-
1
-
-
84873911381
-
Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement
-
PID: 23401116
-
Pagidipati NJ, Gaziano TA. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127:749–56.
-
(2013)
Circulation
, vol.127
, pp. 749-756
-
-
Pagidipati, N.J.1
Gaziano, T.A.2
-
2
-
-
0015993323
-
Response of the adult newt ventricle to injury
-
COI: 1:CAS:528:DyaE2cXhsVehur4%3D, PID: 4813417
-
Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187:249–53.
-
(1974)
J Exp Zool
, vol.187
, pp. 249-253
-
-
Oberpriller, J.O.1
Oberpriller, J.C.2
-
3
-
-
0037073890
-
Heart regeneration in zebrafish
-
COI: 1:CAS:528:DC%2BD38XpsVSktLw%3D, PID: 12481136
-
Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188–90.
-
(2002)
Science
, vol.298
, pp. 2188-2190
-
-
Poss, K.D.1
Wilson, L.G.2
Keating, M.T.3
-
4
-
-
0030219688
-
Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development
-
COI: 1:CAS:528:DyaK28XlsF2jtLs%3D, PID: 8877783
-
Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28:1737–46.
-
(1996)
J Mol Cell Cardiol
, vol.28
, pp. 1737-1746
-
-
Li, F.1
Wang, X.2
Capasso, J.M.3
Gerdes, A.M.4
-
5
-
-
79952065525
-
Transient regenerative potential of the neonatal mouse heart
-
COI: 1:CAS:528:DC%2BC3MXit1eitrs%3D, PID: 21350179, This study was the first to demonstrate that the mammalian heart harbors some regenerative potential via cardiomyocyte proliferation, but that this ability is lost quickly after birth
-
Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078–80. This study was the first to demonstrate that the mammalian heart harbors some regenerative potential via cardiomyocyte proliferation, but that this ability is lost quickly after birth.
-
(2011)
Science
, vol.331
, pp. 1078-1080
-
-
Porrello, E.R.1
Mahmoud, A.I.2
Simpson, E.3
Hill, J.A.4
Richardson, J.A.5
Olson, E.N.6
-
6
-
-
84937577143
-
Fetal mammalian heart generates a robust compensatory response to cell loss
-
PID: 25995316
-
Sturzu AC, Rajarajan K, Passer D, Plonowska K, Riley A, Tan TC, et al. Fetal mammalian heart generates a robust compensatory response to cell loss. Circulation. 2015;132:109–21.
-
(2015)
Circulation
, vol.132
, pp. 109-121
-
-
Sturzu, A.C.1
Rajarajan, K.2
Passer, D.3
Plonowska, K.4
Riley, A.5
Tan, T.C.6
-
7
-
-
10744228523
-
Adult cardiac stem cells are multipotent and support myocardial regeneration
-
COI: 1:CAS:528:DC%2BD3sXnslKisbg%3D, PID: 14505575
-
Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–76.
-
(2003)
Cell
, vol.114
, pp. 763-776
-
-
Beltrami, A.P.1
Barlucchi, L.2
Torella, D.3
Baker, M.4
Limana, F.5
Chimenti, S.6
-
8
-
-
84938069663
-
Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart
-
COI: 1:CAS:528:DC%2BC2MXht1ensbjE, PID: 26098368
-
Kimura W, Xiao F, Canseco DC, Muralidhar S, Thet S, Zhang HM, et al. Hypoxia fate mapping identifies cycling cardiomyocytes in the adult heart. Nature. 2015;523:226–30.
-
(2015)
Nature
, vol.523
, pp. 226-230
-
-
Kimura, W.1
Xiao, F.2
Canseco, D.C.3
Muralidhar, S.4
Thet, S.5
Zhang, H.M.6
-
9
-
-
0029804941
-
Acc/aha guidelines for the management of patients with acute myocardial infarction: executive summary. A report of the American college of cardiology/american heart association task force on practice guidelines (committee on management of acute myocardial infarction)
-
COI: 1:STN:280:DyaK2s%2Flsleksg%3D%3D, PID: 8901709
-
Ryan TJ, Anderson JL, Antman EM, Braniff BA, Brooks NH, Califf RM, et al. Acc/aha guidelines for the management of patients with acute myocardial infarction: executive summary. A report of the American college of cardiology/american heart association task force on practice guidelines (committee on management of acute myocardial infarction). Circulation. 1996;94:2341–50.
-
(1996)
Circulation
, vol.94
, pp. 2341-2350
-
-
Ryan, T.J.1
Anderson, J.L.2
Antman, E.M.3
Braniff, B.A.4
Brooks, N.H.5
Califf, R.M.6
-
10
-
-
38749145527
-
Organ shortage crisis: problems and possible solutions
-
COI: 1:STN:280:DC%2BD1c7gsVCqtQ%3D%3D, PID: 18261540
-
Abouna GM. Organ shortage crisis: problems and possible solutions. Transplant Proc. 2008;40:34–8.
-
(2008)
Transplant Proc
, vol.40
, pp. 34-38
-
-
Abouna, G.M.1
-
11
-
-
0034904645
-
Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes
-
COI: 1:CAS:528:DC%2BD3MXlvVGltLo%3D, PID: 11489934
-
Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407–14.
-
(2001)
J Clin Invest
, vol.108
, pp. 407-414
-
-
Kehat, I.1
Kenyagin-Karsenti, D.2
Snir, M.3
Segev, H.4
Amit, M.5
Gepstein, A.6
-
12
-
-
79551597211
-
Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines
-
COI: 1:CAS:528:DC%2BC3MXhsFOku7w%3D, PID: 21295278
-
Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, et al. Stage-specific optimization of activin/nodal and bmp signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell. 2011;8:228–40.
-
(2011)
Cell Stem Cell
, vol.8
, pp. 228-240
-
-
Kattman, S.J.1
Witty, A.D.2
Gagliardi, M.3
Dubois, N.C.4
Niapour, M.5
Hotta, A.6
-
13
-
-
84863560929
-
Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical wnt signaling
-
COI: 1:CAS:528:DC%2BC38XhtFChsbfK, PID: 22645348
-
Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical wnt signaling. Proc Natl Acad Sci U S A. 2012;109:E1848–57.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E1848-E1857
-
-
Lian, X.1
Hsiao, C.2
Wilson, G.3
Zhu, K.4
Hazeltine, L.B.5
Azarin, S.M.6
-
14
-
-
84905242471
-
Chemically defined generation of human cardiomyocytes
-
COI: 1:CAS:528:DC%2BC2cXpslGis7c%3D, PID: 24930130, This study established the first chemically-defined protocol for the production of human cardiomyocytes from pluripotent stem cells, allowing for the utilization of patient-specific cardiomyocytes for downstream disease modeling and drug discovery assays without employing undefined components such as serum
-
Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014;11:855–60. This study established the first chemically-defined protocol for the production of human cardiomyocytes from pluripotent stem cells, allowing for the utilization of patient-specific cardiomyocytes for downstream disease modeling and drug discovery assays without employing undefined components such as serum.
-
(2014)
Nat Methods
, vol.11
, pp. 855-860
-
-
Burridge, P.W.1
Matsa, E.2
Shukla, P.3
Lin, Z.C.4
Churko, J.M.5
Ebert, A.D.6
-
15
-
-
53049090197
-
Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes
-
COI: 1:CAS:528:DC%2BD1cXht1SlsLnO, PID: 18593268
-
Niebruegge S, Nehring A, Bar H, Schroeder M, Zweigerdt R, Lehmann J. Cardiomyocyte production in mass suspension culture: embryonic stem cells as a source for great amounts of functional cardiomyocytes. Tissue Eng Part A. 2008;14:1591–601.
-
(2008)
Tissue Eng Part A
, vol.14
, pp. 1591-1601
-
-
Niebruegge, S.1
Nehring, A.2
Bar, H.3
Schroeder, M.4
Zweigerdt, R.5
Lehmann, J.6
-
16
-
-
84880227000
-
Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells
-
COI: 1:CAS:528:DC%2BC3sXhtVGlu7zI, PID: 23461462
-
Lundy SD, Zhu WZ, Regnier M, Laflamme MA. Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cells Dev. 2013;22:1991–2002.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 1991-2002
-
-
Lundy, S.D.1
Zhu, W.Z.2
Regnier, M.3
Laflamme, M.A.4
-
17
-
-
79952446402
-
Modelling the long qt syndrome with induced pluripotent stem cells
-
COI: 1:CAS:528:DC%2BC3MXmsFCqug%3D%3D, PID: 21240260
-
Itzhaki I, Maizels L, Huber I, Zwi-Dantsis L, Caspi O, Winterstern A, et al. Modelling the long qt syndrome with induced pluripotent stem cells. Nature. 2011;471:225–9.
-
(2011)
Nature
, vol.471
, pp. 225-229
-
-
Itzhaki, I.1
Maizels, L.2
Huber, I.3
Zwi-Dantsis, L.4
Caspi, O.5
Winterstern, A.6
-
18
-
-
84891457958
-
Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening
-
PID: 24476344
-
Sharma A, Wu JC, Wu SM. Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening. Stem Cell Res Ther. 2013;4:150.
-
(2013)
Stem Cell Res Ther
, vol.4
, pp. 150
-
-
Sharma, A.1
Wu, J.C.2
Wu, S.M.3
-
19
-
-
84907140891
-
Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus b3-induced myocarditis and antiviral drug screening platform
-
COI: 1:CAS:528:DC%2BC2cXhsVeqtrzI, PID: 25015077
-
Sharma A, Marceau C, Hamaguchi R, Burridge PW, Rajarajan K, Churko JM, et al. Human induced pluripotent stem cell-derived cardiomyocytes as an in vitro model for coxsackievirus b3-induced myocarditis and antiviral drug screening platform. Circ Res. 2014;115:556–66.
-
(2014)
Circ Res
, vol.115
, pp. 556-566
-
-
Sharma, A.1
Marceau, C.2
Hamaguchi, R.3
Burridge, P.W.4
Rajarajan, K.5
Churko, J.M.6
-
20
-
-
84872599837
-
A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards
-
PID: 23229562
-
Mordwinkin NM, Burridge PW, Wu JC. A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res. 2013;6:22–30.
-
(2013)
J Cardiovasc Transl Res
, vol.6
, pp. 22-30
-
-
Mordwinkin, N.M.1
Burridge, P.W.2
Wu, J.C.3
-
21
-
-
84902312015
-
Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts
-
COI: 1:CAS:528:DC%2BC2cXps1WmtLY%3D, PID: 24776797
-
Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, et al. Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature. 2014;510:273–7.
-
(2014)
Nature
, vol.510
, pp. 273-277
-
-
Chong, J.J.1
Yang, X.2
Don, C.W.3
Minami, E.4
Liu, Y.W.5
Weyers, J.J.6
-
22
-
-
84877794737
-
Tissue-engineered cardiac patch for advanced functional maturation of human esc-derived cardiomyocytes
-
COI: 1:CAS:528:DC%2BC3sXmvFygt7w%3D, PID: 23642535
-
Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human esc-derived cardiomyocytes. Biomaterials. 2013;34:5813–20.
-
(2013)
Biomaterials
, vol.34
, pp. 5813-5820
-
-
Zhang, D.1
Shadrin, I.Y.2
Lam, J.3
Xian, H.Q.4
Snodgrass, H.R.5
Bursac, N.6
-
23
-
-
66249089481
-
Scaffold-free human cardiac tissue patch created from embryonic stem cells
-
COI: 1:CAS:528:DC%2BD1MXmtlWmu7g%3D, PID: 19063661
-
Stevens KR, Pabon L, Muskheli V, Murry CE. Scaffold-free human cardiac tissue patch created from embryonic stem cells. Tissue Eng Part A. 2009;15:1211–22.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 1211-1222
-
-
Stevens, K.R.1
Pabon, L.2
Muskheli, V.3
Murry, C.E.4
-
24
-
-
84941050296
-
Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction
-
COI: 1:CAS:528:DC%2BC2cXhsFSqu7vP, PID: 24906204
-
Sun L, Yu J, Qi S, Hao Y, Liu Y, Li Z. Bone morphogenetic protein-10 induces cardiomyocyte proliferation and improves cardiac function after myocardial infarction. J Cell Biochem. 2014;115:1868–76.
-
(2014)
J Cell Biochem
, vol.115
, pp. 1868-1876
-
-
Sun, L.1
Yu, J.2
Qi, S.3
Hao, Y.4
Liu, Y.5
Li, Z.6
-
25
-
-
4143057167
-
Cyclin a2 mediates cardiomyocyte mitosis in the postmitotic myocardium
-
COI: 1:CAS:528:DC%2BD2cXmsl2ht70%3D, PID: 15159393
-
Chaudhry HW, Dashoush NH, Tang H, Zhang L, Wang X, Wu EX, et al. Cyclin a2 mediates cardiomyocyte mitosis in the postmitotic myocardium. J Biol Chem. 2004;279:35858–66.
-
(2004)
J Biol Chem
, vol.279
, pp. 35858-35866
-
-
Chaudhry, H.W.1
Dashoush, N.H.2
Tang, H.3
Zhang, L.4
Wang, X.5
Wu, E.X.6
-
26
-
-
33747180560
-
Therapeutic delivery of cyclin a2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure
-
PID: 16820573
-
Woo YJ, Panlilio CM, Cheng RK, Liao GP, Atluri P, Hsu VM, et al. Therapeutic delivery of cyclin a2 induces myocardial regeneration and enhances cardiac function in ischemic heart failure. Circulation. 2006;114:I206–13.
-
(2006)
Circulation
, vol.114
, pp. I206-I213
-
-
Woo, Y.J.1
Panlilio, C.M.2
Cheng, R.K.3
Liao, G.P.4
Atluri, P.5
Hsu, V.M.6
-
27
-
-
4544384849
-
Forced expression of the cyclin b1-cdc2 complex induces proliferation in adult rat cardiomyocytes
-
COI: 1:CAS:528:DC%2BD2cXmvVOnsbo%3D, PID: 15253691
-
Bicknell KA, Coxon CH, Brooks G. Forced expression of the cyclin b1-cdc2 complex induces proliferation in adult rat cardiomyocytes. Biochem J. 2004;382:411–6.
-
(2004)
Biochem J
, vol.382
, pp. 411-416
-
-
Bicknell, K.A.1
Coxon, C.H.2
Brooks, G.3
-
28
-
-
0037428484
-
Critical role of cyclin d1 nuclear import in cardiomyocyte proliferation
-
COI: 1:CAS:528:DC%2BD3sXntVQ%3D, PID: 12522130
-
Tamamori-Adachi M, Ito H, Sumrejkanchanakij P, Adachi S, Hiroe M, Shimizu M, et al. Critical role of cyclin d1 nuclear import in cardiomyocyte proliferation. Circ Res. 2003;92:e12–9.
-
(2003)
Circ Res
, vol.92
, pp. e12-e19
-
-
Tamamori-Adachi, M.1
Ito, H.2
Sumrejkanchanakij, P.3
Adachi, S.4
Hiroe, M.5
Shimizu, M.6
-
29
-
-
41449088342
-
Regulation of cardiomyocyte proliferation and myocardial growth during development by foxo transcription factors
-
COI: 1:CAS:528:DC%2BD1cXjs1Wmsbo%3D, PID: 18218983
-
Evans-Anderson HJ, Alfieri CM, Yutzey KE. Regulation of cardiomyocyte proliferation and myocardial growth during development by foxo transcription factors. Circ Res. 2008;102:686–94.
-
(2008)
Circ Res
, vol.102
, pp. 686-694
-
-
Evans-Anderson, H.J.1
Alfieri, C.M.2
Yutzey, K.E.3
-
30
-
-
24744466509
-
Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein
-
COI: 1:CAS:528:DC%2BD2MXpsVCmt70%3D, PID: 15870077
-
Jung J, Kim TG, Lyons GE, Kim HR, Lee Y. Jumonji regulates cardiomyocyte proliferation via interaction with retinoblastoma protein. J Biol Chem. 2005;280:30916–23.
-
(2005)
J Biol Chem
, vol.280
, pp. 30916-30923
-
-
Jung, J.1
Kim, T.G.2
Lyons, G.E.3
Kim, H.R.4
Lee, Y.5
-
31
-
-
84924367823
-
Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration
-
PID: 25477501
-
O'Meara CC, Wamstad JA, Gladstone RA, Fomovsky GM, Butty VL, Shrikumar A, et al. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res. 2015;116:804–15.
-
(2015)
Circ Res
, vol.116
, pp. 804-815
-
-
O'Meara, C.C.1
Wamstad, J.A.2
Gladstone, R.A.3
Fomovsky, G.M.4
Butty, V.L.5
Shrikumar, A.6
-
32
-
-
84901819478
-
Fgf1-mediated cardiomyocyte cell cycle reentry depends on the interaction of fgfr-1 and fn14
-
COI: 1:CAS:528:DC%2BC2cXhtVSnsr3E, PID: 24571920
-
Novoyatleva T, Sajjad A, Pogoryelov D, Patra C, Schermuly RT, Engel FB. Fgf1-mediated cardiomyocyte cell cycle reentry depends on the interaction of fgfr-1 and fn14. FASEB J. 2014;28:2492–503.
-
(2014)
FASEB J
, vol.28
, pp. 2492-2503
-
-
Novoyatleva, T.1
Sajjad, A.2
Pogoryelov, D.3
Patra, C.4
Schermuly, R.T.5
Engel, F.B.6
-
33
-
-
84924857741
-
Fgf10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry
-
PID: 25344367
-
Rochais F, Sturny R, Chao CM, Mesbah K, Bennett M, Mohun TJ, et al. Fgf10 promotes regional foetal cardiomyocyte proliferation and adult cardiomyocyte cell-cycle re-entry. Cardiovasc Res. 2014;104:432–42.
-
(2014)
Cardiovasc Res
, vol.104
, pp. 432-442
-
-
Rochais, F.1
Sturny, R.2
Chao, C.M.3
Mesbah, K.4
Bennett, M.5
Mohun, T.J.6
-
34
-
-
77449131670
-
G-csf promotes the proliferation of developing cardiomyocytes in vivo and in derivation from escs and ipscs
-
COI: 1:CAS:528:DC%2BC3cXlt1Kmsrc%3D, PID: 20207226
-
Shimoji K, Yuasa S, Onizuka T, Hattori F, Tanaka T, Hara M, et al. G-csf promotes the proliferation of developing cardiomyocytes in vivo and in derivation from escs and ipscs. Cell Stem Cell. 2010;6:227–37.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 227-237
-
-
Shimoji, K.1
Yuasa, S.2
Onizuka, T.3
Hattori, F.4
Tanaka, T.5
Hara, M.6
-
35
-
-
27644455693
-
Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the igf/pi 3-kinase/akt signaling pathway
-
COI: 1:CAS:528:DC%2BD2MXht1SqtrfE, PID: 16242146
-
McDevitt TC, Laflamme MA, Murry CE. Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the igf/pi 3-kinase/akt signaling pathway. J Mol Cell Cardiol. 2005;39:865–73.
-
(2005)
J Mol Cell Cardiol
, vol.39
, pp. 865-873
-
-
McDevitt, T.C.1
Laflamme, M.A.2
Murry, C.E.3
-
36
-
-
84901414986
-
Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm
-
COI: 1:CAS:528:DC%2BC2cXhtFKktbzO, PID: 24496962
-
Engels MC, Rajarajan K, Feistritzer R, Sharma A, Nielsen UB, Schalij MJ, et al. Insulin-like growth factor promotes cardiac lineage induction in vitro by selective expansion of early mesoderm. Stem Cells. 2014;32:1493–502.
-
(2014)
Stem Cells
, vol.32
, pp. 1493-1502
-
-
Engels, M.C.1
Rajarajan, K.2
Feistritzer, R.3
Sharma, A.4
Nielsen, U.B.5
Schalij, M.J.6
-
37
-
-
67650569135
-
Neuregulin1/erbb4 signaling induces cardiomyocyte proliferation and repair of heart injury
-
COI: 1:CAS:528:DC%2BD1MXhtVSgtrzF, PID: 19632177
-
Bersell K, Arab S, Haring B, Kuhn B. Neuregulin1/erbb4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell. 2009;138:257–70.
-
(2009)
Cell
, vol.138
, pp. 257-270
-
-
Bersell, K.1
Arab, S.2
Haring, B.3
Kuhn, B.4
-
38
-
-
84940737986
-
The proliferative and migratory effects of physical injury and stromal cell-derived factor-1 alpha on rat cardiomyocytes and fibroblasts
-
PID: 25912586
-
Hou CJ, Qi YM, Zhang DZ, Wang QG, Cui CS, Kuang L, et al. The proliferative and migratory effects of physical injury and stromal cell-derived factor-1 alpha on rat cardiomyocytes and fibroblasts. Eur Rev Med Pharmacol Sci. 2015;19:1252–7.
-
(2015)
Eur Rev Med Pharmacol Sci
, vol.19
, pp. 1252-1257
-
-
Hou, C.J.1
Qi, Y.M.2
Zhang, D.Z.3
Wang, Q.G.4
Cui, C.S.5
Kuang, L.6
-
39
-
-
84892377400
-
Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells
-
COI: 1:CAS:528:DC%2BC3sXhvFyrtLrM, PID: 24141057
-
Uosaki H, Magadum A, Seo K, Fukushima H, Takeuchi A, Nakagawa Y, et al. Identification of chemicals inducing cardiomyocyte proliferation in developmental stage-specific manner with pluripotent stem cells. Circ Cardiovasc Genet. 2013;6:624–33.
-
(2013)
Circ Cardiovasc Genet
, vol.6
, pp. 624-633
-
-
Uosaki, H.1
Magadum, A.2
Seo, K.3
Fukushima, H.4
Takeuchi, A.5
Nakagawa, Y.6
-
40
-
-
18844383961
-
P38 map kinase inhibition enables proliferation of adult mammalian cardiomyocytes
-
COI: 1:CAS:528:DC%2BD2MXksFKnurc%3D, PID: 15870258
-
Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB, et al. P38 map kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev. 2005;19:1175–87.
-
(2005)
Genes Dev
, vol.19
, pp. 1175-1187
-
-
Engel, F.B.1
Schebesta, M.2
Duong, M.T.3
Lu, G.4
Ren, S.5
Madwed, J.B.6
-
41
-
-
80052557916
-
Mir-15 family regulates postnatal mitotic arrest of cardiomyocytes
-
COI: 1:CAS:528:DC%2BC3MXhtFWkt7zP, PID: 21778430
-
Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, et al. Mir-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 2011;109:670–9.
-
(2011)
Circ Res
, vol.109
, pp. 670-679
-
-
Porrello, E.R.1
Johnson, B.A.2
Aurora, A.B.3
Simpson, E.4
Nam, Y.J.5
Matkovich, S.J.6
-
42
-
-
84880040358
-
Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts
-
COI: 1:CAS:528:DC%2BC3sXovVehtr8%3D, PID: 23575307
-
Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, et al. Mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res. 2013;112:1557–66.
-
(2013)
Circ Res
, vol.112
, pp. 1557-1566
-
-
Chen, J.1
Huang, Z.P.2
Seok, H.Y.3
Ding, J.4
Kataoka, M.5
Zhang, Z.6
-
43
-
-
84939499232
-
Microrna-34a plays a key role in cardiac repair and regeneration following myocardial infarction
-
Yang Y, Cheng H, Qiu Y, Dupee DK, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R. Microrna-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res. 2015.
-
(2015)
Circ Res
-
-
Yang, Y.1
Cheng, H.2
Qiu, Y.3
Dupee, D.K.4
Noonan, M.5
Lin, Y.D.6
Fisch, S.7
Unno, K.8
Sereti, K.I.9
Liao, R.10
-
44
-
-
84922646378
-
In vivo activation of a conserved microrna program induces mammalian heart regeneration
-
COI: 1:CAS:528:DC%2BC2cXhvVCktLbE, PID: 25517466, In this study, the authors identified a set of microRNAs that are critical for regulating heart regeneration in zebrafish, and by inhibiting these miRNAs, were able to extend this regenerative mechanism to a murine model in order to induce cardiomyocyte dedifferentiation and proliferation post-infarction
-
Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, et al. In vivo activation of a conserved microrna program induces mammalian heart regeneration. Cell Stem Cell. 2014;15:589–604. In this study, the authors identified a set of microRNAs that are critical for regulating heart regeneration in zebrafish, and by inhibiting these miRNAs, were able to extend this regenerative mechanism to a murine model in order to induce cardiomyocyte dedifferentiation and proliferation post-infarction.
-
(2014)
Cell Stem Cell
, vol.15
, pp. 589-604
-
-
Aguirre, A.1
Montserrat, N.2
Zacchigna, S.3
Nivet, E.4
Hishida, T.5
Krause, M.N.6
-
45
-
-
57749121689
-
Microrna-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart
-
COI: 1:CAS:528:DC%2BD1cXhsFaiu7jK, PID: 19015276
-
Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. Microrna-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 2008;22:3242–54.
-
(2008)
Genes Dev
, vol.22
, pp. 3242-3254
-
-
Liu, N.1
Bezprozvannaya, S.2
Williams, A.H.3
Qi, X.4
Richardson, J.A.5
Bassel-Duby, R.6
-
46
-
-
84871442001
-
Functional screening identifies mirnas inducing cardiac regeneration
-
COI: 1:CAS:528:DC%2BC38Xhslynu7jO, PID: 23222520
-
Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies mirnas inducing cardiac regeneration. Nature. 2012;492:376–81.
-
(2012)
Nature
, vol.492
, pp. 376-381
-
-
Eulalio, A.1
Mano, M.2
Dal Ferro, M.3
Zentilin, L.4
Sinagra, G.5
Zacchigna, S.6
-
47
-
-
84925263676
-
A microrna-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice
-
Tian Y, Liu Y, Wang T, Zhou N, Kong J, Chen L, et al. A microrna-hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 2015;7:279ra238.
-
(2015)
Sci Transl Med
, vol.7
, pp. 279ra238
-
-
Tian, Y.1
Liu, Y.2
Wang, T.3
Zhou, N.4
Kong, J.5
Chen, L.6
-
48
-
-
84888602697
-
Mir-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via sox6 and cyclin d1
-
COI: 1:CAS:528:DC%2BC3sXhsV2rtbjK, PID: 24040263
-
Li X, Wang J, Jia Z, Cui Q, Zhang C, Wang W, et al. Mir-499 regulates cell proliferation and apoptosis during late-stage cardiac differentiation via sox6 and cyclin d1. PLoS One. 2013;8, e74504.
-
(2013)
PLoS One
, vol.8
-
-
Li, X.1
Wang, J.2
Jia, Z.3
Cui, Q.4
Zhang, C.5
Wang, W.6
-
49
-
-
84900331122
-
A proliferative burst during preadolescence establishes the final cardiomyocyte number
-
COI: 1:CAS:528:DC%2BC2cXotFGqsrw%3D, PID: 24813607
-
Naqvi N, Li M, Calvert JW, Tejada T, Lambert JP, Wu J, et al. A proliferative burst during preadolescence establishes the final cardiomyocyte number. Cell. 2014;157:795–807.
-
(2014)
Cell
, vol.157
, pp. 795-807
-
-
Naqvi, N.1
Li, M.2
Calvert, J.W.3
Tejada, T.4
Lambert, J.P.5
Wu, J.6
-
50
-
-
34547691243
-
Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair
-
PID: 17632525
-
Kuhn B, del Monte F, Hajjar RJ, Chang YS, Lebeche D, Arab S, et al. Periostin induces proliferation of differentiated cardiomyocytes and promotes cardiac repair. Nat Med. 2007;13:962–9.
-
(2007)
Nat Med
, vol.13
, pp. 962-969
-
-
Kuhn, B.1
del Monte, F.2
Hajjar, R.J.3
Chang, Y.S.4
Lebeche, D.5
Arab, S.6
-
51
-
-
84920087867
-
Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice
-
PID: 25545368
-
Reuter S, Soonpaa MH, Firulli AB, Chang AN, Field LJ. Recombinant neuregulin 1 does not activate cardiomyocyte DNA synthesis in normal or infarcted adult mice. PLoS One. 2014;9, e115871.
-
(2014)
PLoS One
, vol.9
-
-
Reuter, S.1
Soonpaa, M.H.2
Firulli, A.B.3
Chang, A.N.4
Field, L.J.5
-
52
-
-
84891520982
-
Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development
-
COI: 1:CAS:528:DC%2BC2cXivFaqtbY%3D, PID: 24353062
-
Becker JR, Chatterjee S, Robinson TY, Bennett JS, Panakova D, Galindo CL, et al. Differential activation of natriuretic peptide receptors modulates cardiomyocyte proliferation during development. Development. 2014;141:335–45.
-
(2014)
Development
, vol.141
, pp. 335-345
-
-
Becker, J.R.1
Chatterjee, S.2
Robinson, T.Y.3
Bennett, J.S.4
Panakova, D.5
Galindo, C.L.6
-
53
-
-
84881667960
-
C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the pi3k-akt-cdk7 pathway
-
COI: 1:CAS:528:DC%2BC3sXhtF2nu7fK, PID: 23784961
-
Beigi F, Schmeckpeper J, Pow-Anpongkul P, Payne JA, Zhang L, Zhang Z, et al. C3orf58, a novel paracrine protein, stimulates cardiomyocyte cell-cycle progression through the pi3k-akt-cdk7 pathway. Circ Res. 2013;113:372–80.
-
(2013)
Circ Res
, vol.113
, pp. 372-380
-
-
Beigi, F.1
Schmeckpeper, J.2
Pow-Anpongkul, P.3
Payne, J.A.4
Zhang, L.5
Zhang, Z.6
-
54
-
-
33748702122
-
The gsk-3 inhibitor bio promotes proliferation in mammalian cardiomyocytes
-
COI: 1:CAS:528:DC%2BD28Xps1Gisrw%3D, PID: 16984885
-
Tseng AS, Engel FB, Keating MT. The gsk-3 inhibitor bio promotes proliferation in mammalian cardiomyocytes. Chem Biol. 2006;13:957–63.
-
(2006)
Chem Biol
, vol.13
, pp. 957-963
-
-
Tseng, A.S.1
Engel, F.B.2
Keating, M.T.3
-
55
-
-
11844292733
-
Targeted expression of cyclin d2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice
-
COI: 1:CAS:528:DC%2BD2MXjt1Gl, PID: 15576649
-
Pasumarthi KB, Nakajima H, Nakajima HO, Soonpaa MH, Field LJ. Targeted expression of cyclin d2 results in cardiomyocyte DNA synthesis and infarct regression in transgenic mice. Circ Res. 2005;96:110–8.
-
(2005)
Circ Res
, vol.96
, pp. 110-118
-
-
Pasumarthi, K.B.1
Nakajima, H.2
Nakajima, H.O.3
Soonpaa, M.H.4
Field, L.J.5
-
56
-
-
84896381748
-
Cyclin a2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes
-
Shapiro SD, Ranjan AK, Kawase Y, Cheng RK, Kara RJ, Bhattacharya R, et al. Cyclin a2 induces cardiac regeneration after myocardial infarction through cytokinesis of adult cardiomyocytes. Sci Transl Med. 2014;6:224ra227.
-
(2014)
Sci Transl Med
, vol.6
, pp. 224ra227
-
-
Shapiro, S.D.1
Ranjan, A.K.2
Kawase, Y.3
Cheng, R.K.4
Kara, R.J.5
Bhattacharya, R.6
-
57
-
-
77955321344
-
Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors
-
COI: 1:CAS:528:DC%2BC3cXpvFKrsbY%3D, PID: 20691899
-
Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell. 2010;142:375–86.
-
(2010)
Cell
, vol.142
, pp. 375-386
-
-
Ieda, M.1
Fu, J.D.2
Delgado-Olguin, P.3
Vedantham, V.4
Hayashi, Y.5
Bruneau, B.G.6
|