-
1
-
-
84869036539
-
Circadian topology of metabolism
-
Bass J. Circadian topology of metabolism. Nature 2012; 491: 348-356.
-
(2012)
Nature
, vol.491
, pp. 348-356
-
-
Bass, J.1
-
2
-
-
84904260132
-
Molecular mechanisms of the circadian clockwork in mammals
-
Robinson I, Reddy AB. Molecular mechanisms of the circadian clockwork in mammals. FEBS Lett 2014; 588: 2477-2483.
-
(2014)
FEBS Lett
, vol.588
, pp. 2477-2483
-
-
Robinson, I.1
Reddy, A.B.2
-
3
-
-
78649687209
-
Circadian integration of metabolism and energetics
-
Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330: 1349-1354.
-
(2010)
Science
, vol.330
, pp. 1349-1354
-
-
Bass, J.1
Takahashi, J.S.2
-
4
-
-
84864309100
-
Clocks, metabolism, and the epigenome
-
Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012; 47: 158-167.
-
(2012)
Mol Cell
, vol.47
, pp. 158-167
-
-
Feng, D.1
Lazar, M.A.2
-
5
-
-
84927697716
-
Nuclear receptor Rev-erbα: up, down, and all around
-
Everett LJ, Lazar MA. Nuclear receptor Rev-erbα: up, down, and all around. Trends Endocrinol Metab 2014; 25: 586-592.
-
(2014)
Trends Endocrinol Metab
, vol.25
, pp. 586-592
-
-
Everett, L.J.1
Lazar, M.A.2
-
6
-
-
84859329911
-
Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function
-
Bugge A, Feng D, Everett LJ et al. Rev-erbα and Rev-erbβ coordinately protect the circadian clock and normal metabolic function. Genes Dev 2012; 26: 657-667.
-
(2012)
Genes Dev
, vol.26
, pp. 657-667
-
-
Bugge, A.1
Feng, D.2
Everett, L.J.3
-
7
-
-
84860264490
-
Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β
-
Cho H, Zhao X, Hatori M et al. Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature 2012; 485: 123-127.
-
(2012)
Nature
, vol.485
, pp. 123-127
-
-
Cho, H.1
Zhao, X.2
Hatori, M.3
-
8
-
-
84897941566
-
Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα
-
Jager J, O'Brien WT, Manlove J et al. Behavioral changes and dopaminergic dysregulation in mice lacking the nuclear receptor Rev-erbα. Mol Endocrinol 2014; 28: 490-498.
-
(2014)
Mol Endocrinol
, vol.28
, pp. 490-498
-
-
Jager, J.1
O'Brien, W.T.2
Manlove, J.3
-
9
-
-
84888042813
-
The nuclear receptor Rev-erbα controls circadian thermogenic plasticity
-
Gerhart-Hines Z, Feng D, Emmett MJ et al. The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 2013; 503: 410-413.
-
(2013)
Nature
, vol.503
, pp. 410-413
-
-
Gerhart-Hines, Z.1
Feng, D.2
Emmett, M.J.3
-
10
-
-
36849084107
-
Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta
-
Raghuram S, Stayrook KR, Huang P et al. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 2007; 14: 1207-1213.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 1207-1213
-
-
Raghuram, S.1
Stayrook, K.R.2
Huang, P.3
-
11
-
-
37249086610
-
Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways
-
Yin L, Wu N, Curtin JC et al. Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 2007; 318: 1786-1789.
-
(2007)
Science
, vol.318
, pp. 1786-1789
-
-
Yin, L.1
Wu, N.2
Curtin, J.C.3
-
12
-
-
0033743975
-
Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver
-
Torra IP, Tsibulsky V, Delaunay F et al. Circadian and glucocorticoid regulation of Rev-erbalpha expression in liver. Endocrinology 2000; 141: 3799-3806.
-
(2000)
Endocrinology
, vol.141
, pp. 3799-3806
-
-
Torra, I.P.1
Tsibulsky, V.2
Delaunay, F.3
-
13
-
-
43049089758
-
Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision
-
Güler AD, Ecker JL, Lall GS et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 2008; 453: 102-105.
-
(2008)
Nature
, vol.453
, pp. 102-105
-
-
Güler, A.D.1
Ecker, J.L.2
Lall, G.S.3
-
14
-
-
0031940392
-
Melanopsin: an opsin in melanophores, brain, and eye
-
Provencio I, Jiang G, De Grip WJ, Hayes WP, Rollag MD. Melanopsin: an opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 1998; 95: 340-345.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 340-345
-
-
Provencio, I.1
Jiang, G.2
De Grip, W.J.3
Hayes, W.P.4
Rollag, M.D.5
-
15
-
-
0020961114
-
Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus
-
Moore RY. Organization and function of a central nervous system circadian oscillator: the suprachiasmatic hypothalamic nucleus. Fed Proc 1983; 42: 2783-2789.
-
(1983)
Fed Proc
, vol.42
, pp. 2783-2789
-
-
Moore, R.Y.1
-
16
-
-
0034994462
-
SCN efferents to peripheral tissues: implications for biological rhythms
-
Bartness TJ, Song CK, Demas GE. SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 2001; 16: 196-204.
-
(2001)
J Biol Rhythms
, vol.16
, pp. 196-204
-
-
Bartness, T.J.1
Song, C.K.2
Demas, G.E.3
-
17
-
-
84900303381
-
Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation
-
Chung S, Lee EJ, Yun S et al. Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 2014; 157: 858-868.
-
(2014)
Cell
, vol.157
, pp. 858-868
-
-
Chung, S.1
Lee, E.J.2
Yun, S.3
-
18
-
-
84959851995
-
Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour
-
Banerjee S, Wang Y, Solt LA et al. Pharmacological targeting of the mammalian clock regulates sleep architecture and emotional behaviour. Nat Commun 2014; 5: 5759.
-
(2014)
Nat Commun
, vol.5
, pp. 5759
-
-
Banerjee, S.1
Wang, Y.2
Solt, L.A.3
-
19
-
-
84887431711
-
Brown and beige fat: development, function and therapeutic potential
-
Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252-1263.
-
(2013)
Nat Med
, vol.19
, pp. 1252-1263
-
-
Harms, M.1
Seale, P.2
-
20
-
-
0347989317
-
Brown adipose tissue: function and physiological significance
-
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev 2004; 84: 277-359.
-
(2004)
Physiol Rev
, vol.84
, pp. 277-359
-
-
Cannon, B.1
Nedergaard, J.2
-
21
-
-
0026605565
-
Circadian changes of brown adipose tissue thermogenesis in juvenile rats
-
Redlin U, Nuesslein B, Schmidt I. Circadian changes of brown adipose tissue thermogenesis in juvenile rats. Am J Physiol 1992; 262: 504-508.
-
(1992)
Am J Physiol
, vol.262
, pp. 504-508
-
-
Redlin, U.1
Nuesslein, B.2
Schmidt, I.3
-
22
-
-
84870880186
-
Simultaneous telemetric analyzing of the temporal relationship for the changes of the circadian rhythms of brown adipose tissue thermogenesis and core temperature in the rat
-
Yang Y, Shen Z, Tang Y, Wang N, Sun B. Simultaneous telemetric analyzing of the temporal relationship for the changes of the circadian rhythms of brown adipose tissue thermogenesis and core temperature in the rat. Zhongguo Ying Yong Sheng Li Xue Za Zhi (Chin J Appl Physiol) 2011; 27: 348-352.
-
(2011)
Zhongguo Ying Yong Sheng Li Xue Za Zhi (Chin J Appl Physiol)
, vol.27
, pp. 348-352
-
-
Yang, Y.1
Shen, Z.2
Tang, Y.3
Wang, N.4
Sun, B.5
-
23
-
-
33645790960
-
Characterization of peripheral circadian clocks in adipose tissues
-
Zvonic S, Ptitsyn AA, Conrad SA et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006; 55: 962-970.
-
(2006)
Diabetes
, vol.55
, pp. 962-970
-
-
Zvonic, S.1
Ptitsyn, A.A.2
Conrad, S.A.3
-
24
-
-
84862879169
-
A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging
-
Van der Veen DR, Shao J, Chapman S, Leevy WM, Duffield GE. A diurnal rhythm in glucose uptake in brown adipose tissue revealed by in vivo PET-FDG imaging. Obesity (Silver Spring Md) 2012; 20: 1527-1529.
-
(2012)
Obesity (Silver Spring Md)
, vol.20
, pp. 1527-1529
-
-
Van der, V.D.R.1
Shao, J.2
Chapman, S.3
Leevy, W.M.4
Duffield, G.E.5
-
25
-
-
84883147708
-
The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-Induced thermogenesis
-
Li S, Yu Q, Wang G-X, Lin JD. The biological clock is regulated by adrenergic signaling in brown fat but is dispensable for cold-Induced thermogenesis. PLoS One 2013; 8: e70109.
-
(2013)
PLoS One
, vol.8
, pp. e70109
-
-
Li, S.1
Yu, Q.2
Wang, G.-X.3
Lin, J.D.4
-
26
-
-
84929486079
-
The adipocyte clock controls brown adipogenesis via TGF-β and BMP signaling pathway
-
Nam D, Guo B, Chatterjee S, Chen M-H et al. The adipocyte clock controls brown adipogenesis via TGF-β and BMP signaling pathway. J Cell Sci 2015; 128: 1835-1847.
-
(2015)
J Cell Sci
, vol.128
, pp. 1835-1847
-
-
Nam, D.1
Guo, B.2
Chatterjee, S.3
Chen, M.-H.4
-
27
-
-
84883254227
-
Role of the circadian clock gene Per2 in adaptation to cold temperature
-
Chappuis S, Ripperger JA, Schnell A et al. Role of the circadian clock gene Per2 in adaptation to cold temperature. Mol Metab 2013; 2: 184-193.
-
(2013)
Mol Metab
, vol.2
, pp. 184-193
-
-
Chappuis, S.1
Ripperger, J.A.2
Schnell, A.3
-
28
-
-
84883388374
-
Circadian regulation of lipid mobilization in white adipose tissues
-
Shostak A, Meyer-Kovac J, Oster H. Circadian regulation of lipid mobilization in white adipose tissues. Diabetes 2013; 62: 2195-2203.
-
(2013)
Diabetes
, vol.62
, pp. 2195-2203
-
-
Shostak, A.1
Meyer-Kovac, J.2
Oster, H.3
-
29
-
-
84870859377
-
Obesity in mice with adipocyte-specific deletion of clock component Arntl
-
Paschos GK, Ibrahim S, Song W-L et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 2012; 18: 1768-1777.
-
(2012)
Nat Med
, vol.18
, pp. 1768-1777
-
-
Paschos, G.K.1
Ibrahim, S.2
Song, W.-L.3
-
30
-
-
84864755952
-
The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism
-
Delezie J, Dumont S, Dardente H et al. The nuclear receptor REV-ERBα is required for the daily balance of carbohydrate and lipid metabolism. FASEB J 2012; 26: 3321-3335.
-
(2012)
FASEB J
, vol.26
, pp. 3321-3335
-
-
Delezie, J.1
Dumont, S.2
Dardente, H.3
-
32
-
-
0019935341
-
The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man
-
Thiebaud D, Jacot E, Defronzo RA, Maeder E, Jequier E, Felber J-P. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 1982; 31: 957-963.
-
(1982)
Diabetes
, vol.31
, pp. 957-963
-
-
Thiebaud, D.1
Jacot, E.2
Defronzo, R.A.3
Maeder, E.4
Jequier, E.5
Felber, J.-P.6
-
33
-
-
84895128336
-
Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock
-
Dyar KA, Ciciliot S, Wright LE et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab 2014; 3: 29-41.
-
(2014)
Mol Metab
, vol.3
, pp. 29-41
-
-
Dyar, K.A.1
Ciciliot, S.2
Wright, L.E.3
-
34
-
-
84882255392
-
Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy
-
Woldt E, Sebti Y, Solt LA et al. Rev-erb-α modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 2013; 19: 1039-1046.
-
(2013)
Nat Med
, vol.19
, pp. 1039-1046
-
-
Woldt, E.1
Sebti, Y.2
Solt, L.A.3
-
35
-
-
34249275727
-
Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism
-
Liu C, Li S, Liu T, Borjigin J, Lin JD. Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007; 447: 477-481.
-
(2007)
Nature
, vol.447
, pp. 477-481
-
-
Liu, C.1
Li, S.2
Liu, T.3
Borjigin, J.4
Lin, J.D.5
-
36
-
-
14044264801
-
BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis
-
Rudic RD, McNamara P, Curtis A-M et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004; 2: e377.
-
(2004)
PLoS Biol
, vol.2
, pp. e377
-
-
Rudic, R.D.1
McNamara, P.2
Curtis, A.-M.3
-
37
-
-
54449085416
-
Physiological significance of a peripheral tissue circadian clock
-
Lamia KA, Storch K-F, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 2008; 105: 15172-15177.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 15172-15177
-
-
Lamia, K.A.1
Storch, K.-F.2
Weitz, C.J.3
-
38
-
-
35148870598
-
Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues
-
Kennaway DJ, Owens JA, Voultsios A, Boden MJ, Varcoe TJ. Metabolic homeostasis in mice with disrupted Clock gene expression in peripheral tissues. Am J Physiol Regul Integr Comp Physiol 2007; 293: 1528-1537.
-
(2007)
Am J Physiol Regul Integr Comp Physiol
, vol.293
, pp. 1528-1537
-
-
Kennaway, D.J.1
Owens, J.A.2
Voultsios, A.3
Boden, M.J.4
Varcoe, T.J.5
-
39
-
-
84878658848
-
Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism
-
Kennaway DJ, Varcoe TJ, Voultsios A, Boden MJ. Global loss of bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism. PLoS One 2013; 8: e65255.
-
(2013)
PLoS One
, vol.8
, pp. e65255
-
-
Kennaway, D.J.1
Varcoe, T.J.2
Voultsios, A.3
Boden, M.J.4
-
40
-
-
77954590348
-
CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2
-
Doi R, Oishi K, Ishida N. CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2. J Biol Chem 2010; 285: 22114-22121.
-
(2010)
J Biol Chem
, vol.285
, pp. 22114-22121
-
-
Doi, R.1
Oishi, K.2
Ishida, N.3
-
41
-
-
84883249417
-
PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression
-
Zani F, Breasson L, Becattini B et al. PER2 promotes glucose storage to liver glycogen during feeding and acute fasting by inducing Gys2 PTG and G L expression. Mol Metab 2013; 2: 292-305.
-
(2013)
Mol Metab
, vol.2
, pp. 292-305
-
-
Zani, F.1
Breasson, L.2
Becattini, B.3
-
42
-
-
84255206549
-
Cryptochromes mediate rhythmic repression of the glucocorticoid receptor
-
Lamia KA, Papp SJ, Yu RT et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 2011; 480: 552-557.
-
(2011)
Nature
, vol.480
, pp. 552-557
-
-
Lamia, K.A.1
Papp, S.J.2
Yu, R.T.3
-
43
-
-
77957821693
-
Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis
-
Zhang EE, Liu Y, Dentin R et al. Cryptochrome mediates circadian regulation of cAMP signaling and hepatic gluconeogenesis. Nat Med 2010; 16: 1152-1156.
-
(2010)
Nat Med
, vol.16
, pp. 1152-1156
-
-
Zhang, E.E.1
Liu, Y.2
Dentin, R.3
-
44
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng D, Liu T, Sun Z et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 2011; 331: 1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
Liu, T.2
Sun, Z.3
-
45
-
-
84862025421
-
Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration
-
Sun Z, Miller RA, Patel RT, Chen J et al. Hepatic Hdac3 promotes gluconeogenesis by repressing lipid synthesis and sequestration. Nat Med 2012; 18: 934-942.
-
(2012)
Nat Med
, vol.18
, pp. 934-942
-
-
Sun, Z.1
Miller, R.A.2
Patel, R.T.3
Chen, J.4
-
46
-
-
84911865436
-
Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo
-
Fang B, Everett LJ, Jager J et al. Circadian enhancers coordinate multiple phases of rhythmic gene transcription in vivo. Cell 2014; 159: 1140-1152.
-
(2014)
Cell
, vol.159
, pp. 1140-1152
-
-
Fang, B.1
Everett, L.J.2
Jager, J.3
-
47
-
-
15544369658
-
Host-bacterial mutualism in the human intestine
-
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307: 1915-1920.
-
(2005)
Science
, vol.307
, pp. 1915-1920
-
-
Bäckhed, F.1
Ley, R.E.2
Sonnenburg, J.L.3
Peterson, D.A.4
Gordon, J.I.5
-
49
-
-
77950251400
-
A human gut microbial gene catalogue established by metagenomic sequencing
-
Qin J, Li R, Raes J, Arumugam M et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464: 59-65.
-
(2010)
Nature
, vol.464
, pp. 59-65
-
-
Qin, J.1
Li, R.2
Raes, J.3
Arumugam, M.4
-
50
-
-
84877721051
-
Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs
-
Mukherji A, Kobiita A, Ye T, Chambon P. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 2013; 153: 812-827.
-
(2013)
Cell
, vol.153
, pp. 812-827
-
-
Mukherji, A.1
Kobiita, A.2
Ye, T.3
Chambon, P.4
-
51
-
-
84862008430
-
Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet
-
Hatori M, Vollmers C, Zarrinpar A et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15: 848-860.
-
(2012)
Cell Metab
, vol.15
, pp. 848-860
-
-
Hatori, M.1
Vollmers, C.2
Zarrinpar, A.3
-
52
-
-
84919687733
-
Diet and feeding pattern affect the diurnal dynamics of the gut microbiome
-
Zarrinpar A, Chaix A, Yooseph S, Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 2014; 20: 1006-1017.
-
(2014)
Cell Metab
, vol.20
, pp. 1006-1017
-
-
Zarrinpar, A.1
Chaix, A.2
Yooseph, S.3
Panda, S.4
-
53
-
-
84919649838
-
Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges
-
Chaix A, Zarrinpar A, Miu P, Panda S. Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 2014; 20: 991-1005.
-
(2014)
Cell Metab
, vol.20
, pp. 991-1005
-
-
Chaix, A.1
Zarrinpar, A.2
Miu, P.3
Panda, S.4
-
54
-
-
77954848215
-
Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes
-
Marcheva B, Ramsey KM, Buhr ED et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010; 466: 627-631.
-
(2010)
Nature
, vol.466
, pp. 627-631
-
-
Marcheva, B.1
Ramsey, K.M.2
Buhr, E.D.3
-
55
-
-
79953323827
-
An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice
-
Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 2011; 54: 120-124.
-
(2011)
Diabetologia
, vol.54
, pp. 120-124
-
-
Sadacca, L.A.1
Lamia, K.A.2
deLemos, A.S.3
Blum, B.4
Weitz, C.J.5
-
56
-
-
84879001061
-
Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice
-
Lee J, Moulik M, Fang Z et al. Bmal1 and β-cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced β-cell failure in mice. Mol Cell Biol 2013; 33: 2327-2338.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 2327-2338
-
-
Lee, J.1
Moulik, M.2
Fang, Z.3
-
57
-
-
84856116194
-
The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet
-
Vieira E, Marroquí L, Batista TM et al. The clock gene Rev-erbα regulates pancreatic β-cell function: modulation by leptin and high-fat diet. Endocrinology 2012; 153: 592-601.
-
(2012)
Endocrinology
, vol.153
, pp. 592-601
-
-
Vieira, E.1
Marroquí, L.2
Batista, T.M.3
-
58
-
-
84880790400
-
Involvement of the clock gene rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells
-
Vieira E, Marroquí L, Figueroa ALC et al. Involvement of the clock gene rev-erb alpha in the regulation of glucagon secretion in pancreatic alpha-cells. PLoS One 2013; 8: e69939.
-
(2013)
PLoS One
, vol.8
, pp. e69939
-
-
Vieira, E.1
Marroquí, L.2
Figueroa, A.L.C.3
-
59
-
-
84860291442
-
Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists
-
Solt LA, Wang Y, Banerjee S et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature 2012; 485: 62-68.
-
(2012)
Nature
, vol.485
, pp. 62-68
-
-
Solt, L.A.1
Wang, Y.2
Banerjee, S.3
|