Pal J.K. Distance between RBS and AUG plays an important role in overexpression of recombinant proteins. Anal. Biochem. 2010, 405:275-277.
    • (2010) Anal. Biochem. , vol.405 , pp. 275-277
    • Berwal, S.K.1    Sreejith, R.K.2    Pal, J.K.3
  • 87
    • 33646580027 scopus 로고    scopus 로고
    • Hairpin RNA: a secondary structure of primary importance
    • Svoboda P., Di Cara A. Hairpin RNA: a secondary structure of primary importance. Cell Mol. Life Sci. 2006, 63:901-918.
    • (2006) Cell Mol. Life Sci. , vol.63 , pp. 901-918
    • Svoboda, P.1    Di Cara, A.2
  • 88
    • 84859768457 scopus 로고    scopus 로고
    • Parts plus pipes: synthetic biology approaches to metabolic engineering
    • Boyle P.M., Silver P.A. Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab. Eng. 2012, 14:223-232.
    • (2012) Metab. Eng. , vol.14 , pp. 223-232
    • Boyle, P.M.1    Silver, P.A.2
  • 90
    • 84903831403 scopus 로고    scopus 로고
    • Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose
    • Merklein K., Fong S.S., Deng Y. Production of butyric acid by a cellulolytic actinobacterium Thermobifida fusca on cellulose. Biochem. Eng. J. 2014, 90:239-244.
    • (2014) Biochem. Eng. J. , vol.90 , pp. 239-244
    • Merklein, K.1    Fong, S.S.2    Deng, Y.3
  • 91
    • 80052027512 scopus 로고    scopus 로고
    • Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol
    • Deng Y., Fong S.S. Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab. Eng. 2011, 13:570-577.
    • (2011) Metab. Eng. , vol.13 , pp. 570-577
    • Deng, Y.1    Fong, S.S.2
  • 92
    • 84942195854 scopus 로고    scopus 로고
    • Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6
    • Deng Y., Mao Y. Production of adipic acid by the native-occurring pathway in Thermobifida fusca B6. J. Appl. Microbiol. 2015.
    • (2015) J. Appl. Microbiol.
    • Deng, Y.1    Mao, Y.2
  • 93
    • 84890842396 scopus 로고    scopus 로고
    • Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents
    • Saha B., Abu-Omar M.M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem. 2014, 16:24-38.
    • (2014) Green Chem. , vol.16 , pp. 24-38
    • Saha, B.1    Abu-Omar, M.M.2
  • 94
    • 84878078206 scopus 로고    scopus 로고
    • Emerging catalytic processes for the production of adipic acid
    • Van de Vyver S., Roman-Leshkov Y. Emerging catalytic processes for the production of adipic acid. Catal. Sci. Technol. 2013, 3:1465-1479.
    • (2013) Catal. Sci. Technol. , vol.3 , pp. 1465-1479
    • Van de Vyver, S.1    Roman-Leshkov, Y.2
  • 99
    • 77954265373 scopus 로고    scopus 로고
    • Adaptive evolution of E. coli K-12 MG1655 during growth on a nonnative carbon source, l-1,2-propanediol
    • Lee D.H., Palsson B.O. Adaptive evolution of E. coli K-12 MG1655 during growth on a nonnative carbon source, l-1,2-propanediol. Appl. Environ. Microbiol. 2010, 76:4158-4168.
    • (2010) Appl. Environ. Microbiol. , vol.76 , pp. 4158-4168
    • Lee, D.H.1    Palsson, B.O.2
  • 101
    • 57449100055 scopus 로고    scopus 로고
    • Improved thermostability and acetic acid tolerance of E. coli via directed evolution of homoserine o-succinyltransferase
    • E.A.Mordukhova H.S., Lee J.G.Pan Improved thermostability and acetic acid tolerance of E. coli via directed evolution of homoserine o-succinyltransferase. Appl. Environ. Microbiol. 2008, 74:7660-7668.
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 7660-7668
    • Mordukhova, H.S.E.A.1    Lee, J.G.P.2
  • 102
    • 84896129574 scopus 로고    scopus 로고
    • Enhancing tolerance to short-chain alcohols by engineering the E. coli AcrB efflux pump to secrete the non-native substrate n-butanol
    • Fisher M.A., Boyarskiy S., Yamada M.R., Kong N., Bauer S., Tullman-Ercek D. Enhancing tolerance to short-chain alcohols by engineering the E. coli AcrB efflux pump to secrete the non-native substrate n-butanol. ACS Synth. Biol. 2013, 3:30-40.
    • (2013) ACS Synth. Biol. , vol.3 , pp. 30-40
    • Fisher, M.A.1    Boyarskiy, S.2    Yamada, M.R.3    Kong, N.4    Bauer, S.5    Tullman-Ercek, D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.